K9XXG08UXM

INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,

 AND IS SUBJECT TO CHANGE WITHOUT NOTICE.NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,

TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED

ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.

1. For updates or additional information about Samsung products, contact your nearest Samsung office.
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where Product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.
[^0]
Document Title

1G x 8 Bit / 2G x 8 Bit / 4G x 8 Bit NAND Flash Memory

Revision History

Revision No	History	Draft Date	Remark
0.0	1. Initial issue	Mar. 1st. 2005 Advance	
0.1	1. Technical note is changed	Apr. 1st. 2005 Advance	
0.2		May 3rd. 2005 Preliminary	
0.3	1. Icc value is changed	Sep. 26th. 2005 Preliminary	
1.0		Nov. 4th 2005 Final	

The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions about device. If you have any questions, please contact the SAMSUNG branch office near your office.

1G x 8 Bit / 2G x 8 Bit / 4G x 8 Bit NAND Flash Memory

PRODUCT LIST

Part Number	Vcc Range	Organization	PKG Type
K9K8G08U0M-Y,P			TSOP1
K9WAG08U1M-Y,P			
K9WAG08U1M-I	$2.70 \sim 3.60 \mathrm{~V}$		
K9NBG08U5M-P			52TLGA
			TSOP1-DSP

FEATURES

- Voltage Supply
- Command/Address/Data Multiplexed I/O Port
- 2.70V ~ 3.60V
- Hardware Data Protection
- Program/Erase Lockout During Power Transitions
- Organization
- Memory Cell Array : (1G + 32M) x 8bit
- Reliable CMOS Floating-Gate Technology
- Endurance : 100K Program/Erase Cycles(with 1bit/512Byte ECC)
- Data Register : $(2 K+64) \times 8 b i t$
- Data Retention: 10 Years
- Automatic Program and Erase
- Page Program : (2K + 64)Byte
- Command Driven Operation
- Intelligent Copy-Back with internal 1bit/528Byte EDC
- Block Erase : (128K + 4K)Byte
- Page Read Operation
- Unique ID for Copyright Protection
- Package :
- Page Size : (2K + 64)Byte
- Random Read : 20 $\mu \mathrm{s}($ Max.)
- Serial Access : 25ns(Min.)
- K9K8G08U0M-YCB0/YIB0

48 - Pin TSOP I (12 x $20 / 0.5 \mathrm{~mm}$ pitch)

- K9K8G08U0M-PCB0/PIB0 : Pb-FREE PACKAGE

48 - Pin TSOP I ($12 \times 20 / 0.5 \mathrm{~mm}$ pitch $)$

- K9WAG08U1M-YCB0/YIB0

48 - Pin TSOP I (12 x $20 / 0.5 \mathrm{~mm}$ pitch)

- K9WAG08U1M-PCB0/PIB0 : Pb-FREE PACKAGE 48 - Pin TSOP I (12 x $20 / 0.5 \mathrm{~mm}$ pitch)
- K9WAG08U1M-ICB0/IIB0

52 - Pin TLGA ($12 \times 17 / 1.0 \mathrm{~mm}$ pitch)

- K9NBG08U5M-PCB0/PIB0 : Pb-FREE PACKAGE

48 - Pin TSOP I ($12 \times 20 / 0.5 \mathrm{~mm}$ pitch $)$

GENERAL DESCRIPTION

Offered in 1G x 8bit, the K9K8G08U0M is a 8G-bit NAND Flash Memory with spare 256M-bit. Its NAND cell provides the most costeffective solution for the solid state application market. A program operation can be performed in typical $200 \mu \mathrm{~s}$ on the $(2 K+64) B y t e$ page and an erase operation can be performed in typical 1.5 ms on a $(128 \mathrm{~K}+4 \mathrm{~K})$ Byte block. Data in the data register can be read out at $25 \mathrm{~ns}(\mathrm{~K} 9 \mathrm{NBG} 08 \mathrm{U} 5 \mathrm{M}: 50 \mathrm{~ns}$) cycle time per Byte. The I/O pins serve as the ports for address and data input/output as well as command input. The on-chip write controller automates all program and erase functions including pulse repetition, where required, and internal verification and margining of data. Even the write-intensive systems can take advantage of the K9K8G08U0M's extended reliability of 100 K program/erase cycles by providing ECC(Error Correcting Code) with real time mapping-out algorithm. The K9K8G08U0M is an optimum solution for large nonvolatile storage applications such as solid state file storage and other portable applications requiring non-volatility.
An ultra high density solution having two 8Gb stacked with two chip selects is also available in standard TSOPI package and another ultra high density solution having two 16Gb TSOPI package stacked with four chip selects is also available in TSOPI-DSP.

PACKAGE DIMENSIONS

48-PIN LEAD/LEAD FREE PLASTIC THIN SMALL OUT-LINE PACKAGE TYPE(I)

PACKAGE DIMENSIONS

48-PIN LEAD/LEAD FREE PLASTIC THIN SMALL OUT-LINE PACKAGE TYPE(I)

SAMSUNG

K9WAG08U1M - ICB0 / IIB0

PACKAGE DIMENSIONS

PIN CONFIGURATION (TSOP1-DSP)

K9NBG08U5M-PCB0/PIB0

PACKAGE DIMENSIONS

48-PIN LEAD FREE PLASTIC THIN SMALL OUT-LINE PACKAGE TYPE(I)

PIN DESCRIPTION

Pin Name	Pin Function
$\mathrm{I} / \mathrm{O}_{0} \sim \mathrm{l} / \mathrm{O}_{7}$	DATA INPUTS/OUTPUTS The I/O pins are used to input command, address and data, and to output data during read operations. The I/ O pins float to high-z when the chip is deselected or when the outputs are disabled.
CLE	COMMAND LATCH ENABLE The CLE input controls the activating path for commands sent to the command register. When active high, commands are latched into the command register through the I/O ports on the rising edge of the $\overline{\mathrm{WE}}$ signal.
ALE	ADDRESS LATCH ENABLE The ALE input controls the activating path for address to the internal address registers. Addresses are latched on the rising edge of WE with ALE high.
$\overline{\mathrm{CE}} / \overline{\mathrm{CE}} 1$	CHIP ENABLE The $\overline{\mathrm{CE}}$ / $\overline{\mathrm{CE}} 1$ input is the device selection control. When the device is in the Busy state, $\overline{\mathrm{CE}} / \overline{\mathrm{CE}} 1$ high is ignored, and the device does not return to standby mode in program or erase operation. Regarding $\overline{\mathrm{CE}} / \overline{\mathrm{CE}} 1$ control during read operation, refer to 'Page Read' section of Device operation.
$\overline{\mathrm{CE}} 2$	CHIP ENABLE The $\overline{\mathrm{CE}} 2$ input enables the second K9K8G08U0M
$\overline{\mathrm{RE}}$	READ ENABLE The $\overline{R E}$ input is the serial data-out control, and when active drives the data onto the I/O bus. Data is valid tREA after the falling edge of $\overline{\text { RE }}$ which also increments the internal column address counter by one.
$\overline{\text { WE }}$	WRITE ENABLE The WE input controls writes to the I/O port. Commands, address and data are latched on the rising edge of the $\overline{\mathrm{WE}}$ pulse.
$\overline{\mathrm{WP}}$	WRITE PROTECT The $\overline{\mathrm{WP}}$ pin provides inadvertent program/erase protection during power transitions. The internal high voltage generator is reset when the $\overline{\mathrm{WP}} \mathrm{pin}$ is active low.
$R / \bar{B} / R / \bar{B} 1$	READY/BUSY OUTPUT The $R / \bar{B} / R / \bar{B} 1$ output indicates the status of the device operation. When low, it indicates that a program, erase or random read operation is in process and returns to high state upon completion. It is an open drain output and does not float to high-z condition when the chip is deselected or when outputs are disabled.
Vcc	POWER Vcc is the power supply for device.
Vss	GROUND
N.C	NO CONNECTION Lead is not internally connected.

NOTE : Connect all Vcc and Vss pins of each device to common power supply outputs.
Do not leave Vcc or Vss disconnected.
There are two $\overline{C E}$ pins ($\overline{C E} 1 \& \overline{C E} 2$) in the K9WAG08U1M and four $\overline{C E}$ pins ($\overline{C E} 1 \& \overline{C E} 2 \& \overline{C E} 3 \& \overline{C E} 4$) in the K9NBG08U5M. There are two R / \bar{B} pins ($R / \bar{B} 1 \& R / \bar{B} 2$) in the K9WAG08U1M and four R / \bar{B} pins ($R / \bar{B} 1 \& R / \bar{B} 2 \& R / \bar{B} 3 \& R / \bar{B} 4$) in the K9NBG08U5M.

Figure 1. K9K8G08U0M Functional Block Diagram

Figure 2. K9K8G08U0M Array Organization

NOTE : Column Address: Starting Address of the Register.

* L must be set to "Low".
* The device ignores any additional input of address cycles than required.

Product Introduction

The K9K8G08UOM is a $8,448 \mathrm{Mbit}(8,858,370,048$ bit) memory organized as 524,288 rows(pages) by $2,112 \times 8$ columns. Spare 64×8 columns are located from column address of $2,048 \sim 2,111$. A 2,112 -byte data register is connected to memory cell arrays accommodating data transfer between the I/O buffers and memory during page read and page program operations. The memory array is made up of 32 cells that are serially connected to form a NAND structure. Each of the 32 cells resides in a different page. A block consists of two NAND structured strings. A NAND structure consists of 32 cells. Total $1,081,344$ NAND cells reside in a block. The program and read operations are executed on a page basis, while the erase operation is executed on a block basis. The memory array consists of 8,192 separately erasable 128 K -byte blocks. It indicates that the bit by bit erase operation is prohibited on the K9K8G08U0M.

The K9K8G08U0M has addresses multiplexed into 8 I/Os. This scheme dramatically reduces pin counts and allows system upgrades to future densities by maintaining consistency in system board design. Command, address and data are all written through I/O's by bringing $\overline{\mathrm{WE}}$ to low while $\overline{\mathrm{CE}}$ is low. Those are latched on the rising edge of $\overline{\mathrm{WE}}$. Command Latch Enable(CLE) and Address Latch Enable(ALE) are used to multiplex command and address respectively, via the I/O pins. Some commands require one bus cycle. For example, Reset Command, Status Read Command, etc require just one cycle bus. Some other commands, like page read and block erase and page program, require two cycles: one cycle for setup and the other cycle for execution. The 1056M byte physical space requires 31 addresses, thereby requiring five cycles for addressing : 2 cycles of column address, 3 cycles of row address, in that order. Page Read and Page Program need the same five address cycles following the required command input. In Block Erase operation, however, only the three row address cycles are used. Device operations are selected by writing specific commands into the command register. Table 1 defines the specific commands of the K9K8G08U0M.

In addition to the enhanced architecture and interface, the device incorporates copy-back program feature from one page to another page without need for transporting the data to and from the external buffer memory. Since the time-consuming serial access and data-input cycles are removed, system performance for solid-state disk application is significantly increased.

The K9WAG08U1M is composed of two K9K8G08U0M chips which are selected separately by each $\overline{C E} 1$ and $\overline{C E} 2$ and the K9NBG08U5M is composed of four K9K8G08UOM chips which are selected seperately by each $\overline{C E} 1, \overline{C E} 2, \overline{C E} 3$ and $\overline{C E} 4$. Therefore, in terms of each $\overline{C E}$, the basic operations of K9WAG08UOM and K9NBG08U5M are same with K9K8G08UOM except some AC/DC charateristics.

Table 1. Command Sets

Function	1st Cycle	2nd Cycle	Acceptable Command during Busy
Read	00 h	30 h	
Read for Copy Back	00 h	35 h	
Read ID	90 h	-	
Reset	FFh	-	0
Page Program	80 h	10 h	
Two-Plane Page Program ${ }^{(4)}$	$80 \mathrm{~h}---11 \mathrm{~h}$	$81 \mathrm{~h}---10 \mathrm{~h}$	
Copy-Back Program	85 h	10 h	
Two-Plane Copy-Back Program ${ }^{(4)}$	$85 \mathrm{~h}---11 \mathrm{~h}$	$81 \mathrm{~h}---10 \mathrm{~h}$	
Block Erase	60 h	D0h	
Two-Plane Block Erase	$60 \mathrm{~h}--60 \mathrm{~h}$	D0h	
Random Data Input ${ }^{(1)}$	85 h	-	0
Random Data Output ${ }^{(1)}$	05 h	E0h	
Read Status	70 h		0
Read EDC Status ${ }^{(2)}$	7 Bh		0
Chip1 Status $^{(3)}$	F1h		0
Chip2 Status $^{(3)}$	F2h		

NOTE : 1. Random Data Input/Output can be executed in a page.
2. Read EDC Status is only available on Copy Back operation.
3. Interleave-operation between two chips is allowed.

It's prohibited to use F1h and F2h commands for other operations except interleave-operation.
4. Any command between 11 h and 81 h is prohibited except $70 \mathrm{~h}, \mathrm{~F} 1 \mathrm{~h}, \mathrm{~F} 2 \mathrm{~h}$ and FFh .

Caution : Any undefined command inputs are prohibited except for above command set of Table 1.

Memory Map

K9K8G08U0M is arranged in four 2Gb memory planes. Each plane contains 2,048 blocks and 2112 byte page registers. This allows it to perform simultaneous page program and block erase by selecting one page or block from each plane. The block address map is configured so that two-plane program/erase operations can be executed by dividing the memory array into plane $0 \sim 1$ or plane $2 \sim 3$ separately.
For example, two-plane program/erase operation into plane 0 and plane 2 is prohibited. That is to say, two-plane program/erase operation into plane 0 and plane 1 or into plane 2 and plane 3 is allowed

ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Rating	Unit
Voltage on any pin relative to VSS		Vcc	-0.6 to +4.6	V
		VIN	-0.6 to +4.6	
		VI/O	-0.6 to Vcc+0.3 (<4.6V)	
Temperature Under Bias	K9XXG08UXM-XCB0	Tbias	-10 to +125	${ }^{\circ} \mathrm{C}$
	K9XXG08UXM-XIB0		-40 to +125	
Storage Temperature	K9XXG08UXM-XCB0	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$
	K9XXG08UXM-XIB0			
Short Circuit Current		Ios	5	mA

NOTE :

1. Minimum DC voltage is -0.6 V on input/output pins. During transitions, this level may undershoot to -2.0 V for periods $<30 \mathrm{~ns}$.

Maximum DC voltage on input/output pins is $\mathrm{Vcc}+0.3 \mathrm{~V}$ which, during transitions, may overshoot to $\mathrm{Vcc}+2.0 \mathrm{~V}$ for periods $<20 \mathrm{~ns}$.
2. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS

(Voltage reference to GND, K9XXG08UXM-XCB0 :TA $=0$ to $70^{\circ} \mathrm{C}$, K9XXG08UXM-XIB0:TA $=-40$ to $85^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ.	Max	Unit
Supply Voltage	Vcc	2.7	3.3	3.6	V
Supply Voltage	Vss	0	0	0	V

DC AND OPERATING CHARACTERISTICS(Recommended operating conditions otherwise noted.)

Parameter		Symbol	Test Conditions	Min	Typ	Max	Unit
Operating Current	Page Read with Serial Access	Icc1	$\begin{aligned} & \text { tRC=25ns (K9NBG08U5M: 50ns) } \\ & \frac{\mathrm{CE}}{\mathrm{CE}}=\mathrm{VIL}, \text { Iout }=0 \mathrm{~mA} \end{aligned}$	-	25	35	mA
	Program	Icc2	-				
	Erase	Icc3	-				
Stand-by Current(TTL)		IsB1	$\overline{\mathrm{CE}}=\mathrm{VIн}, \overline{\mathrm{WP}}=0 \mathrm{~V} / \mathrm{Vcc}$	-	-	1	
Stand-by Current(CMOS)		Isb2	$\overline{\mathrm{CE}}=\mathrm{Vcc}-0.2, \overline{\mathrm{WP}}=0 \mathrm{~V} / \mathrm{Vcc}$	-	20	100	$\mu \mathrm{A}$
Input Leakage Current		l L	$\mathrm{VIN}=0$ to Vcc (max)	-	-	± 20	
Output Leakage Current		ILo	Vout $=0$ to Vcc(max)	-	-	± 20	
Input High Voltage		$\mathrm{VIH}^{(1)}$	-	0.8 xVcc	-	$\mathrm{Vcc}+0.3$	V
Input Low Voltage, All inputs		VIL ${ }^{(1)}$	-	-0.3	-	0.2xVcc	
Output High Voltage Level		Vor	Іон $=-400 \mu \mathrm{~A}$	2.4	-	-	
Output Low Voltage Level		Vol	$\mathrm{loL}=2.1 \mathrm{~mA}$	-	-	0.4	
Output Low Current(R/何)		$\mathrm{loL}(\mathrm{R} / \overline{\mathrm{B}})$	Vol $=0.4 \mathrm{~V}$	8	10	-	mA

NOTE : 1. VIL can undershoot to -0.4 V and VIH can overshoot to $\mathrm{VCC}+0.4 \mathrm{~V}$ for durations of 20 ns or less.
2. Typical value is measured at $\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$. Not 100% tested.
3. The typical value of the K9WAG08U1M's IsB2 is $40 \mu \mathrm{~A}$ and the maximum value is $200 \mu \mathrm{~A}$.
4. The typical value of the K9NBG08U5M's IsB2 is $80 \mu \mathrm{~A}$ and the maximum value is $400 \mu \mathrm{~A}$.
5. The maximum value of K9WAG08U1M-Y,P's ILI and ILO is $\pm 40 \mu \mathrm{~A}$, the maximum value of K9WAG08U1M-I's ILI and ILO is $\pm 20 \mu \mathrm{~A}$.
6. The maximum value of K9NBG08U5M's ILI and ILO is $\pm 80 \mu \mathrm{~A}$.

VALID BLOCK

Parameter	Symbol	Min	Typ.	Max	Unit
K9K8G08U0M	NvB	8,032	-	8,192	Blocks
K9WAG08U1M	NvB	$16,064^{*}$	-	$16,384^{*}$	Blocks
K9NBG08U5M	NvB	$32,128^{*}$		$32,768^{*}$	

NOTE :

1. The device may include initial invalid blocks when first shipped. Additional invalid blocks may develop while being used. The number of valid blocks is presented with both cases of invalid blocks considered. Invalid blocks are defined as blocks that contain one or more bad bits. Do not erase or program factory-marked bad blocks. Refer to the attached technical notes for appropriate management of invalid blocks.
2. The 1 st block, which is placed on 00 h block address, is guaranteed to be a valid block up to 1 K program/erase cycles with 1 bit/512Byte ECC.
3. The number of valid block is on the basis of single plane operations, and this may be decreased with two plane operations.

* : Each K9K8G08U0M chip in the K9WAG08U1M and K9NBG08U5M has Maximun 160 invalid blocks.

AC TEST CONDITION

(K9XXG08UXM-XCB0: $\mathrm{TA}=0$ to $70^{\circ} \mathrm{C}$, K9XXG08UXM-XIB0: $\mathrm{TA}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$,K9XXG08UXM: $\mathrm{Vcc}=2.7 \mathrm{~V} \sim 3.6 \mathrm{~V}$ unless otherwise noted)

Parameter	K9XXG08UXM
Input Pulse Levels	0V to Vcc
Input Rise and Fall Times	5 ns
Input and Output Timing Levels	$\mathrm{Vcc} / 2$
Output Load	1 TTL GATE and CL=50pF (K9K8G08U0M-Y,P/K9WAG08U1M-I)
	1 TTL GATE and CL=30pF (K9WAG08U1M-Y,P)

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Item	Symbol	Test Condition	Min	Max			Unit
				K9K8G08U0M	K9WAG08U1M*	K9NBG08U5M	
Input/Output Capacitance	CIIo	VIL=0V	-	20	40	80	pF
Input Capacitance	Cin	V IN=0V	-	20	40	80	pF

NOTE : Capacitance is periodically sampled and not 100% tested. K9WAG08U1M-IXB0's capacitance(I/O, Input) is 20pF.

MODE SELECTION

CLE	ALE	$\overline{C E}$	$\overline{W E}$	$\overline{\mathrm{RE}}$	$\overline{\mathbf{W P}}$	Mode
H	L	L	\checkmark	H	X	Read Command Input
L	H	L	ㄴ.	H	X	Address Input(5clock)
H	L	L	․	H	H	Write Mode Command Input
L	H	L	7 -	H	H	Address Input(5clock)
L	L	L	\checkmark	H	H	Data Input
L	L	L	H	\checkmark -	X	Data Output
X	X	X	X	H	X	During Read(Busy)
X	X	X	X	X	H	During Program(Busy)
X	X	X	X	X	H	During Erase(Busy)
X	$X^{(1)}$	X	X	X	L	Write Protect
X	X	H	X	X	$0 \mathrm{~V} / \mathrm{cc}{ }^{(2)}$	Stand-by

NOTE : 1. X can be VIL or VIH
2. $\overline{\mathrm{WP}}$ should be biased to CMOS high or CMOS low for standby.

Program / Erase Characteristics

Parameter	Symbol	Min	Typ	Max	Unit
Program Time	tPROG	-	200	700	$\mu \mathrm{~s}$
Dummy Busy Time for Two-Plane Page Program	tDBSY	-	0.5	1	$\mu \mathrm{~s}$
Number of Partial Program Cycles	Nop	-	-	4	cycles
Block Erase Time	tBERS	-	1.5	2	ms

NOTE

1. Typical value is measured at $\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$. Not 100% tested
2. Typical program time is defined as the time within which more than 50% of the whole pages are programmed at 3.3 V Vcc and $25^{\circ} \mathrm{C}$ temperature.

AC Timing Characteristics for Command / Address / Data Input

Parameter	Symbol	Min		Max		Unit
		K9NBG08U5M	K9K8G08U0M	K9NBG08U5M	K9K8G08U0M	
			K9WAG08U1M		K9WAG08U1M	
CLE Setup Time	tCLS ${ }^{(1)}$	25	12	-	-	ns
CLE Hold Time	tCLH	10	5	-	-	ns
$\overline{\mathrm{CE}}$ Setup Time	tcs ${ }^{(1)}$	35	20	-	-	ns
$\overline{\mathrm{CE}}$ Hold Time	tch	10	5	-	-	ns
$\overline{\text { WE Pulse Width }}$	twp	25	12	-	-	ns
ALE Setup Time	taLs ${ }^{(1)}$	25	12	-	-	ns
ALE Hold Time	talh	10	5	-	-	ns
Data Setup Time	tDs ${ }^{(1)}$	20	12	-	-	ns
Data Hold Time	tDH	10	5	-	-	ns
Write Cycle Time	twc	45	25	-	-	ns
$\overline{\text { WE }}$ High Hold Time	twh	15	10	-	-	ns
Address to Data Loading Time	$\mathrm{tadL}^{(2)}$	70	70	-	-	ns

NOTES : 1. The transition of the corresponding control pins must occur only once while $\overline{\mathrm{WE}}$ is held low 2. tADL is the time from the $\overline{\mathrm{WE}}$ rising edge of final address cycle to the WE rising edge of first data cycle

AC Characteristics for Operation

Parameter	Symbol	Min		Max		Unit
		K9NBG08U5M	K9K8G08U0M	K9NBG08U5M	K9K8G08U0M	
			K9WAG08U1		K9WAG08U1	
Data Transfer from Cell to Register	tR		-	20	20	$\mu \mathrm{s}$
ALE to $\overline{\mathrm{RE}}$ Delay	tAR	10	10		-	ns
CLE to $\overline{\mathrm{RE}}$ Delay	tCLR	10	10		-	ns
Ready to $\overline{\mathrm{RE}}$ Low	tRR	20	20		-	ns
$\overline{\mathrm{RE}}$ Pulse Width	tRP	25	12		-	ns
WE High to Busy	tw	-	-	100	100	ns
Read Cycle Time	tRC	50	25	-	-	ns
$\overline{\mathrm{RE}}$ Access Time	trea	-	-	30	20	ns
$\overline{\mathrm{CE}}$ Access Time	tCEA	-	-	45	25	ns
$\overline{\mathrm{RE}}$ High to Output Hi-Z	tRHZ	-	-	100	100	ns
$\overline{\mathrm{CE}}$ High to Output Hi-Z	tchz	-	-	30	30	ns
$\overline{\mathrm{RE}}$ High to Output hold	tRHOH	15	15	-	-	ns
$\overline{\mathrm{RE}}$ Low to Output hold	tRLOH	-	5	-	-	ns
$\overline{\mathrm{CE}}$ High to Output hold	tcOH	15	15	-	-	ns
$\overline{\mathrm{RE}}$ High Hold Time	tren	15	10	-	-	ns
Output Hi-Z to $\overline{\mathrm{RE}}$ Low	tIR	0	0	-	-	ns
$\overline{\mathrm{RE}}$ High to $\overline{\mathrm{WE}}$ Low	tRHW	100	100	-	-	ns
$\overline{\text { WE High to } \overline{\mathrm{RE}} \text { Low }}$	tWHR	60	60	-	-	ns
Device Resetting Time(Read/Program/Erase)	tRST	-	-	5/10/500 ${ }^{(1)}$	5/10/500 ${ }^{(1)}$	$\mu \mathrm{s}$

NOTE: 1. If reset command(FFh) is written at Ready state, the device goes into Busy for maximum $5 \mu \mathrm{~s}$.

NAND Flash Technical Notes

Initial Invalid Block(s)

Initial invalid blocks are defined as blocks that contain one or more initial invalid bits whose reliability is not guaranteed by Samsung. The information regarding the initial invalid block(s) is called the initial invalid block information. Devices with initial invalid block(s) have the same quality level as devices with all valid blocks and have the same AC and DC characteristics. An initial invalid block(s) does not affect the performance of valid block(s) because it is isolated from the bit line and the common source line by a select transistor. The system design must be able to mask out the initial invalid block(s) via address mapping. The 1st block, which is placed on OOh block address, is guaranteed to be a valid block up to 1 K program/erase cycles with 1 bit/512Byte ECC.

Identifying Initial Invalid Block(s)

All device locations are erased(FFh) except locations where the initial invalid block(s) information is written prior to shipping. The initial invalid block(s) status is defined by the 1st byte in the spare area. Samsung makes sure that either the 1st or 2nd page of every initial invalid block has non-FFh data at the column address of 2048. Since the initial invalid block information is also erasable in most cases, it is impossible to recover the information once it has been erased. Therefore, the system must be able to recognize the initial invalid block(s) based on the original initial invalid block information and create the initial invalid block table via the following suggested flow chart(Figure 3). Any intentional erasure of the original initial invalid block information is prohibited.

Figure 3. Flow chart to create initial invalid block table.

NAND Flash Technical Notes (Continued)

Error in write or read operation

Within its life time, additional invalid blocks may develop with NAND Flash memory. Refer to the qualification report for the actual data. The following possible failure modes should be considered to implement a highly reliable system. In the case of status read failure after erase or program, block replacement should be done. Because program status fail during a page program does not affect the data of the other pages in the same block, block replacement can be executed with a page-sized buffer by finding an erased empty block and reprogramming the current target data and copying the rest of the replaced block. In case of Read, ECC must be employed. To improve the efficiency of memory space, it is recommended that the read or verification failure due to single bit error be reclaimed by ECC without any block replacement. The said additional block failure rate does not include those reclaimed blocks.

Failure Mode		Detection and Countermeasure sequence
Write	Erase Failure	Status Read after Erase --> Block Replacement
	Program Failure	Status Read after Program --> Block Replacement
Read	Single Bit Failure	Verify ECC -> ECC Correction

ECC
: Error Correcting Code --> Hamming Code etc.
Example) 1 bit correction \& 2 bit detection

Program Flow Chart

: If program operation results in an error, map out the block including the page in error and copy the target data to another block.

NAND Flash Technical Notes (Continued)
Erase Flow Chart
Read Flow Chart

$*$
If erase operation results in an error, map out the failing block and replace it with another block.

Block Replacement

* Step1

When an error happens in the nth page of the Block ' A ' during erase or program operation.

* Step2

Copy the data in the 1st $\sim(n-1)$ th page to the same location of another free block. (Block ' B^{\prime})

* Step3

Then, copy the nth page data of the Block 'A' in the buffer memory to the nth page of the Block 'B'.

* Step4

Do not erase or program to Block 'A' by creating an 'invalid Block' table or other appropriate scheme.

NAND Flash Technical Notes (Continued)

Copy-Back Operation with EDC \& Sector Definition for EDC

Generally, copy-back program is very powerful to move data stored in a page without utilizing any external memory. But, if the source page has one bit error due to charge loss or charge gain, then without EDC, the copy-back program operation could also accumulate bit errors.
K9K8G08U0M supports copy-back with EDC to prevent cumulative bit errors. To make EDC valid, the page program operation should be performed on either whole page(2112byte) or sector(528byte). Modifying the data of a sector by Random Data Input before Copy-Back Program must be performed for the whole sector and is allowed only once per each sector. Any partial modification smaller than a sector corrupts the on-chip EDC codes.
A 2,112-byte page is composed of 4 sectors of 528 -byte and each 528 -byte sector is composed of 512 -byte main area and 16 -byte spare area.

Table 2. Definition of the 528-Byte Sector

Sector	Main Field (Column 0~2,047)		Spare Field (Column 2,048~2,111)	
	Area Name	Column Address	Area Name	Column Address
1'st 528-Byte Sector	"A"	$0 \sim 511$	"E"	$2,048 \sim 2,063$
2'nd 528-Byte Sector	"B"	$512 \sim 1,023$	"F"	$2,064 \sim 2,079$
3'rd 528-Byte Sector	"C"	$1,024 \sim 1,535$	"G"	$2,080 \sim 2,095$
4'th 528-Byte Sector	"D"	$1,536 \sim 2,047$	"H"	$2,096 \sim 2,111$

Addressing for program operation

Within a block, the pages must be programmed consecutively from the LSB (least significant bit) page of the block to MSB (most significant bit) pages of the block. Random page address programming is prohibited.

From the LSB page to MSB page
DATA IN: Data (1) \longrightarrow Data (64)

Ex.) Random page program (Prohibition)

DATA IN: Data $(1) \longrightarrow$ Data (64)

Interleave Page Program

K9K8G08U0M is composed of two K9F4G08U0Ms. K9K8G08U0M provides interleaving operation between two K9F4G08U0Ms.

This interleaving page program improves the system throughput almost twice compared to non-interleaving page program.
At first, the host issues page program command to one of the K9F4G08U0M chips, say K9F4G08U0M(chip \#1). Due to this K9K8G08U0M goes into busy state. During this time, K9F4G08U0M(chip \#2) is in ready state. So it can execute the page program command issued by the host.

After the execution of page program by K9F4G08U0M(chip \#1), it can execute another page program regardless of the K9F4G08U0M(chip \#2). Before that the host needs to check the status of K9F4G08U0M(chip \#1) by issuing F1h command. Only when the status of K9F4G08U0M(chip \#1) becomes ready status, host can issue another page program command. If the K9F4G08U0M(chip \#1) is in busy state, the host has to wait for the K9F4G08U0M(chip \#1) to get into ready state.

Similarly, K9F4G08U0M chip(chip \#2) can execute another page program after the completion of the previous program. The host can monitor the status of K9F4G08U0M(chip \#2) by issuing F2h command. When the K9F4G08U0M(chip \#2) shows ready state, host can issue another page program command to K9F4G08U0M(chip \#2).

This interleaving algorithm improves the system throughput almost twice. The host can issue page program command to each chip individually. This reduces the time lag for the completion of operation.

NOTES : During interleave operations, 70h command is prohibited.
Interleave Page Program

State A: Chip \#1 is executing a page program operation and chip \#2 is in ready state. So the host can issue a page program command to chip \#2. State B: Both chip \#1 and chip \#2 are executing page program operation. \#1. If chip \#1 is ready, status I/O6 is "1" and the system can issue another page program command to chip \#1. State D: Chip \#1 and Chip \#2 are ready.
According to the above process, the system can operate page program on chip \#1 and chip \#2 alternately.

Interleave Block Erase

State A: Chip \#1 is executing a block erase operation, and chip \#2 is in ready state. So the host can issue a block erase command to chip \#2. State B : Both chip \#1 and chip \#2 are executing block erase operation.
State C: Block erase on chip \#1 is terminated, but block erase on chip \#2 is still operating. And the system should issue F1h command to detect the status of chip \#1. If chip \#1 is ready, status I/O6 is "1" and the system can issue another block erase command to chip \#1. State D: Chip \#1 and Chip \#2 are ready.
According to the above process, the system can operate block erase on chip \#1 and chip \#2 alternately.

Interleave Two-Plane Page Program

State A: Chip \#1 is executing a page program operation, and chip \#2 is in ready state. So the host can issue a page program command to chip \#2. State B : Both chip \#1 and chip \#2 are executing page program operation.
State C : Page program on chip \#1 is completed and chip \#1 is ready for the next operation. Chip \#2 is still executing page program operation. State D : Both chip \#1 and chip \#2 are ready.
Note: *F1h command is required to check th
Note: ${ }^{*} F 1$ h command is required to check the status of chip \#1 to issue the next page program command to chip \#1.
\quad F2h command is required to check the status of chip \#2 to issue the next page program command to chip \#2. According to the above process, the system can operate two-plane page program on chip \#1 and chip \#2 alternately.
Interleave Two-Plane Block Erase

State A: Chip \#1 is executing a block erase operation, and chip \#2 is in ready state. So the host can issue a block erase command to chip \#2. State B : Both chip \#1 and chip \#2 are executing block erase operation.
State C: Block erase on chip \#1 is completed
State D : Both chip \#1 and chip \#2 are ready.
Note : *F1h command is required to check the status of chip \#1 to issue the next block erase command to chip \#1. As the above process, the system can operate two-plane block erase on chip \#1 and chip \#2 alternatively.

System Interface Using $\overline{\mathrm{CE}}$ don't-care.

For an easier system interface, $\overline{\mathrm{CE}}$ may be inactive during the data-loading or serial access as shown below. The internal 2,112byte data registers are utilized as separate buffers for this operation and the system design gets more flexible. In addition, for voice or audio applications which use slow cycle time on the order of μ-seconds, de-activating $\overline{C E}$ during the data-loading and serial access would provide significant savings in power consumption.

Figure 4. Program Operation with $\overline{C E}$ don't-care.

NOTE

Device	I/O	DATA	ADDRESS				
	I/Ox	Data In/Out	Col. Add1	Col. Add2	Row Add1	Row Add2	Row Add3
K9K8G08U0M	I/O $0 \sim$ I/O 7	2,112 byte	A0 \sim A7	A8 \sim A11	A12~A19	A20~A27	A28~A30

Command Latch Cycle

Address Latch Cycle

Input Data Latch Cycle

* Serial access Cycle after Read(CLE=L, $\overline{\mathrm{WE}}=\mathrm{H}, \mathrm{ALE}=\mathrm{L})$

NOTES : Transition is measured at $\pm 200 \mathrm{mV}$ from steady state voltage with load.
This parameter is sampled and not 100% tested.
tRLOH is valid when frequency is higher than 33 MHz .
tRHOH starts to be valid when frequency is lower than 33 MHz .

Serial Access Cycle after Read(EDO Type, CLE=L, $\overline{\mathrm{WE}}=\mathrm{H}, \mathrm{ALE}=\mathrm{L})$

NOTES : Transition is measured at $\pm 200 \mathrm{mV}$ from steady state voltage with load.
This parameter is sampled and not 100% tested.
tRLOH is valid when frequency is higher than 33MHz.
tRHOH starts to be valid when frequency is lower than 33 MHz .

Status Read Cycle \& EDC Status Read Cycle

Read Operation

Read Operation(Intercepted by $\overline{\mathrm{CE}}$)

Page Program Operation

NOTES : tADL is the time from the $\overline{\mathrm{WE}}$ rising edge of final address cycle to the $\overline{\mathrm{WE}}$ rising edge of first data cycle.
Page Program Operation with Random Data Input

NOTES : 1. tADL is the time from the $\overline{W E}$ rising edge of final address cycle to the $\overline{W E}$ rising edge of first data cycle.

[^1]

NOTES : 1. tADL is the time from the $\overline{\mathrm{WE}}$ rising edge of final address cycle to the $\overline{\mathrm{WE}}$ rising edge of first data cycle.
2. For EDC operation, only one time random data input is possible at the same address.

[^2]
Block Erase Operation

Two-Plane Block Erase Operation

* For Two-Plane Erase operation, Block address to be erased should be repeated before "DOH" command.
Ex.) Address Restriction for Two-Plane Block Erase Operation

Read ID Operation

Device	Device Code(2nd Cycle)	3rd Cycle	4th Cycle	5th Cycle
K9K8G08U0M	D3h	51 h	95h	58h
K9WAG08U1M	Same as each K9K8G08U0M in it			

ID Definition Table

90 ID : Access command = 90H

	Description
$1^{\text {st }}$ Byte	Maker Code
$2^{\text {nd }}$ Byte	Device Code
$3^{\text {rd }}$ Byte	Internal Chip Number, Cell Type, Number of Simultaneously Programmed Pages, Etc
$4^{\text {th }}$ Byte	Page Size, Block Size,Redundant Area Size, Organization, Serial Access Minimum
$5^{\text {th }}$ Byte	Plane Number, Plane Size

3rd ID Data

	Description	I/07	1/06	I/05	I/04	I/O3	I/O2	I/01	1/00
Internal Chip Number	$\begin{array}{\|l\|} \hline 1 \\ 2 \\ 4 \\ 8 \end{array}$							$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$
Cell Type	2 Level Cell 4 Level Cell 8 Level Cell 16 Level Cell					$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$		
Number of Simultaneously Programmed Pages	$\begin{array}{\|l\|} \hline 1 \\ 2 \\ 4 \\ 8 \end{array}$			$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$				
Interleave Program Between multiple chips	Not Support Support		$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$						
Cache Program	Not Support Support	$\begin{aligned} & 0 \\ & 1 \end{aligned}$							

4th ID Data

	Description	I/07	1/06	I/O5 I/O4	I/O3	I/O2	I/01 I/O0
Page Size (w/o redundant area)	$\begin{aligned} & 1 \mathrm{~KB} \\ & 2 \mathrm{~KB} \\ & 4 \mathrm{~KB} \\ & 8 \mathrm{~KB} \end{aligned}$						$\begin{array}{ll} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$
Block Size (w/o redundant area)	$\begin{aligned} & \hline 64 \mathrm{~KB} \\ & 128 \mathrm{~KB} \\ & 256 \mathrm{~KB} \\ & 512 \mathrm{~KB} \end{aligned}$			$\begin{array}{ll} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$			
Redundant Area Size (byte/512byte)	$\begin{aligned} & 8 \\ & 16 \end{aligned}$					$\begin{aligned} & 0 \\ & 1 \end{aligned}$	
Organization	$\begin{aligned} & \text { x8 } \\ & \text { x16 } \end{aligned}$		$\begin{aligned} & 0 \\ & 1 \end{aligned}$				
Serial Access Minimum	50ns/30ns 25ns Reserved Reserved	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$			0 0 1 1		

5th ID Data

	Description	I/07	I/O6 I/O5 I/04	I/O3 I/O2	I/01	1/O0
Plane Number	$\begin{array}{\|l\|} \hline 1 \\ 2 \\ 4 \\ 8 \end{array}$			$\begin{array}{ll} \hline 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$		
Plane Size (w/o redundant Area)	$\begin{aligned} & \hline 64 \mathrm{Mb} \\ & 128 \mathrm{Mb} \\ & 256 \mathrm{Mb} \\ & 512 \mathrm{Mb} \\ & 1 \mathrm{~Gb} \\ & 2 \mathrm{~Gb} \\ & 4 \mathrm{~Gb} \\ & 8 \mathrm{~Gb} \end{aligned}$		$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array}$			
Reserved		0			0	0

Device Operation

PAGE READ
Page read is initiated by writing 00h-30h to the command register along with five address cycles. After initial power up, 00h command is latched. Therefore only five address cycles and 30h command initiates that operation after initial power up. The 2,112 bytes of data within the selected page are transferred to the data registers in less than $20 \mu \mathrm{~s}(\mathrm{tr})$. The system controller can detect the completion of this data transfer(tR) by analyzing the output of R / \bar{B} pin. Once the data in a page is loaded into the data registers, they may be read out in 25 ns (K9NBG08U5M:50ns) cycle time by sequentially pulsing $\overline{R E}$. The repetitive high to low transitions of the $\overline{R E}$ clock make the device output the data starting from the selected column address up to the last column address.
The device may output random data in a page instead of the consecutive sequential data by writing random data output command. The column address of next data, which is going to be out, may be changed to the address which follows random data output command. Random data output can be operated multiple times regardless of how many times it is done in a page.

Figure 6. Read Operation

Col. Add. 1,2 \& Row Add.1,2,3

Figure 7. Random Data Output In a Page

PAGE PROGRAM

The device is programmed basically on a page basis, but it does allow multiple partial page programming of a word or consecutive bytes up to 2,112 , in a single page program cycle. The number of consecutive partial page programming operation within the same page without an intervening erase operation must not exceed 4 times for a single page. The addressing should be done in sequential order in a block. A page program cycle consists of a serial data loading period in which up to 2,112 bytes of data may be loaded into the data register, followed by a non-volatile programming period where the loaded data is programmed into the appropriate cell.
The serial data loading period begins by inputting the Serial Data Input command(80h), followed by the five cycle address inputs and then serial data loading. The words other than those to be programmed do not need to be loaded. The device supports random data input in a page. The column address for the next data, which will be entered, may be changed to the address which follows random data input command(85h). Random data input may be operated multiple times regardless of how many times it is done in a page. Modifying the data of a sector by Random Data Input before Copy-Back Program must be performed for the whole sector and is allowed only once per each sector. Any partial modification smaller than a sector corrupts the on-chip EDC codes.
The Page Program confirm command(10h) initiates the programming process. Writing 10h alone without previously entering the serial data will not initiate the programming process. The internal write state controller automatically executes the algorithms and timings necessary for program and verify, thereby freeing the system controller for other tasks. Once the program process starts, the Read Status Register command may be entered to read the status register. The system controller can detect the completion of a program cycle by monitoring the R / \bar{B} output, or the Status bit(I/O 6) of the Status Register. Only the Read Status command and Reset command are valid while programming is in progress. When the Page Program is complete, the Write Status Bit(I/O 0) may be checked(Figure 8). The internal write verify detects only errors for "1"s that are not successfully programmed to "0"s. The command register remains in Read Status command mode until another valid command is written to the command register.

Figure 8. Program \& Read Status Operation

Figure 9. Random Data Input In a Page

Copy-Back Program

The Copy-Back program is configured to quickly and efficiently rewrite data stored in one page without utilizing an external memory. Since the time-consuming cycles of serial access and re-loading cycles are removed, the system performance is improved. The benefit is especially obvious when a portion of a block is updated and the rest of the block also need to be copied to the newly assigned free block. The operation for performing a copy-back program is a sequential execution of page-read without serial access and copy-ing-program with the address of destination page. A read operation with " 35 h " command and the address of the source page moves the whole 2,112-byte data into the internal data buffer. As soon as the device returns to Ready state, Page-Copy Data-input command (85 h) with the address cycles of destination page followed may be written. The Program Confirm command (10h) is required to actually begin the programming operation. During tPROG, the device executes EDC of itself. Once the program process starts, the Read Status Register command (70h) or Read EDC Status command (7Bh) may be entered to read the status register. The system controller can detect the completion of a program cycle by monitoring the R/B output, or the Status bit(I/O 6) of the Status Register. When the Copy-Back Program is complete, the Write Status Bit(I/O 0) and EDC Status Bits (I/O $1 \sim \mathrm{I} / \mathrm{O} 2$) may be checked(Figure 10 \& Figure $11 \&$ Figure 12). The internal write verification detects only errors for "1"s that are not successfully programmed to "0"s and the internal EDC checks whether there is only 1-bit error for each 528-byte sector of the source page. More than 2-bit error detection is not available for each 528-byte sector. The command register remains in Read Status command mode or Read EDC Status command mode until another valid command is written to the command register.
During copy-back program, data modification is possible using random data input command (85h) as shown in Figure11. But EDC status Bits are not available during copy back for some bits or bytes modified by Random Data Input operation.
However, in case of the 528 byte sector unit modification, EDC status bits are available.

Figure 10. Page Copy-Back Program Operation

Note: 1. Copy-Back Program operation is allowed only within the same memory plane.
2. On the same plane, It's prohibited to operate copy-back program from an odd address page(source page) to an even address page(target page) or from an even address page(source page) to an odd address page(target page). Therefore, the copy-back program is permitted just between odd address pages or even address pages.

Figure 11. Page Copy-Back Program Operation with Random Data Input

Note: 1. For EDC operation, only one time random data input is possible at the same address.

EDC OPERATION

Note that for the user who use Copy-Back with EDC mode, only one time random data input is possible at the same address during Copy-Back program or page program mode. For the user who use Copy-Back without EDC, there is no limitation for the random data input at the same address.

Figure 12. Page Copy-Back Program Operation with EDC \& Read EDC Status

R / \bar{B}

BLOCK ERASE

The Erase operation is done on a block basis. Block address loading is accomplished in three cycles initiated by an Erase Setup command(60h). Only address A_{18} to A 30 is valid while A_{12} to A 17 is ignored. The Erase Confirm command(DOh) following the block address loading initiates the internal erasing process. This two-step sequence of setup followed by execution command ensures that memory contents are not accidentally erased due to external noise conditions.
At the rising edge of $\overline{\mathrm{WE}}$ after the erase confirm command input, the internal write controller handles erase and erase-verify. When the erase operation is completed, the Write Status Bit(I/O 0) may be checked. Figure 13 details the sequence.

Figure 13. Block Erase Operation

Two-Plane Page Program

Two-Plane Page Program is an extension of Page Program, for a single plane with 2112 byte page registers. Since the device is equipped with four memory planes, activating the two sets of 2112 byte page registers enables a simultaneous programming of two pages. But there is some restriction, two-plane program operations can be executed by dividing the memory array into plane $0 \sim 1$ or plane $2 \sim 3$ separately. For example, two-plane program operation into plane 0 and plane 2 is prohibited. That is to say, two-plane program operation into plane 0 and plane 1 or into plane 2 and plane 3 is allowed.

After writing the first set of data up to 2112 byte into the selected page register, Dummy Page Program command (11h) instead of actual Page Program command (10h) is inputted to finish data-loading of the first plane. Since no programming process is involved, R/B remains in Busy state for a short period of time(tDBSY). Read Status command (70h) may be issued to find out when the device returns to Ready state by polling the Ready/Busy status bit(I/O 6). Then the next set of data for the other plane is inputted after the 81 h command and address sequences. After inputting data for the last plane, actual True Page Program(10h) instead of dummy Page Program command (11h) must be followed to start the programming process. The operation of R / \bar{B} and Read Status is the same as that of Page Program. Althougth two planes are programmed simultaneously, pass/fail is not available for each page when the program operation completes. Status bit of I/O 0 is set to " 1 " when any of the pages fails.
Restriction in addressing with Two-Plane Page Program is shown is Figure14.

Figure 14. Two-Plane Page Program

NOTE : 1. It is noticeable that same row address except for A 18 is applied to the two blocks 2.Any command between 11 h and 81 h is prohibited except 70 h and FFh .

Data Input

NOTE : It is an example for two-plane page program into plane 0~1(In this case, A30 is low), and the method for two-plane page program into plane $2 \sim 3$ is same. two-plane page program into plane $0 \& 2$ (or plane $0 \& 3$, or plane $1 \& 2$, or plane $1 \& 3$) is prohibited.

Two-Plane Block Erase

Basic concept of Two-Plane Block Erase operation is identical to that of Two-Plane Page Program. Up to two blocks, one from each plane can be simultaneously erased. Standard Block Erase command sequences (Block Erase Setup command(60h) followed by three address cycles) may be repeated up to twice for erasing up to two blocks. Only one block should be selected from each plane. The Erase Confirm command(DOh) initiates the actual erasing process. The completion is detected by monitoring R/ \bar{B} pin or Ready/ Busy status bit (l/O 6).
Two-plane erase operations can be executed by dividing the memory array into plane 0~1 or plane 2~3 separately.
For example, two-plane erase operation into plane 0 and plane 2 is prohibited. That is to say, two-plane erase operation into plane 0 and plane 1 or into plane 2 and plane 3 is allowed.

Figure 15. Two-Plane Block Erase Operation

NOTE : Two-plane block erase into plane $0 \& 2$ (or plane $0 \& 3$, or plane $1 \& 2$, or plane $1 \& 3$) is prohibited.

Two-Plane Copy-Back Program

Two-Plane Copy-Back Program is an extension of Copy-Back Program, for a single plane with 2112 byte page registers. Since the device is equipped with four memory planes, activating the two sets of 2112 byte page registers enables a simultaneous programming of two pages.

Figure 16. Two-Plane Copy-Back Program Operation

R / \bar{B}

1/Ox

Ao ~ A11 : Fixed 'Low'
A12 ~ A17 : Fixed 'Low'
A18 : Fixed 'Low'
A19 ~ A29: Fixed 'Low'
A30 : Valid

A0 ~ A11 : Fixed 'Low'
A12 ~ A17: Valid
A18 : Fixed 'High'
A19 ~ A29: Valid
Азо : Must be same as previous A30

(1) : Read for Copy Back On Plane0(or Plane2)
(2) : Read for Copy Back On Plane1(or Plane3)
(3) : Two-Plane Copy-Back Program

Note: 1. Copy-Back Program operation is allowed only within the same memory plane
2. On the same plane, It's prohibited to operate copy-back program from an odd address page(source page) to an even address page(target page) or from an even address page(source page) to an odd address page(target page).
Therefore, the copy-back program is permitted just between odd address pages or even address pages.
3. Two-plane copy-back page program into plane $0 \& 2$ (or plane $0 \& 3$, or plane $1 \& 2$, or plane $1 \& 3$) is prohibited.
4. Any command between 11 h and 81 h is prohibited except 70 h and FFh.

Figure 17. Two-Plane Copy-Back Program Operation with Random Data Input

Note: 1. Copy-Back Program operation is allowed only within the same memory plane.
2. On the same plane, It's prohibited to operate copy-back program from an odd address page(source page) to an even address page(target page) or from an even address page(source page) to an odd address page(target page).
Therefore, the copy-back program is permitted just between odd address pages or even address pages.
3. EDC status Bits are not available during copy back for some bits or bytes modified by Random Data Input operation.

In case of the 528 byte plane unit modification, EDC status bits are available.
4. Any command between 11 h and 81 h is prohibited except 70 h and FFh.

READ STATUS

The device contains a Status Register which may be read to find out whether program or erase operation is completed, and whether the program or erase operation is completed successfully. After writing 70h command to the command register, a read cycle outputs the content of the Status Register to the I/O pins on the falling edge of $\overline{C E}$ or $\overline{R E}$, whichever occurs last. This two line control allows the system to poll the progress of each device in multiple memory connections even when R / \bar{B} pins are common-wired. $\overline{R E}$ or $\overline{C E}$ does not need to be toggled for updated status. Refer to Table 3 for specific Status Register definitions. The command register remains in Status Read mode until further commands are issued to it. Therefore, if the status register is read during a random read cycle, the read command(00h) should be given before starting read cycles.

Table 3. Status Register Definition for 70h Command

I/O	Page Program	Block Erase	Read	Definition	
I/O 0	Pass/Fail	Pass/Fail	Not use	Pass : "0"	Fail : "1"
I/O 1	Not use	Not use	Not use	Don't -cared	
I/O 2	Not use	Not use	Not use	Don't -cared	
I/O 3	Not Use	Not Use	Not Use	Don't -cared	
I/O 4	Not Use	Not Use	Not Use	Don't -cared	
I/O 5	Not Use	Not Use	Not Use	Don't -cared	
I/O 6	Ready/Busy	Ready/Busy	Ready/Busy	Busy : "0"	Ready : "1"
I/O 7	Write Protect	Write Protect	Write Protect	Protected : "0"	Not Protected : "1"

NOTE : 1. I/Os defined 'Not use' are recommended to be masked out when Read Status is being executed.
2. Status Register Definition for F1h \& F2h command is same as that of 70h command.

READ EDC STATUS

Read EDC status operation is only available on 'Copy Back Program'. The device contains an EDC Status Register which may be read to find out whether there is error during 'Read for Copy Back'. After writing 7Bh command to the command register, a read cycle outputs the content of the EDC Status Register to the I/O pins on the falling edge of $\overline{C E}$ or $\overline{R E}$, whichever occurs last. This two line control allows the system to poll the progress of each device in multiple memory connections even when R/B pins are common-wired. $\overline{\mathrm{RE}}$ or $\overline{\mathrm{CE}}$ does not need to be toggled for updated status. Refer to table 4 for specific Status Register definitions. The command register remains in EDC Status Read mode until further commands are issued to it.

Table 4. Status Register Definition for 7Bh Command

I/O	Copy Back Program	Page Program	Block Erase	Read	Definition
I/O 0	Pass/Fail of Copy Back Program	Pass/Fail	Pass/Fail	Not use	Pass : "0", Fail : "1"
I/O 1	EDC Status	Not use	Not use	Not use	No Error : "0", Error : "1"
I/O 2	Validity of EDC Status	Not use	Not use	Not use	Valid : "1", Invalid : "0"
I/O 3	Not Use	Not Use	Not Use	Not Use	Don't -cared
I/O 4	Not Use	Not Use	Not Use	Not Use	Don't -cared
I/O 5	Not Use	Not Use	Not Use	Not Use	Don't -cared
I/O 6	Ready/Busy of Copy Back Program	Ready/Busy	Ready/Busy	Ready/Busy	Busy : "0", Ready : "1"
I/O 7	Write Protect of Copy Back Program	Write Protect	Write Protect	Write Protect	Protected : "0", Not Protected :"1"

NOTE : 1. I/Os defined 'Not use' are recommended to be masked out when Read Status is being executed.
2. More than 2-bit error detection isn't available for each 528 Byte sector.

That is to say, only 1-bit error detection is avaliable for each 528 Byte sector.

Read ID

The device contains a product identification mode, initiated by writing 90 h to the command register, followed by an address input of 00 h . Five read cycles sequentially output the manufacturer code(ECh), and the device code and 3rd, 4th, 5th cycle ID respectively. The command register remains in Read ID mode until further commands are issued to it. Figure 18 shows the operation sequence.

Figure 18. Read ID Operation

Device	Device Code(2nd Cycle)	3rd Cycle	4th Cycle	5th Cycle
K9K8G08U0M	D3h	51 h	95h	58h
K9WAG08U1M	Same as each K9K8G08U0M in it			

RESET

The device offers a reset feature, executed by writing FFh to the command register. When the device is in Busy state during random read, program or erase mode, the reset operation will abort these operations. The contents of memory cells being altered are no longer valid, as the data will be partially programmed or erased. The command register is cleared to wait for the next command, and the Status Register is cleared to value COh when $\overline{W P}$ is high. If the device is already in reset state a new reset command will be accepted by the command register. The R/B pin transitions to low for tRST after the Reset command is written. Refer to Figure 19 below.

Figure 19. RESET Operation
R / \bar{B}

I/Ox

Table 5. Device Status

	After Power-up	After Reset
Operation mode	00h Command is latched	Waiting for next command

READY/BUSY

The device has a R / \bar{B} output that provides a hardware method of indicating the completion of a page program, erase and random read completion. The R / \bar{B} pin is normally high but transitions to low after program or erase command is written to the command register or random read is started after address loading. It returns to high when the internal controller has finished the operation. The pin is an open-drain driver thereby allowing two or more R / \bar{B} outputs to be Or-tied. Because pull-up resistor value is related to $\operatorname{tr}(R / \bar{B})$ and current drain during busy(ibusy), an appropriate value can be obtained with the following reference chart(Fig.20). Its value can be determined by the following guidance.

Figure 20. Rp vs tr ,tf \& Rp vs ibusy

$R p$ value guidance

where IL is the sum of the input currents of all devices tied to the R / \bar{B} pin.
$\operatorname{Rp}(\max)$ is determined by maximum permissible limit of tr

Data Protection \& Power up sequence
The device is designed to offer protection from any involuntary program/erase during power-transitions. An internal voltage detector disables all functions whenever Vcc is below about 2V. WP pin provides hardware protection and is recommended to be kept at VIL during power-up and power-down. A recovery time of minimum 10μ s is required before internal circuit gets ready for any command sequences as shown in Figure 21. The two step command sequence for program/erase provides additional software protection.

Figure 21. AC Waveforms for Power Transition

[^0]: * Samsung Electronics reserves the right to change products or specification without notice.

[^1]:

[^2]: 2. For EDC operation, only one time random data input is possible at the same address.
