MAX232...D, DW, N, OR NS PACKAGE MAX2321...D, DW, OR N PACKAGE

(TOP VIEW)

C1+ 🛙

V_{S+} [] 2

C1- [3

C2+ 🛛 4

C2- 🛛 5

V_S- [] 6

T20UT 7

R2IN 18

SLLS047L - FEBRUARY 1989 - REVISED MARCH 2004

16 Vcc

15 GND

13 R1IN

11 T1IN

10 T2IN

14 T10UT

12 R10UT

9 R20UT

- Meets or Exceeds TIA/EIA-232-F and ITU Recommendation V.28
- Operates From a Single 5-V Power Supply With 1.0-μF Charge-Pump Capacitors
- Operates Up To 120 kbit/s
- Two Drivers and Two Receivers
- ±30-V Input Levels
- Low Supply Current . . . 8 mA Typical
- ESD Protection Exceeds JESD 22
 2000-V Human-Body Model (A114-A)
- Upgrade With Improved ESD (15-kV HBM) and 0.1-μF Charge-Pump Capacitors is Available With the MAX202
- Applications
 - TIA/EIA-232-F, Battery-Powered Systems, Terminals, Modems, and Computers

description/ordering information

The MAX232 is a dual driver/receiver that includes a capacitive voltage generator to supply TIA/EIA-232-F voltage levels from a single 5-V supply. Each receiver converts TIA/EIA-232-F inputs to 5-V TTL/CMOS levels. These receivers have a typical threshold of 1.3 V, a typical hysteresis of 0.5 V, and can accept ±30-V inputs. Each driver converts TTL/CMOS input levels into TIA/EIA-232-F levels. The driver, receiver, and voltage-generator functions are available as cells in the Texas Instruments LinASIC[™] library.

TA	PAC	KAGET	ORDERABLE PART NUMBER	TOP-SIDE MARKING					
	PDIP (N)	Tube of 25	MAX232N	MAX232N					
		Tube of 40	MAX232D	144.2000					
0°C to 70°C	SOIC (D)	Reel of 2500	MAX232DR	MAX232					
	SOIC (DW)	Tube of 40	MAX232DW	1447/000					
		Reel of 2000	MAX232DWR	MAX232					
	SOP (NS)	Reel of 2000	MAX232NSR	MAX232					
	PDIP (N)	Tube of 25	MAX232IN	MAX232IN					
		Tube of 40	MAX232ID						
−40°C to 85°C	SOIC (D)	Reel of 2500	MAX232IDR	MAX232I					
	SOIC (DW)	Tube of 40	MAX232IDW	MAX232I					
	3010 (DW)	Reel of 2000	MAX232IDWR	101472321					

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinASIC is a trademark of Texas Instruments.

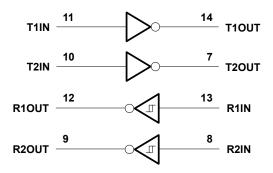
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2004, Texas Instruments Incorporated

SLLS047L - FEBRUARY 1989 - REVISED MARCH 2004

Function Tables

INPUT TIN	OUTPUT TOUT						
L	Н						
н	L						
H = high I	H = high level, L = low						


level

EACH RECEIVER

INPUT RIN	OUTPUT ROUT				
L	Н				
н	L				
H = high level 1 = low					

H = high level, L = low level

logic diagram (positive logic)

SLLS047L - FEBRUARY 1989 - REVISED MARCH 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Output voltage range, V _O : T1OUT, T2OUT	$\begin{array}{c} V_{CC} - 0.3 \ V \ to \ 15 \ V \\ -0.3 \ V \ to \ -15 \ V \\ -0.3 \ V \ to \ -15 \ V \\ -0.3 \ V \ to \ V_{CC} + 0.3 \ V \\ \pm 30 \ V \\ -0.3 \ V \ to \ V_{S+} + 0.3 \ V \\ -0.3 \ V \ to \ V_{CC} + 0.3 \ V \ to \ V_{CC} + 0.3 \ V \\ -0.3 \ V \ to \ V_{CC} + 0.3 \ V \ to \ V \ to \ V_{CC} + 0.3 \ V \ to \ V \ to \ V \ to \ V \ to \ V_{CC} + 0.3 \ V \ to \ to$
	N package
Operating virtual junction temperature, T _J Storage temperature range, T _{stg}	150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages are with respect to network GND.

- 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	4.5	5	5.5	V	
VIH High-level input voltage (T1IN,T2IN)						V
VIL	Low-level input voltage (T1IN, T2IN)				0.8	V
R1IN, R2IN	N, R2IN Receiver input voltage				±30	V
т.	Operating free air temperature	MAX232	0		70	°C
TA	Operating free-air temperature MAX232I				85	

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

PARA	TEST CO	MIN	TYP‡	MAX	UNIT		
ICC Supply current		V _{CC} = 5.5 V, T _A = 25°C	All outputs open,		8	10	mA

[‡] All typical values are at V_{CC} = 5 V and T_A = 25°C.

NOTE 4: Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V.

SLLS047L - FEBRUARY 1989 - REVISED MARCH 2004

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (see Note 4)

PARAMETER			TEST CONDITIONS	MIN	TYP†	MAX	UNIT
VOH	High-level output voltage	T1OUT, T2OUT	R_L = 3 k Ω to GND	5	7		V
VOL	Low-level output voltage [‡]	T1OUT, T2OUT	R_L = 3 k Ω to GND		-7	-5	V
r _o	Output resistance	T1OUT, T2OUT	$V_{S+} = V_{S-} = 0, V_O = \pm 2 V$	300			Ω
los§	Short-circuit output current	T1OUT, T2OUT	V _{CC} = 5.5 V, V _O = 0		±10		mA
IIS	Short-circuit input current	T1IN, T2IN	V ₁ = 0			200	μA

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

[‡] The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.

§ Not more than one output should be shorted at a time.

NOTE 4: Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see Note 4)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SR	Driver slew rate	$R_L = 3 k\Omega$ to 7 k Ω , See Figure 2			30	V/µs
SR(t)	Driver transition region slew rate	See Figure 3		3		V/µs
	Data rate	One TOUT switching		120		kbit/s

NOTE 4: Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V \pm 0.5 V.

RECEIVER SECTION

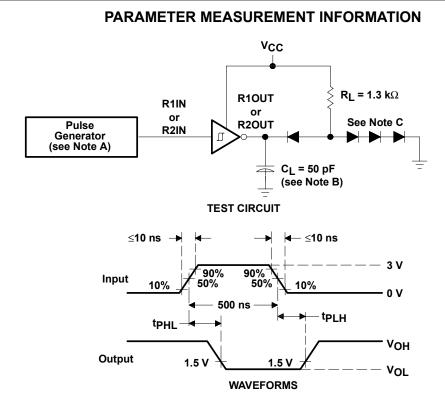
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (see Note 4)

PARAMETER			TEST C	MIN	TYP†	MAX	UNIT	
VOH	High-level output voltage	R1OUT, R2OUT	I _{OH} = −1 mA		3.5			V
VOL	Low-level output voltage [‡]	R1OUT, R2OUT	I _{OL} = 3.2 mA				0.4	V
v _{IT+}	Receiver positive-going input threshold voltage	R1IN, R2IN	V _{CC} = 5 V,	T _A = 25°C		1.7	2.4	V
V _{IT} –	Receiver negative-going input threshold voltage	R1IN, R2IN	V _{CC} = 5 V,	T _A = 25°C	0.8	1.2		V
V _{hys}	Input hysteresis voltage	R1IN, R2IN	V _{CC} = 5 V		0.2	0.5	1	V
rj	Receiver input resistance	R1IN, R2IN	V _{CC} = 5,	T _A = 25°C	3	5	7	kΩ

[†] All typical values are at V_{CC} = 5 V, T_A = 25° C.

[‡] The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.

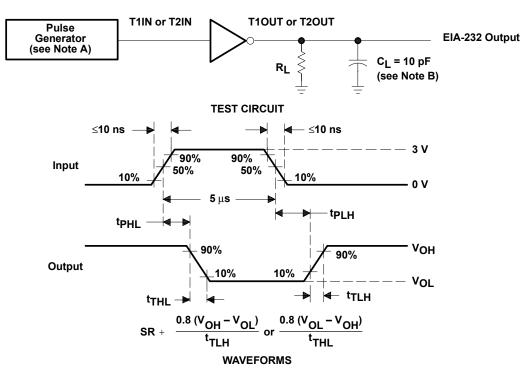
NOTE 4: Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V.


switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Note 4 and Figure 1)

PARAMETER					
tPLH(R) Receiver propagation delay time, low- to high-level output	500	ns			
t _{PHL(R)} Receiver propagation delay time, high- to low-level output	500	ns			

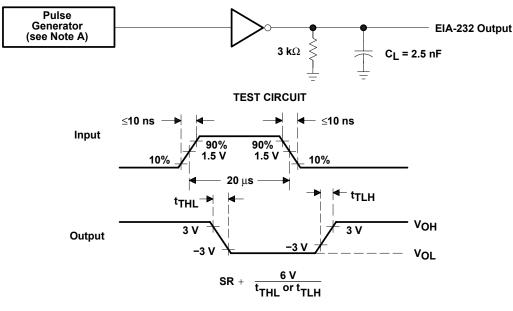
NOTE 4: Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V.

SLLS047L - FEBRUARY 1989 - REVISED MARCH 2004



- NOTES: A. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, duty cycle $\leq 50\%$.
 - B. CL includes probe and jig capacitance.
 - C. All diodes are 1N3064 or equivalent.

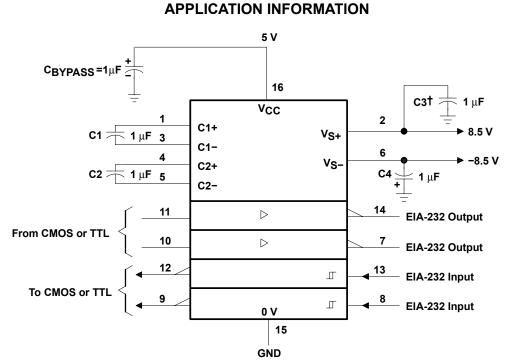
Figure 1. Receiver Test Circuit and Waveforms for $t_{\mbox{PHL}}$ and $t_{\mbox{PLH}}$ Measurements


SLLS047L - FEBRUARY 1989 - REVISED MARCH 2004

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The pulse generator has the following characteristics: $Z_{O} = 50 \Omega$, duty cycle $\leq 50\%$.
 - B. CL includes probe and jig capacitance.

Figure 2. Driver Test Circuit and Waveforms for tPHL and tPLH Measurements (5-µs Input)


WAVEFORMS

NOTE A: The pulse generator has the following characteristics: Z_O = 50 Ω , duty cycle \leq 50%.

Figure 3. Test Circuit and Waveforms for t_{THL} and t_{TLH} Measurements (20- $\!\mu s$ Input)

SLLS047L - FEBRUARY 1989 - REVISED MARCH 2004

 $^{+}$ C3 can be connected to V_{CC} or GND.

NOTES: A. Resistor values shown are nominal.

B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown. In addition to the 1-μF capacitors shown, the MAX202 can operate with 0.1-μF capacitors.

Figure 4. Typical Operating Circuit

TEXAS INSTRUMENTS www.ti.com

18-Jul-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MAX232D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232DWE4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232DWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232DWRE4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232ID	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IDE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IDRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IDWE4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IDWRE4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IDWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IN	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
MAX232INE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
MAX232N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
MAX232NE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
MAX232NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

 $^{(1)}$ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device.

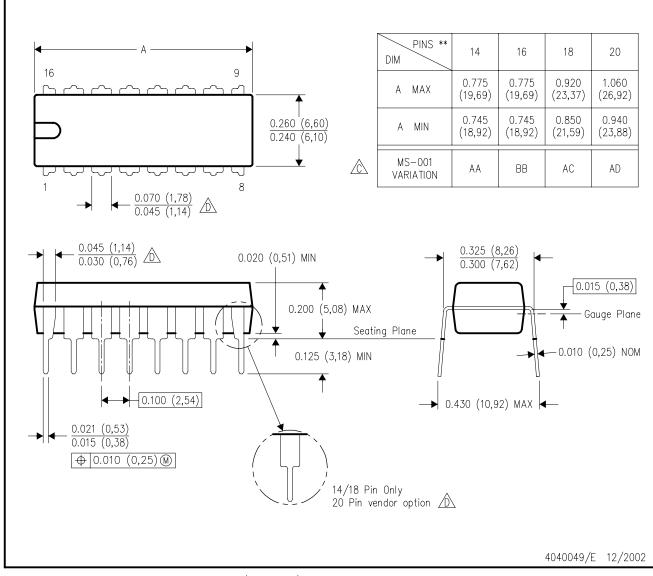
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

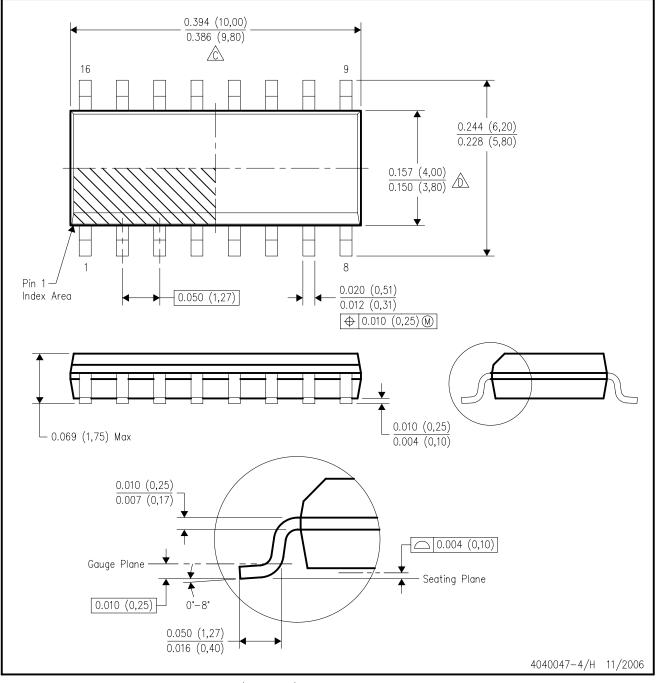

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

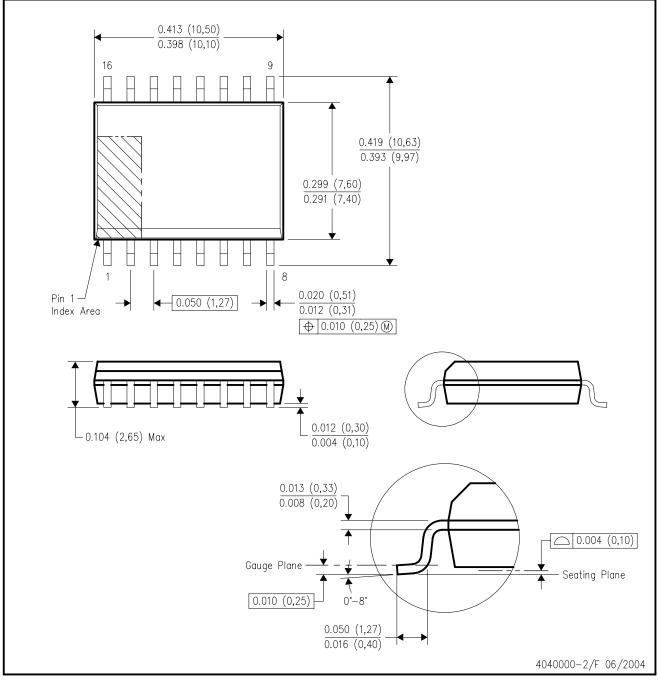
D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.


Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.

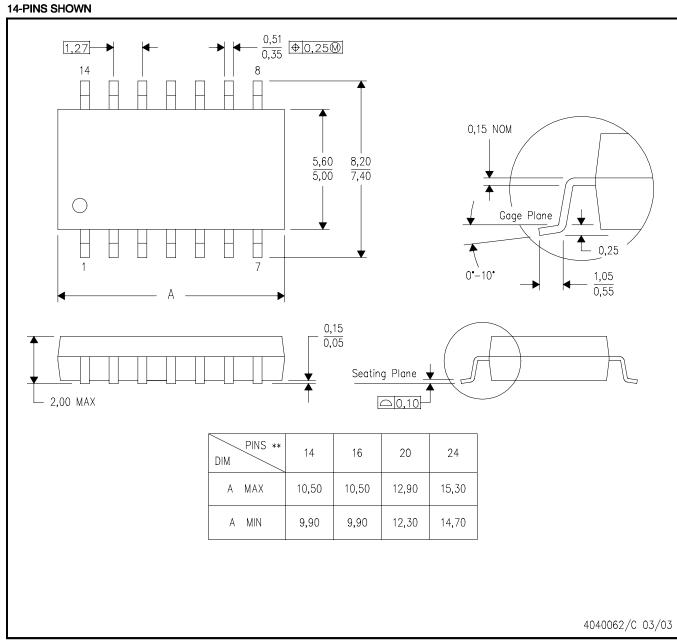
E. Reference JEDEC MS-012 variation AC.

DW (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AA.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright
2006, Texas Instruments Incorporated