SDAS053B - APRIL 1982 - REVISED JANUARY 1995 - 'AS1034A Offer High Capacitive-Drive Capability - Noninverting Drivers - Package Options Include Plastic Small-Outline (D) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs #### description These devices contain six independent noninverting drivers. They perform the Boolean function Y = A. The SN54ALS1034 and SN54AS1034A are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS1034 and SN74AS1034A are characterized for operation from 0°C to 70°C. FUNCTION TABLE (each buffer) | INPUT
A | OUTPUT
Y | |------------|-------------| | Н | Н | | L | L | #### SN54ALS1034, SN54AS1034A . . . J PACKAGE SN74ALS1034, SN74AS1034A . . . D OR N PACKAGE (TOP VIEW) ## SN54ALS1034, SN54AS1034A . . . FK PACKAGE (TOP VIEW) NC - No internal connection #### logic symbol† | 1A | 1 | N | 2 | 1Y | |----|----|----------|----|----------| | | 3 | | 4 | | | 2A | 5 | | 6 | 2Y
3Y | | 3A | 9 | | 8 | | | 4A | 11 | | 10 | 4Y | | 5A | 13 | | 12 | 5Y | | 6A | | | | 6Y | [†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, J, and N packages. #### logic diagram (positive logic) ## SN54ALS1034, SN54AS1034A, SN74ALS1034, SN74AS1034A HEX DRIVERS SDAS053B - APRIL 1982 - REVISED JANUARY 1995 ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage, V _{CC} | 7 \ | |--|----------------| | Input voltage, V _I | | | Operating free-air temperature range, TA: SN54ALS103 | 4 | | SN74ALS103 | 4 0°C to 70°C | | Storage temperature range | –65°C to 150°C | #### recommended operating conditions | | | SN54ALS1034 | | SN74ALS1034 | | | UNIT | | |-----|--------------------------------|-------------|-----|-------------|-----|-----|------|------| | | | MIN | NOM | MAX | MIN | NOM | MAX | UNIT | | Vcc | Supply voltage | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | V | | VIH | High-level input voltage | 2 | | | 2 | | | V | | VIL | Low-level input voltage | | | 0.7 | | | 0.8 | V | | ЮН | High-level output current | | | -12 | | | -15 | mA | | loL | Low-level output current | | | 12 | | | 24 | mA | | TA | Operating free-air temperature | -55 | | 125 | 0 | | 70 | °C | # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | DADAMETED | TEST CONDITIONS | | SN! | 54ALS10 |)34 | SN7 | 4ALS10 | 34 | LINUT | |-----------------|---|----------------------------|--------------------|------------------|------|--------------------|------------------|------|-------| | PARAMETER | 1551 C | TEST CONDITIONS | | TYP [‡] | MAX | MIN | TYP [‡] | MAX | UNIT | | VIK | V _{CC} = 4.5 V, | I _I = -18 mA | | | -1.2 | | | -1.2 | V | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$ | $I_{OH} = -0.4 \text{ mA}$ | V _{CC} -2 | 2 | | V _{CC} -2 | ! | | | | Vari | | $I_{OH} = -3 \text{ mA}$ | 2.4 | 3.2 | | 2.4 | 3.2 | | V | | VOH | $V_{CC} = 4.5 V$ | $I_{OH} = -12 \text{ mA}$ | 2 | | | | | | V | | | | $I_{OH} = -15 \text{ mA}$ | | | | 2 | | | | | Vo | V _{CC} = 4.5 V | I _{OL} = 12 mA | | 0.25 | 0.4 | | | | V | | VOL | VCC = 4.5 V | I _{OL} = 24 mA | | | | | 0.35 | 0.5 | V | | lį | $V_{CC} = 5.5 V,$ | V _I = 7 V | | | 0.1 | | | 0.1 | mA | | lіН | $V_{CC} = 5.5 V$, | V _I = 2.7 V | | | 20 | | | 20 | μΑ | | I _{ΙL} | $V_{CC} = 5.5 V,$ | V _I = 0.4 V | | | -0.1 | | | -0.1 | mA | | ΙΟ [§] | V _{CC} = 5.5 V, | V _O = 2.25 V | -20 | | -112 | -30 | | -112 | mA | | ICCH | V _{CC} = 5.5 V, | V _I = 4.5 V | | 3 | 6 | | 3 | 6 | mA | | ICCL | V _{CC} = 5.5 V, | V _I = 0 | | 8 | 14 | | 8 | 14 | mA | [‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. [§] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS. SDAS053B - APRIL 1982 - REVISED JANUARY 1995 #### switching characteristics (see Figure 1) | | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | C _L
R _L
T _A | = 50 pF,
= 500 Ω
= MIN to | | | UNIT | |----------------------------|------------------|-----------------|----------------|--|---------------------------------|---|---|------| | | t _{PLH} | ٨ | V | 1 | 11 | 1 | 8 | 200 | | I PIH I . I . I . I I I OI | ^t PHL | А | T | 1 | 13 | 1 | 8 | ns | [†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡ | Supply voltage, V _{CC} |
7 V | |---|--------------------| | Input voltage, V _I |
7 V | | Operating free-air temperature range, TA: SN54AS1034A | | | SN74AS1034A |
0°C to 70°C | | Storage temperature range |
-65°C to 150°C | [‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ## recommended operating conditions§ | | | SN54AS1034A | | SN74AS1034A | | | UNIT | | |-----------------|--------------------------------|-------------|-----|-------------|-----|-----|------|------| | | | MIN | NOM | MAX | MIN | NOM | MAX | UNII | | VCC | Supply voltage | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | V | | VIH | High-level input voltage | 2 | | | 2 | | | V | | V _{IL} | Low-level input voltage | | | 0.8 | | | 0.8 | V | | ІОН | High-level output current | | | -40 | | | -48 | mA | | loL | Low-level output current | | | 40 | | | 48 | mA | | TA | Operating free-air temperature | -55 | | 125 | 0 | | 70 | °C | [§] These high sink- or source-current devices are not recommended for use above 40 MHz. ## SN54ALS1034, SN54AS1034A, SN74ALS1034, SN74AS1034A HEX DRIVERS SDAS053B - APRIL 1982 - REVISED JANUARY 1995 ## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | DADAMETED | PARAMETER TEST CONDITIONS | | SN5 | SN54AS1034A | | SN7 | UNIT | | | |-----------------|---|---------------------------|--------------------|-------------|------|--------------------|------|------|------| | PARAMETER | 1231 0 | UNDITIONS | MIN | TYP | MAX | MIN | TYP† | MAX | UNII | | VIK | $V_{CC} = 4.5 V,$ | I _I = -18 mA | | | -1.2 | | | -1.2 | V | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$ | $I_{OH} = -2 \text{ mA}$ | V _{CC} -2 | 2 | | V _{CC} -2 | | | | | \/a++ | | $I_{OH} = -3 \text{ mA}$ | 2.4 | 3.2 | | 2.4 | 3.2 | | V | | VOH | V _{CC} = 4.5 V | $I_{OH} = -40 \text{ mA}$ | 2 | | | | | | V | | | | $I_{OH} = -48 \text{ mA}$ | | | | 2 | | | | | Vo | V00 - 4 5 V | I _{OL} = 40 mA | | 0.25 | 0.5 | | | | V | | VOL | V _{CC} = 4.5 V | I _{OL} = 48 mA | | | | | 0.35 | 0.5 | V | | lį | $V_{CC} = 5.5 V,$ | V _I = 7 V | | | 0.1 | | | 0.1 | mA | | lН | $V_{CC} = 5.5 V,$ | V _I = 2.7 V | | | 20 | | | 20 | μΑ | | I _{IL} | V _{CC} = 5.5 V, | V _I = 0.4 V | | | -0.5 | | | -0.5 | mA | | lO [‡] | $V_{CC} = 5.5 \text{ V},$ | V _O = 2.25 V | -50 | | -200 | -50 | | -200 | mA | | ІССН | V _{CC} = 5.5 V, | V _I = 4.5 V | | 9 | 15 | | 9 | 15 | mA | | ICCL | V _{CC} = 5.5 V, | V _I = 0 | | 21 | 35 | | 21 | 35 | mA | [†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. ### switching characteristics (see Figure 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | C _L
R _L
T _A | = 50 pF,
= 500 Ω
= MIN to | , | | UNIT | |------------------|-----------------|----------------|--|---------------------------------|-----|-----|------| | | | | MIN | MAX | MIN | MAX | | | t _{PLH} | Λ. | V | 1 | 6.5 | 1 | 6 | ns | | ^t PHL | А | 1 | 1 | 6.5 | 1 | 6 | 115 | [§] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS. #### PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES NOTES: A. CL includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. When measuring propagation delay items of 3-state outputs, switch S1 is open. - D. All input pulses have the following characteristics: PRR \leq 1 MHz, $t_r = t_f = 2$ ns, duty cycle = 50%. - E. The outputs are measured one at a time with one transition per measurement. Figure 1. Load Circuits and Voltage Waveforms #### **PACKAGING INFORMATION** | 5962-88731012A ACTIVE LCCC FK 20 1 None Call TI Level-NC-NC-S962-8873101CA 5962-8873101DA ACTIVE CDIP J 14 1 None Call TI Level-NC-NC-SP62-8873101DA 84031012A ACTIVE CFP W 14 1 None Call TI Level-NC-NC-SP62-8873101DA 8403101CA ACTIVE CDIP J 14 1 None Call TI Level-NC-NC-SP62-NC-NC-SP62-NC-NC-SP62-NC-NC-SP62-NC-NC-NC-SP62-NC-NC-NC-SP62-NC-NC-NC-SP62-NC-NC-NC-SP62-NC-NC-NC-SP62-NC-NC-NC-SP62-NC-NC-NC-SP62-NC-NC-NC-SP62-NC-NC-NC-SP62-NC-NC-NC-SP62-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC- | NC
NC
NC
NC
NC | |---|----------------------------| | 5962-8873101DA ACTIVE CFP W 14 1 None Call TI Level-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC- | NC
NC
NC
NC | | 84031012A ACTIVE LCCC FK 20 1 None Call TI Level-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC- | NC
NC
NC | | 8403101CA ACTIVE CDIP J 14 1 None Call TI Level-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC- | NC
NC | | 8403101DA ACTIVE CFP W 14 1 None Call TI Level-NC-NC-NC-NC-US-NS-NS-S10/38411B2A JM38510/38411B2A ACTIVE LCCC FK 20 1 None Call TI Level-NC-NC-NC-NC-NC-US-NS-S10/38411BCA JM38510/38411BCA ACTIVE CDIP J 14 1 None Call TI Level-NC-NC-NC-S10/34ALS1034J SN54ALS1034J ACTIVE CDIP J 14 1 None Call TI Level-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC- | NC
NC | | JM38510/38411B2A ACTIVE LCCC FK 20 1 None Call TI Level-NC-NC-SNC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-N | NC | | JM38510/38411BCA ACTIVE CDIP J 14 1 None Call TI Level-NC-NC-SN54ALS1034J SN54ALS1034J ACTIVE CDIP J 14 1 None Call TI Level-NC-NC-SN54AS1034AJ SN74ALS1034D ACTIVE CDIP J 14 1 None Call TI Level-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC- | | | SN54ALS1034J ACTIVE CDIP J 14 1 None Call TI Level-NC-NC-SN54AS1034AJ SN74ALS1034AJ ACTIVE CDIP J 14 1 None Call TI Level-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC- | NC | | SN54AS1034AJ ACTIVE CDIP J 14 1 None Call TI Level-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC-NC- | | | SN74ALS1034D ACTIVE SOIC D 14 50 Pb-Free (RoHS) CU NIPDAU Level-2-260C-Level-1-235C-Level-1-2 | NC | | SN74ALS1034DR ACTIVE SOIC D 14 2500 Pb-Free CU NIPDAU Level-2-260C- (RoHS) Level-1-235C- | NC | | SN74ALS1034N ACTIVE PDIP N 14 25 Pb-Free CU NIPDAU Level-NC-NC- (RoHS) SN74ALS1034NSR ACTIVE SO NS 14 2000 Pb-Free CU NIPDAU Level-2-260C- | | | (RoHS) SN74ALS1034NSR ACTIVE SO NS 14 2000 Pb-Free CU NIPDAU Level-2-260C- | | | | NC | | (RoHS) Level-1-235C- | | | SN74AS1034AD ACTIVE SOIC D 14 50 Pb-Free CU NIPDAU Level-2-260C-
(RoHS) Level-1-235C- | | | SN74AS1034ADR ACTIVE SOIC D 14 2500 Pb-Free CU NIPDAU Level-2-260C-
(RoHS) Level-1-235C- | | | SN74AS1034AN ACTIVE PDIP N 14 25 Pb-Free CU NIPDAU Level-NC-NC-(RoHS) | NC | | SN74AS1034ANSR ACTIVE SO NS 14 2000 Pb-Free CU NIPDAU Level-2-260C-
(RoHS) Level-1-235C- | | | SNJ54ALS1034FK ACTIVE LCCC FK 20 1 None Call TI Level-NC-NC- | NC | | SNJ54ALS1034J ACTIVE CDIP J 14 1 None Call TI Level-NC-NC- | NC | | SNJ54ALS1034W ACTIVE CFP W 14 1 None Call TI Level-NC-NC- | NC | | SNJ54AS1034AFK ACTIVE LCCC FK 20 1 None Call TI Level-NC-NC- | NC | | SNJ54AS1034AJ ACTIVE CDIP J 14 1 None Call TI Level-NC-NC- | NC | | SNJ54AS1034AW ACTIVE CFP W 14 1 None Call TI Level-NC-NC- | | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. **None:** Not yet available Lead (Pb-Free). **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures. TI Pb-Free products are suitable for use in specified lead-free processes. at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight. ⁽²⁾ Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. #### PACKAGE OPTION ADDENDUM 28-Feb-2005 (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2005, Texas Instruments Incorporated