FAST SOFT-RECOVERY RECTIFIER DIODES

Silicon double-diffused rectifier diodes in plastic envelopes. They are intended for use in chopper applications as well as in switched-mode power supplies, as efficiency diodes and scan rectifiers in television receivers. The devices feature non-snap-off characteristics. Normal and reverse polarity types are available.

QUICK REFERENCE DATA									
		BYX71	-350(R)	600(R)					
Repetitive peak reverse voltage	v_{RRM}	max.	350	600	V				
Average forward current	II	(AV)	max.	7	Å				
Non-repetitive peak forward current	ΙĮ	I_{FSM}		60	A				
Reverse recovery time	t	r	<	450	ns				

MECHANICAL DATA (see also page 2)

Dimensions in mm

The exposed metal base-plate is directly connected to tag 1.

November 1975

BYX71 SERIES

MECHANICAL DATA (continued)

Net mass: 2,5 g

Recommended diameter of fixing screw: 3,5 mm

Torque on screw

when using washer and heatsink compound: min. $0,95\ Nm\ (9,5\ kg\ cm)$

max. 1,5 Nm (15 kg cm)

Accessories:

supplied with the device: 56355 (washer)

available on request: 56316 (mica insulating washer)

POLARITY OF CONNECTIONS

		BYX71-350 and BYX71-600	BYX71-350R and BYX71-600R
Base-pla	ite :	cathode	anode
Tag 1	:	cathode	anode
Tag 2	:	anode	cathode

RATINGS Limiting values in accord	ance with the Ab	solute N	Maximum :	System	(IEC134)
Voltages		BYX	71 - 350(R)	600(R	<u>)</u>
Continuous reverse voltage	v_R	max	300	500	V
Working reverse voltage V _I		max	. 300	500	V
Repetitive peak reverse voltage ($\delta \leq 0$),01) V _{RR} N	M max	350	600	V
Non-repetitive peak reverse voltage (t ≤ 10 ms)	v_{RSN}	nax.	. 350	600	V
Currents					
Average on-state current assuming z switching losses (averaged over any 20 ms period) square wave: $\delta = 0.5$; up to T_{mb}	ero = 85 ^o C	I _F (AV)	max.	7	A
without heatsink at T _{aml}	$_{\rm o} = 50 {}^{\rm o}{\rm C}$	I _{F(AV)}	max.	1,4	A
sinusoidal: at T _{mb}	= 85 °C	IF(AV)	max.	6,5	Α .
R.M.S. forward current		I _{F(RMS}) max.	10	Α
Repetitive peak forward current		I _{FRM} ma		25	Α
Non-repetitive peak forward current half sine wave; $t = 10 \text{ ms}$; $T_j = 150$	^o C prior	T	max.	60	A
to surge square pulse; t = 5 ms; T _j = 150 °C _T	orior to surge	I _{FSM} I _{FSM}	max.	60	A
Rate of change of commutation curren		$-\frac{dI}{dt}$	max.	50	A/µs
Temperatures					
Storage temperature		$T_{ m stg}$ –55 t		o +125	$^{\circ}$ C
Junction temperature		T_{j}	max.	150	°C

BYX71 **SERIES**

THERMAL RESISTANCE

From junction to mounting base

OC/W R_{th j-mb} 6,5

Transient thermal impedance; t = 1 ms

°C/W 0, 3Z_{th j-mb}

Influence of mounting method

1. Heatsink mounted

From mounting base to heatsink

- a. with heatsink compound
- b. with heatsink compound and 56316 mica washer
- c. without heatsink compound
- d. without heatsink compound; with 56316 mica washer

- °C/W Rth mb-h 1,5
- 2,7 OC/W Rth mb-h 2,7 °C/W Rth mb-h
- °C/W R_{th} mb-h

2. Free air operation

The quoted values of R_{th} i-a should be used only when no other leads run to the tie-points.

From junction to ambient in free air mounted on a printed circuit board at a = maximum lead length and with a copper laminate

a. > 1 cm^2

b. $< 1 \text{ cm}^2$

 $R_{th j-a} = 50 \, {}^{o}C/W$ $R_{th j-a} = 55 \, {}^{o}C/W$

at a lead-length a = 3 mm and with a copper laminate

 $c. > 1 \text{ cm}^2$

 $d. < 1 \text{ cm}^2$

 $R_{th j-a} = 55 \text{ }^{\circ}\text{C/W}$ $R_{th j-a} = 60 \text{ }^{\circ}\text{C/W}$

SOLDERING AND MOUNTING NOTES

- 1. Soldered joints must be at least 2,5 mm from the seal.
- The maximum permissible temperature of the soldering iron or bath is 270 °C; contact with the joint must not exceed 3 seconds.
- 3. The device should not be immersed in oil, and few potting resins are suitable for re-encapsulation. Advice on these materials is available on request.
- 4. Leads should not be bent less than 2,5 mm from the seal; exert no axial pull when bending.
- For good thermal contact heatsink compound should be used between base-plate and heatsink.

CHARACTERISTICS

Forward voltage

$$I_F = 5 \text{ A}$$
; $T_j = 25 \text{ }^{\circ}\text{C}$

 $V_{\rm F}$ < 1,25 V^{-1})

Reverse current

$$V_R = V_{RWmax}$$
; $T_i = 125$ °C

mΑ

0.4

Reverse recovery when switched from

$$I_F = 2 \text{ A to } V_R = 30 \text{ V with}$$

$$-dI_F/dt = 20 \text{ A/}\mu\text{s}$$
; $T_j = 25 \text{ °C}$
Recovery charge

Recovery time

Max. slope of the reverse recovery current

with $-dI_F/dt = 2 A/\mu s$

¹⁾ Measured under pulse conditions to avoid excessive dissipation.

CHARACTERISTICS (continued)

Forward recovery when switched to

$$I_F$$
 = 25 A with t_r = 0, 5 μs at T_j = 25 °C Recovery time
$$t_{fr} < 0, 8 \quad \mu s \\ Recovery voltage \\ V_{fr} < 3, 5 \quad V$$

Forward output waveform

OPERATING NOTES

Dissipation and heatsink considerations:

 The various components of junction temperature rise above ambient are illustrated below:

b. The method of using the graph on page 8 is as follows: Starting with the curve of maximum dissipation as a function of $I_{F(AV)}$, for a particular current trace horizontally to meet the appropriate form factor; upwards to the operating duty cycle (δ) line; horizontally until the $R_{th\ mb}$ -a curve is reached. Finally trace upwards from the T_{amb} scale. The intersection determines the $R_{th\ mb}$ -a required.

The heatsink thermal resistance value $(R_{th\ h-a})$ can now be calculated from:

$$R_{th h-a} = R_{th mb-a} - R_{th mb-h}$$

Any measurement of heatsink temperature should be made immediately adjacent to the device.

c. The heatsink curves are optimised to allow the junction temperature to run up to 150 $^{\rm oC}$ (T $_{\rm i~max}$) whilst limiting T $_{\rm mb}$ to 125 $^{\rm oC}$ (or less).

9

October 1972

June 1974

Nomogram: power loss $\Delta P_{R(AV)}$ due to switching only (to be added to forward and reverse power losses).

October 1972