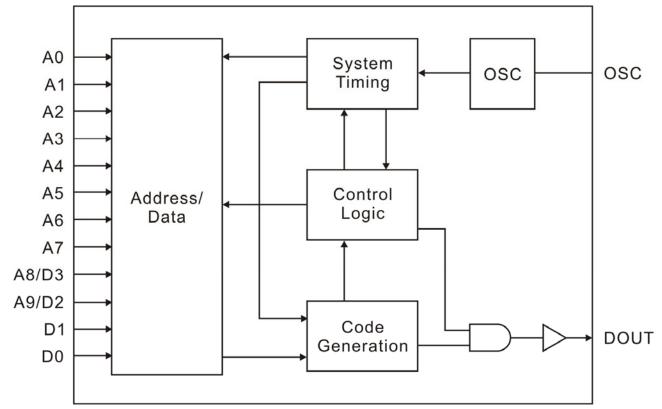
DESCRIPTION

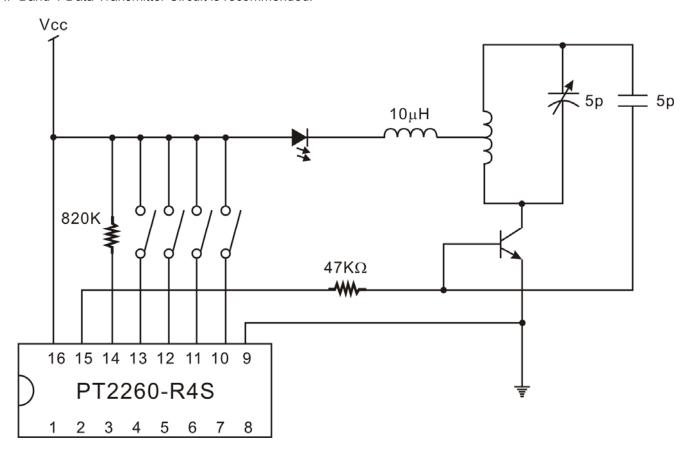
PT2260 is a remote control encoder paired with either PT2270 or PT2272 utilizing CMOS Technology. It encodes data and address pins into a serial coded waveform suitable for RF modulation. PT2260 has a maximum of 10 bits tri-state address pins providing up to 59,049 (or 3¹⁰) address codes; thereby, drastically reducing any code collision and unauthorized code scanning possibilities.

PT2260 is one of the first generation of Encoder/Decoder ICs that utilizes the unique PTC Technology. When paired with PT2270, this encoder/decoder (PT2260/PT2270) pair can operate at very wide temperature range (see Features). Thus, this very important feature enables your Encoder/Decoder to operate under the worst environmental condition.


FEATURES

- · High performance CMOS technology
- Low power consumption
- Very high noise immunity
- Wide operating temperature range: -40°C ~ 85°C
- 8 or 10 Tri-State code address pins
- 2 or 4 data pins
- Wider range of operating voltage: 1.8 ~ 10.0V
- Single resistor oscillator
- · Least external components

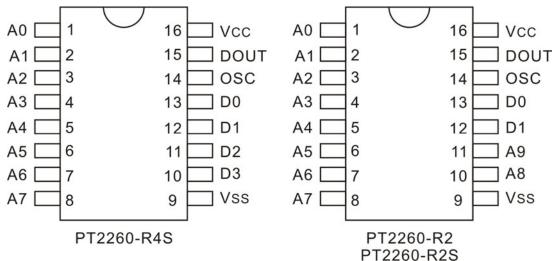
APPLICATIONS


- Home/Car security system
- Garage door controller
- · Remote fan controller
- · Remote control toys

BLOCK DIAGRAM

APPLICATION CIRCUIT

UHF Band 4-Data Transmitter Circuit is recommended.


ORDER INFORMATION

Valid Part Number	Package Type	Top Code
PT2260-R2	16 Pins, DIP, 300mil	PT2260-R2
PT2260-R2S	16 Pins, SOP, 150mil	PT2260-R2S
PT2260-R4S	16 Pins, SOP, 150mil	PT2260-R4S

Notes:

- 1. R: RF Application.
- 2. 2: 2 Data Pins; 4: 4 Data Pins.

PIN CONFIGURATION

PIN DESCRIPTION

Pin Name	I/O	Description	Pin No.
A0 ~ A7	I	Code Address Pin Nos. 0 ~ 7 These eight tri-state pins are detected by PT2260 to determine the encoded waveform bit 0 ~ bit 7. Each bit can be set to "0", "1", or "f" (floating).	1 ~ 8
A8/D3 ~ A9/D2	I/PL*	Code Address Pin No. 8 ~ 9/Data Pin No. 3 ~ 2. These two tri-state pins are detected by PT2260 to determine the encoded waveform bit 8 ~ bit 9. When these pins are used as address pins (as in PT2260-R2), they can be set to "0", "1", or "f" (floating). When these pins are used as data pins (as in PT2260-R4), they can only be set to "0" or "1".	10 ~ 11
D1, D0	Data Pin No. 1/0. These pins can only be set to "0" or "1"		12, 13
OSC	OSC I Oscillator Pin A resistor connected between the Osc Pin and the Vcc determines the fundamental frequency of the PT2260		14
DOUT	DOUT O Double Data Output Pin. The encoded waveform is serially outputted to this pin. When PT2260 is not transmitting, DOUT outputs low (Vss) voltage		15
Vcc		Positive Power Supply	16
Vss		Negative Power Supply	9

Note:

PL -- Pull-low Resistor is connected internally

PL* -- If those two pins are used as Data Pins (PT2260-R2), pull-low resistor is connected internally; otherwise, no pull-low resistor is connected.

FUNCTION DESCRIPTION

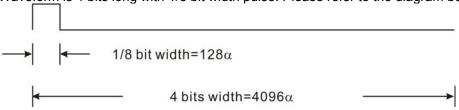
PT2260 encodes the code address and data set at A0 \sim A7, A8/D3, A9/D2, D1 and D0 into a special waveform and outputs it to the DOUT when any of the data pins is tied to high. This waveform is fed to the RF modulator for transmission. The transmitted radio frequency is received by the RF demodulator and reshaped into the special waveform. PT2270 (or PT2272) is then used to decode the waveform and set the corresponding output pin(s). Thus completing a remote control encoding and decoding function.


RF OPERATION

CODE BITS

A Code Bit is the basic component of the encoded waveform, and can be classified as either an AD (Address/Data) Bit or a SYNC (Synchronous) Bit.

Address/Data (AD) Bit Waveform

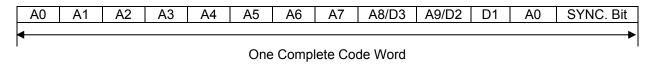

An AD Bit can be designated as Bit "0", "1", or "f" if it is in low, high or floating state respectively. One bit waveform consists of 2 pulse cycles. Each pulse cycle has 512 oscillating clock periods. For further details, please refer to the diagram below:

where: α =Oscillating Clock Period

Synchronous (Sync.) Bit Waveform

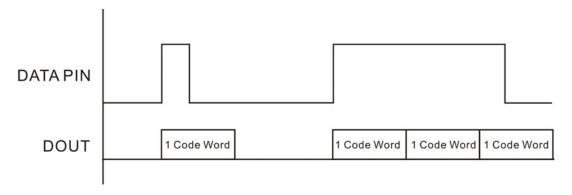
The Synchronous Bit Waveform is 4 bits long with 1/8 bit width pulse. Please refer to the diagram below:

Note: 1 bit=1024 α


CODE WORD

A group of Code Bits is called a Code Word. A Code Word consists of 12 AD bits followed by one Sync. Bit. The 12 AD bits are determined by the corresponding states of A0 \sim A7, A8/D3, A9/D2, D1 and D0 pins at the time of transmission. When the Data Type of PT2260 is used, the address bits will decrease accordingly.

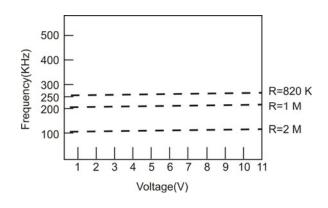
For example: In the 4-Data Type where the address has eight (8) bits, the transmitting format is:

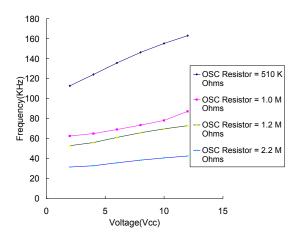

PT2260 has a maximum of ten (10) Address Bits. The following diagram shows the code bits with their corresponding pins.

2 Data: A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 D1 D0 Sync Bit 4 Data: A0 A1 A2 A3 A4 A5 A6 A7 D3 D2 D1 D0 Sync Bit

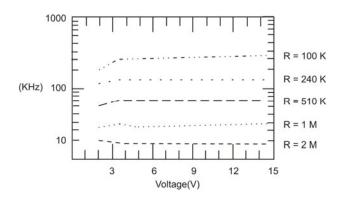
The Code Bits A0 ~ A7, A8/D3, A9/D2, D1 and D0 are determined by the states set at these pins. For example, when the A0 (Pin No.1) is set to "1" (Vcc), the Code Bit A0 is synthesized as "1" bit. In the same manner, when it (A0 Pin) is set to "0" (Vss) or left floating, the Code Bit A0 is synthesized as a "0" or "f" bit respectively.

When PT2260 detects "1" on any of the Data pins, it outputs a Code Word at DOUT. If the Data Pin is still in high state ("1") the time the Code Word transmission ends, PT2260 outputs the same Code Word. Please refer to the diagram below:

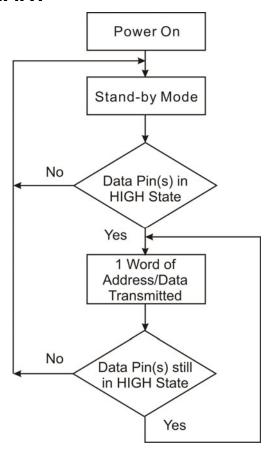



SINGLE OSCILLATOR

The built-in oscillator circuitry of PT2260 allows a precision oscillator to be constructed by connecting an external resistor between OSC and Vcc pins. For PT2270 (or PT2272) to decode correctly the received waveform, the oscillator frequency of PT2270 (or PT2272) must be $1/16 \sim 4$ (or $1/16 \sim 1/4$) times that of the transmitting PT2260. The typical oscillator frequency with various resistor values for PT2260, PT2270, and PT2272 are shown below:


Encoder (PT2260) OSC Frequency

Decoder (PT2270) OSC Frequency


Decoder (PT2272) OSC Frequency

Suggested Oscillator resistor values are shown below.

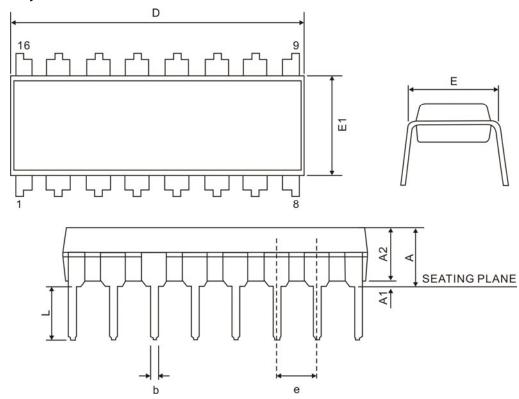
PT2260	PT2272	PT2270
820ΚΩ	510ΚΩ	1ΜΩ
1ΜΩ	620ΚΩ	1.2ΜΩ
2ΜΩ	1.2ΜΩ	2.2ΜΩ

OPERATION FLOWCHART

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vcc		-0.3 ~ 10.0	V
Input voltage	VI		-0.3 ~ Vcc+0.3	V
Output voltage	VO		-0.3 ~ Vcc+0.3	V
Maximum power dissipation	Pa	Vcc=10V	500	mW
Operating temperature	Topr		-40 ~ +85	$^{\circ}\!\mathbb{C}$
Storage temperature	Tstg		-65 ~ +150	$^{\circ}\!\mathbb{C}$

DC ELECTRICAL CHARACTERISTICS

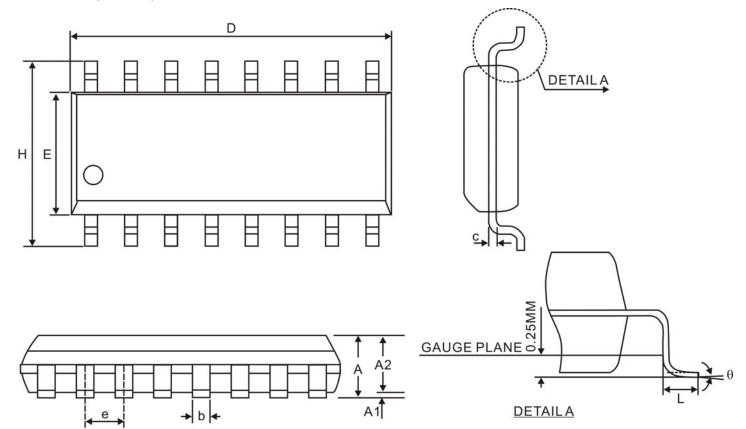

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Supply voltage	Vcc	-	1.8	-	10	V
Stand-by current	Isb	Vcc=5V, OSC stops All input pins open	0.2	0.5	0.8	μΑ
DOUT output driving current	I _{OH}	Vcc=3V, V _{OH} =1.5V Vcc=10V, V _{OH} =5 V	2.5 20	-	-	mA
DOUT output sinking current	I _{OL}	Vcc=3V, V _{OL} =1.5V Vcc=10V, V _{OL} =5V	4.6 24	-	-	mA
Operation current	lop	Vcc=1.8V Vcc=6.0V Vcc=10V	0.01 0.50 1.60	-	-	mA

PT2260 V1.5 - 8 - June, 2011

PACKAGE INFORMATION

16 PINS, DIP, 300MIL

Symbol	Min.	Nom.	Max.	
Α	-	-	5.33	
A1	0.38	-	ı	
A2	2.92	3.30	4.95	
b	0.36	-	0.56	
С	0.20	-	0.36	
е	2.54 BSC.			
D	18.67	19.17	19.69	
E	7.62 BSC			
E1	7.62	7.87	8.26	
L	2.92	-	3.81	


Notes:

1. Refer to JEDEC MO-001 BB

2. Unit: mm

16 PINS, SOP, 150MIL

Symbol	Min.	Тур.	Max.	
Α	1.35	-	1.77	
A1	0.08 - 0.28			
A2	1.20 1.45 1.65			
b	0.31 - 0.51			
С	0.16	-	0.26	
е	1.27 BSC.			
D	9.90 BSC.			
Н	6.00 BSC.			
E	3.90 BSC.			
L	0.40	-	1.27	
θ	0°	_	8°	

Notes:

Refer to JEDEC MO-001 BB
 Unit: mm