功能描述

DK125 是次级反馈,反激式 AC-DC 离线式开关电源控制芯片。芯片采用高集成度的 CMOS 电路设计,具有输出短路、次级开路、过温、过压等保护功能。芯片内置高压功率 管和自供电线路,具有外围元件极少,变压器设计简单(变压器不需要供电绕组)等特点。

产品特点

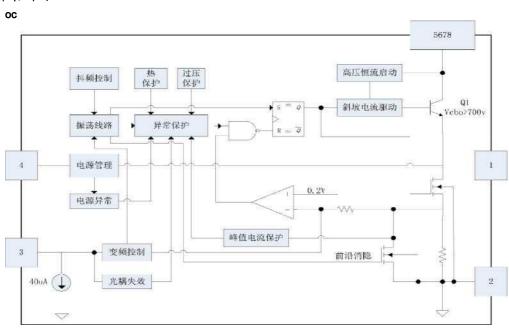
- * 全电压输入 90 V-264 V。
- 《内置700V功率管。
- 《芯片内集成了高压恒流启动电路,无需外部启动电阻。
- *专利的自供电技术,无需外部绕组供电。
- 参待机功耗小于 0.3W。
- 參 65 KHz PWM 开关频率。
- •内置变频功能, 待机时自动降低工作频< 在满足欧洲绿色能源标准 (< G.3W)同时, 降低了输出电压的纹波。
- •内置斜坡补偿电路,保证在低电压及大功率输出时的电路稳定。
- *频率抖动降低 EMI 滤波成本。
- 《过温、过流、过压以及输出短路,次级开路保护。
- «4KV 防静电 ESD 测试。

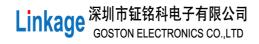
应用领域

24W 以下 AC-DC 应用包括: 电源适配器、LED 电源、电磁炉、空调、DVD、机顶盒等家电产品。

封装与引脚定义(DIP8)

引脚	符号	功能描述					
1	GND	接地引脚					
2	GND	接地引脚					
3	FB	反馈控制端引脚,接 1nF ~10nF					
4	VCC	供电引脚,外部对地接 47uF ~ 100uF 的电容					
5, 6, 7, 8	oc	输出引脚,连接芯片内高压功率管,外部与开关变压器相连					


~n oc


0C

~5H OC

~5~I OC

内部框图

极限参数				
供电电压 VDD				0.3 V8 V
供电电流 VDD			1	OOmA
引	脚	电	压 <u>-</u>	-0. 3V 700V
0.3 VVDD+0			3	1 3 0 0 mA 1 0 0 0 mW
V 力家祭耐压 心	&估由运 苔纟野山	率 工作温度 储存温度 焊接	汨由	-25°C+125°
切 年 目 附 压 峰	丰祖电机 总程取功	平 工作血及 附付血及 阡妆	血戊	-55°C+150°
由层套粉				$C + 280 \circ C/5S$

电气参数

项目	测试条件	最小	典 型 4.7	最大	单 位
vcc 工作电压	AC 输入 85V 26 5V	4.5	4.7	4.9	V
vcc 启动电压	AC 输入 85V 26 5V		4. 7		V
vcc 重启电压	AC 输入 85V 26 5V	3.	$\frac{7}{3}$.	3. 90	V
vcc 保护电压	AC 输入 85V 26 5V	6.	6.0 6. 55	6.	V
vcc 工作电流	VCC=5V, FB=1.5V			85 5 0	m A
高压启动电流	AC 输入 85V 26 5V	0.3	0.6	1.2	m A
启动时间	AC 输入 85V			50 0	m S
功率管耐压	Ioc=1mA	70			V
功率管保_压	测量 oc 电压	54	60 0	66 0	٧
最大峰值电流	VCC=5V, FB=1.5V2.8V	11	12 00	13	m A
PWM 输出频率	VCC=5V, FB=1.5V2.5V	6	6	6	KHz
	VCC=5V, FB=2.5v-2.8v	2 0	5 2 2	9 2 4	KHz
调制步进频率	VCC=5V, FB=1.5v-2.5v		0.		KHz
短路保护阀 值	测量 FB 电压	1. 15	5 1. 33	1. 50	V
	测量 FB 电压	2.3	2.5	5.0 2.7	V
突发模式阀 盾	测量 FB 电压	2.6	2.8	3.0	V
温度保护	结温	12	13 0	14 0	°C

业务电话: 400-033-6518

www.linkage.cn

sale@linkage.cn

前沿消隐时间	VCC=5V, FB=1.5v-2.5v		25		ns
最小开通时间	VCC=5V, FB=2.6v		50		ns
占空比	VCC = 5 V, $FB = 1.5 v - 2.5 v$	5		70	%
待机功耗	AC 输入 2 65V, 空载			27	m

功能描述上

电启动

上电启动时,芯片通过内部连接 0C 和 VCC 引脚的高压电流源,对外部的 VCC 储能 电容充电,当 VCC 电压升高到 4.7 V的时候,关闭高压电流源,@动过程结束,控制逻辑 开始输出 P_脉冲。

软启动

上电启动后,芯片开始输出 PWM 脉冲。为防止瞬时的输出电压过冲,变压器磁芯饱 和,功率管和次级整流管应力过大,芯#■内置 16Ms 软启动电路,在 16Ms 内,会逐渐增 加 P 的开通时间,使功率管的峰值电流从 1 0 GMA 线性增加到最大峰值电流。

反馈控制

芯片采用逐周期限值峰值电流的 PWM 控制方式,通过侦测 FB 的反馈电压来调节限制电流。当 PWM 开通后,&片检测功率管输出电流,直到功率管输出电流达到当前的限制电流后关断功_, 个下一个 PWM 开通周期。FB 电压在 1.5V-2.5V 之间会线性的调节限制电流。1.5V 对应最大限制电流,2.5V 对应最小限制电流。当负载加重时,FB 电压会逐渐降低;反之则 FB 电压会逐渐升高。当负载过重,FB 电压小于 1.5V 时,芯片会进入短路或者过载保护的判定。当负载很轻,FB 电压大于 2,5V 时,控制电路会将 P 画 的开_频^^651(旧减小到 22KHZ,并以最小开通时间开通。当负载更轻时,FB 电压会继续升高;]电压高于 2,8V 时,控制电路停止 PWM 输出,芯片进入待机突发模式。

待机突发模式

待机时,FB 电压会升高到 2.8V 以上,芯片停止 P_输出。当输出电压略微下降, FB 电压低于 2.8V 时,芯片会重新输出一些 PWM 脉冲来维持设定的输出电压,这种突发

的输出方式,可以实现较低的待机功耗。

频率调制为了满足 EMI 的设计要求,降低 EMI 的设计复杂度和成本,芯片内设有一个频率调 制电路. PWM 的频率将以 65KHZ 为中心,以 G.5KHZ 的步进频率在 16 个频率点上运行。

自供电

芯片使用了专利的自供电技术,控制 VCC 的电压在 4.7V 左右,提供^•自身的电流消耗,这样可以省略外部变压辅助绕组,简化变压器的设计。

峰值电流保护

任何时候芯片检测到内部功率管的峰值电流超过 1.3A 时,立即关断功率管,保护 功率管和相应器件免于破坏。

恒定功率控制

为了防止高压时输出过功率,芯片内置了f低压功率补偿电路,使不同电网电压输入时的最大输出功率基本一致。

电源异常

因外部异常导致 VCC 电压低于 3. 6V 时, 芯片将关断功率管, 进行重新启动。

因外部异常导致 VCC#压高于 6.5V 时,立即启动 VCC 过压保护,停止输出脉冲,直到 VCC 过压状况解除。

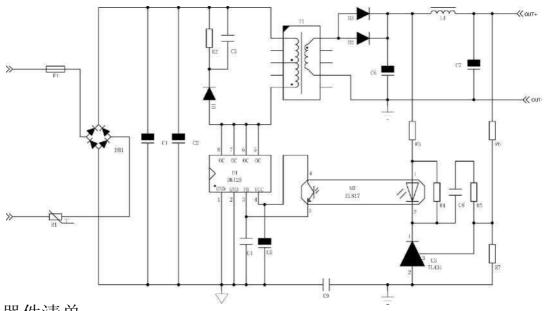
功率管过压保护

次级开路,输入母线电压过高,变压器漏感过大,都会引起功率管 0C 较高的尖峰电压;为保护功率管不被破坏,当电路检测到功率管 0C 电压超过 6G 0V 时,会立即拉高FB 电压,停缘输出 PWM 脉冲,直到功率管过压状况解除。

短路和过载保护

次级输出短路或者过载时,FB电压会低于 1.3 V;在某些应用中,由于电机等感性负载在启动时需要较高的启动电流,可能导致电路短时间的过载,因此芯片第一次过载 保护的判定时间是 512m8。如果 FB 电压在 512m8 内恢复正常,芯片不会判定过载或短路;如果 FB 电压在 512m8 内始终低于 1.3 V,则判定为次级输出短路,立即启动短路保

业务电话: 400-033-6518


www.linkage.cn

护, 并将短路保护判定时间缩短为 32mS,直到短路状况解除。

过温保护

任何时候检测到芯片温度超过 **13rc**. 立即启动过温保护,停止输出脉冲,直到过温状况解除。

典型应用(12V2 A输出离线反激式开关电源)

元器件清单:

序号	元 t名称	规格/型号	位 号	数 量	备注
1	保险丝	T2A/AC2 50V	F1	1	
2	整流桥堆	DB107	DB1	1	
2	二极管	FR107	D1	1	
3		SR5100	D2, 3	2	
		22 U F / 4 0 0 V	C1,2	2	
4	电解电 容	100 u F / 16 V	C 5	1	
		1000UF/25V	C 6	1	

		470 u F/25 V	C7	1	
	-L- - L-		+	1	
5	电感	10 u H/2.5A	L1	1	
		2G103J	C3	1	
6	瓷片电	103 瓷片	C 4	1	
0	容	104 瓷片	C8	1	
		Y 电容 102	C 9	1	
7	NTC	10D-9	R1	1	
		100K 1206	R2	1	两端电压超过 13QV 时 选择
	<u></u>	1K 0805	R3	1	
8	电阻	2.2K 0805	R4	1	
		4.7K 0805	R5, 7	2	
		18K 0805	R6	1	
9	DKIC	DK125	U1	1	
10	DK 散热	DI P-8 专用	U1	1	
11	l C	EL817C	U2	1	
12	l c	TL431	U3	1	
13	变压 器	EE25/19	T1	1	

变压器设计(只作参考)

变压器设计时,需要先确定一些参数:

(1) 输入电 g 范围 AC9。 ~264V

(2) 输出电压、电流 DC12V/2A

F = 65KHz

1、磁芯的选择:

先计算出电源的输入功率= & (T1 指开关电源的效率,设为 0.8)

通过磁芯的制造商提供的图表进行选择,也可通过计算方式选择,输入功率为 30W 时, 电源可用 EE25/19 磁心。

2、变压器初级线圈感量 Lp 计算, 芯片内峰值电流设置为 1100mA,因此 Lp=2*Pi/(|p*|p*f)=2*33/(1.1*1.765000)=840(uH)

Linkage 深圳市钲铭科电子有限公司 GOSTON ELECTRONICS CO.,LTD

 $Zp\%_{max} = 840*! 3/0.28/40 = 98T$ *AB*Ae* 其中:

Np ------ 原边匝数

L -------原边电感值

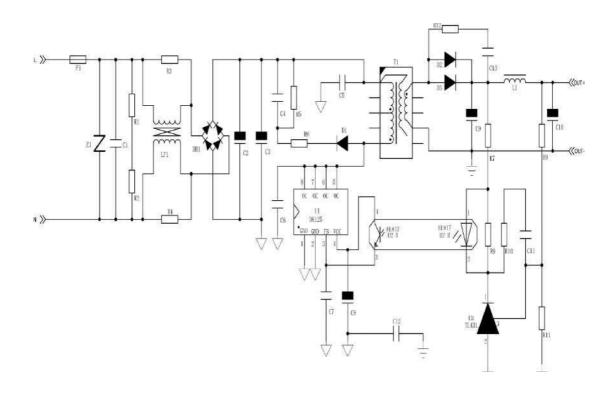
| p_max-------原边最大电流

AB ------ 交变工作磁密 (mT), 设为 0.28,

Ae ------ 磁芯有效面积(mm2), EE25/19 磁芯为 40 mm2

4、计算副边 01 数 Ns:

Ns ------ 副边匝数


Np ------ 原边匣数

Vout ------- 输出电压(包含线路压降及整流管压降, 12V+0.7V=12.7V)

Vor ------ 反激电压(设置该电压不高于 12GV,以免造成芯片过压损坏,本设计中设为 90V)

 $Ns = (Vout * Np) / Vor = (1 2.7 * 98) / 90 = 1 4 \mathbb{H}$

典型应用(12 V2 A认证开关电源)

元器件清单:

序号	元件名称	规格/型号	位号	数 暈	备注
1	保险丝	T2A/AC2 50V	F1	1	
2 压敏电 阻 3 整流桥堆		10D471	Z1	1	
		DB107	DB1	1	
4	二极管	FR107	D1	1	
4	→1X F	SR5100	D2, 3	2	
		33UF/400V	C2, 3	2	
5	电解电容	100uF/16V	C 8	1	
		1000UF/25V	C9,	2	
^	山 武	10UH/2.5A	L1	1	
6	电感	UU9.8 20mH 0.6A	LF1	1	
		2G103J	C 4	1	
	电容	103 50V	C7	1	
		104 50V	C11	1	
		222 500V	C 5	1	
		X2 电容 224	C1	1	
		102 1KV	C13	1	
		22pF 1KV	C 6	N	请保留位置(EMC/)
		Y1 电容 222	C12	1	
7		1K 0805	R3,4,	3	
		680K 1206	R1, 2	2	
		47R 1206	R6	1	
		2.2K 0805	R9	1	
	电阻	4.7K 0805	R10,	2	
		100K 1206	R5	1	两端电压超过 13QV 时选 择
		22R 1206	R12	1	
		18K 0805	R8	1	
9	DKIC	DK125	U1	1	
10	DK 散热片	DI P-8 专用	U1	1	
11	I C	EL817C	U2	1	
12	I C	TL431	U3	1	

业务电话: **400-033-6518** 注: 如需最新资料或技术支持, 请与我们联系

Linkage 深圳市钲铭科电子有限公司 GOSTON ELECTRONICS CO.LTD

DK125 离线式开关电源控制芯片

13	变压器	EF25	T1	1	L

变压器设计(参考)

变压器设计时,需要先确定一些参数:

- (1) 输入电压范围 AC90~264V
- (2) 输出电压、电流 DC12V/2A
- (3) 开关频率
- F = 65KHz

1、磁芯的选择:

先计算出电源的输入功率朽(r|指开关电源的效率,设为0.8)

通过磁芯的制造商提供的图表进行选择,也可通过计算方式选择,因考虑到认证 要 求严格和认证费用的问题,输入功率为 3QW 时,电源选择余量大点的磁心 EF25。

2、变压器初级线圈感量 Lp 计算, 芯片内峰值电流设置为 11GGniA, 因此

$$Lp = 2*Pi/(Ip*Ip*f)=2*33/(1.1*1.1*65000)=840(uH)$$

3、计算原边匝数 Np:

$$Zp\%_{max = 840Mi} 3/0.28/52 = 75T$$

其中:

Np ------ 原边@数

| p max-------原边最大电流

AB ------ 交变工作磁密 (mT), 设为 0.28,

Ae ------ 磁芯有效面积(mm2), EF25 磁芯为 52mm²

5、计算副边匣数 Ns:

Ns ------ 副边匝数

Np ------ 原边匣数

Vout ------- 输出电压(包含线路压降及整流管压降, 12V+0.7V=12.7V)

Vor ------ 反激电压(设置该电压不高于 12GV,以免造成芯片过压损坏,本

设

计中设为 90V)

- 10-

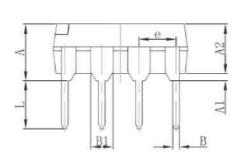
设计注意事项

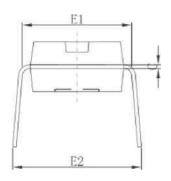
- 1、 功率器件是需要散热的,芯片的主要热量来自功率开关管,功率开关管与 0C 引 脚相连接,所以在 PCB 布线时,应该将引脚 0C 外接的铜箔的面积加大并作镀锡处理,以增大散热能力。
- 2、 芯片的 0C 引脚是芯片的高压部份,最高电压可达 6G 0V 以上,所以在线路布置上 要与 I C 的 FB, VCC,GND 低压部份保证 1.5 圓以上的安全距离,以免电路出现击穿放电 现象。

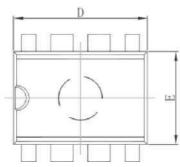
3、变压器的工艺

4、PCB Layout 的设计:

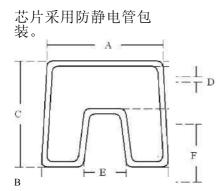
IC的 0C 引脚是工作在高频交流状态,在布局时 0C 引脚尽_远离 AC 输入部分,同时还要考虑到热布局问题,尽量和变压器,二极管,NTC,\$模电感等发热体保持一定距离,以免产生热效应。


业务电话: 400-033-6518


注:如需最新资料或技术支持,请与我们联系



封装尺寸(DI P8)


Oursels al	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	3. 710	4.310	0.146	0.170	
A1	0.510		0.020		
A2	3.200	3.600	0.126	0.142	
В	0.380	0.570	0.015	0.022	
B1	1.524	(BSC)	0.060	(BSC)	
С	0.204	0.360	0.008	0.014	
D	9.000	9.400	0.354	0.370	
E	6.200	6.600	0.244	0.260	
E1	7.320	7.920	0.288	0.312	
е	2.54C	(BSC)	0.100	(BSC)	
L	3,000	3,600	0.118	0.142	
E2	8.400	9.200	0,331	0.354	

包装信息

