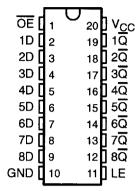
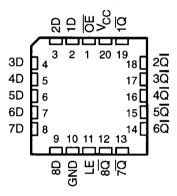
SN54ALS563B, SN74ALS563B OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS

SDAS163A - DECEMBER 1982 - REVISED JANUARY 1995

- 3-State Buffer-Type Outputs Drive Bus Lines Directly
- Bus-Structured Pinout
- Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), Standard Plastic (N) and Ceramic (J) 300-mil DIPs, and Ceramic Flat (W) Packages


description

These 8-bit D-type transparent latches feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.


While the latch-enable (LE) input is high, the Q outputs follow the complements of data (D) inputs. When LE is taken low, the outputs are latched at the inverses of the levels set up at the D inputs.

A buffered output-enable (\overline{OE}) input places the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased high logic level provide the capability to drive bus lines without interface or pullup components.

SN54ALS563B...J OR W PACKAGE SN74ALS563B...DW OR N PACKAGE (TOP VIEW)

SN54ALS563B . . . FK PACKAGE (TOP VIEW)

OE does not affect internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

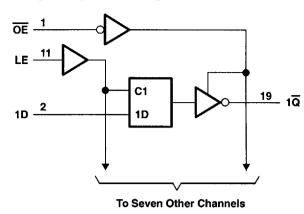
The SN54ALS563B is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ALS563B is characterized for operation from 0° C to 70° C.

FUNCTION TABLE (each latch)

	INPUTS		OUTPUT
ŌĒ	LE	D	ā
L	Н	Н	L
L	Н	Н	Н
L	L	Х	Q ₀
н	Х	X	z

PRODUCTION DATA Information is current as of publication date. Products conform to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1995, Texas Instruments Incorporated


SN54ALS563B, SN74ALS563B OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS

SDAS163A - DECEMBER 1982 - REVISED JANUARY 1995

logic symbol†

<u>OE</u> ΕN 11 C1 LE 19 1D 1D 1Q 3 18 $2\overline{Q}$ 2D 4 17 зQ 3D 16 4Q 4D 6 15 5Q 5D 7 14 6D 6Q 8 13 7D 7Q 9 12 8D 8Q

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage, V _{CC}	7 V
Input voltage, V _I	7 V
Voltage applied to a disabled 3-state output	5.5 V
Operating free-air temperature range, T _A : SN54ALS563B	-55°C to 125°C
SN74ALS563B	0°C to 70°C
Storage temperature range	-65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		SNS	SN54ALS563B			SN74ALS563B		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	٧
V_{IH}	High-level input voltage	2		·	2			٧
V_{IL}	Low-level input voltage			0.7			0.8	٧
ЮН	High-level output current			-1			-2.6	mA
loL	Low-level output current			12			24	mA
t _w	Pulse duration, LE high	15			15			ns
t _{su}	Setup time, data before LE↓	20			10			ns
th	Hold time, data after LE↓	12			10			ns
TA	Operating free-air temperature	-55		125	0		70	°C

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN54ALS563B, SN74ALS563B OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS

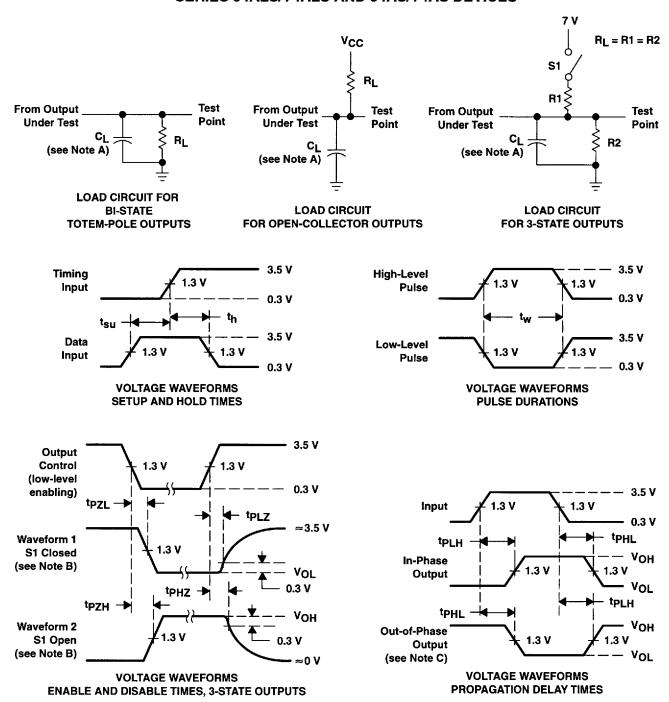
SDAS163A - DECEMBER 1982 - REVISED JANUARY 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SNS	SN54ALS563B			SN74ALS563B			
FANAMETER			MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
V _{IK}	$V_{CC} = 4.5 \text{ V},$	l _l = –18 mA			-1.2			-1.2	٧	
	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -0.4 \text{ mA}$	Vcc -2	?		V _{CC} -2	2			
v_{OH}	V _{CC} = 4.5 V	1 _{OH} = −1 mA	2.4	3.3					٧	
	VCC = 4.5 V	$I_{OH} = -2.6 \text{ mA}$				2.4	3.2			
Vo	V _{CC} = 4.5 V	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	V	
VOL		I _{OL} = 24 mA					0.35	0.5	V	
^I OZH	$V_{CC} = 5.5 V$,	$V_0 = 2.7 \text{ V}$			20			20	μΑ	
^I OZL	$V_{CC} = 5.5 V$,	V _O = 0.4 V			-20			-20	μА	
l ₁	V _{CC} = 5.5 V,	V ₁ = 7 V			0.1			0.1	mA	
ήн	$V_{CC} = 5.5 \text{ V},$	V _I = 2.7 V			20			20	μА	
l _I L	$V_{CC} = 5.5 V$,	V _I = 0.4 V			-0.1			-0.1	mA	
lo [‡]	$V_{CC} = 5.5 V$,	V _O = 2.25 V	-20		-112	-30		-112	mA	
	V _{CC} = 5.5 V	Outputs high		10	17		10	17		
lcc		Outputs low		16	26		16	26	mA	
		Outputs disabled		17	29		17	29		

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

switching characteristics (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	C _l R1	V_{CC} = 4.5 V to 5.5 V, C_L = 50 pF, R1 = 500 Ω, R2 = 500 Ω, T_A = MIN to MAX§				
			SN54AL	S563B	SN74ALS563B			
			MIN	MAX	MIN	MAX		
t _{PLH}	D	ā	3	26	3	18		
^t PHL			3	15	3	14	ns	
^t PLH	LE	ā	8	29	6	22		
^t PHL			4	22	6	21	ns	
^t PZH	ŌĒ	Iα	4	25	3	18		
^t PZL			4	21	4	18	ns	
^t PHZ	ŌĒ	ā	2	12	1	10		
t _{PLZ}			3	22	1	15	ns	

[§] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
- D. All input pulses have the following characteristics: PRR \leq 1 MHz, $t_r = t_f = 2$ ns, duty cycle = 50%.
- E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

