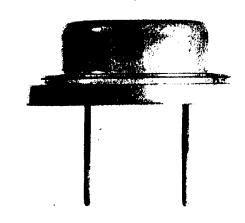
New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. 2N297 A
POWER
TRANSISTOR

TELEPHONE: (973) 376-2922


(212) 227-6005 FAX: (973) 376-8960

GERMANIUM PNP POWER TRANSISTOR

2N297A is a germanium PNP alloy junction power transistor meeting military specification MIL-T-19500/36A (SigC). The maximum collector-emitter voltage rating is 50 volts, and the collector current rating is 5 amperes. 2N297A will readily dissipate 35 watts at 25°C and 10 watts at 75°C.

High current switching, audio amplification, small motor and servo drivers are typical applications for the transistor. There are numerous other applications to regulators, power supply and oscillator circuits.

2N297A transistor features welded construction and cadmium plating with a vacuum-tight seal to insure long life and stable operation. Mechanical dimensions conform to the JEDEC TO-3 outline.

ABSOLUTE MAXIMUM RATINGS

V_{CE}	$ m V_{CB}$	I_C	\mathbf{P}_{c}	${ m T_{storage}}$	$\mathbf{T}_{\mathbf{j}}$
Vdc	Vdc	Adc	W	°C	°C
50	60	5.0	35	-65 to +95	95

Thermal Resistance: 1.5°C/W typical and 2°C/W maximum.

ELECTRICAL CHARACTERISTICS (25°C mounting base temperature unless otherwise specified)

CHARACTERISTIC	SYMBOL	MIN.	MAX.	TINU
DC Current Gain	$h_{\rm FE}$			
$V_{CE}=-2 \text{ Vdc}$; $I_{C}=-0.5 \text{ Adc}$		40	100	
V_{CE} = -2 Vdc; I_{C} = -2.0 Adc		20	*******	
Transconductance				
$V_{\rm CE}=-2~{\rm Vdc};~I_{\rm C}=-2.0~{\rm Adc}$	gee	1.33	<u> </u>	mhos
Collector Saturation Voltage				
$I_C = -2 \text{ Ade}$; $I_B = -200 \text{ mAde}$	$V_{\rm CE(S)}$	-	-1.0	Vdc
Collector Cutoff Current	I_{CBO}			
$V_{CB} = -2 \text{ Vdc}; I_E = 0$		•	-200	$\mu { m Adc}$
$V_{CB} = -60 \text{ Vdc}; I_E = 0$		_	3.0	mAdc
$V_{CB} = -30 \text{ Vdc}; I_E = 0; T_B = 71 \text{ C}$		****	6.0	mAdc
Emitter Cutoff Current	IEBO			
$V_{EB} = -40 \text{ Vdc}$; $I_C = 0$			-3.0	mAdc

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

2N297A POWER TRANSISTOR

ELECTRICAL CHARACTERISTICS (Continued)

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Collector-Emitter Breakdown Voltage $I_{\rm C} = -300$ mAdc; $I_{\rm B} = 0$	$\mathrm{BV}_{\mathrm{CEO}}$	40		Vđc
Collector-Emitter Breakdown Voltage $I_{\rm C} = -300$ mAdc; $V_{\rm BE} = 0$	$\mathrm{BV}_{\mathrm{CES}}$	50	+	Vdc
Floating Potential $V_{CB} = -60 \text{ Vdc}$	$\mathbf{v}_{\mathbf{n}}$		180	mVde
Alpha Cutoff Frequency $V_{CE} = -14 \text{ Vdc}$; $I_C = -0.5 \text{ Adc}$	$\mathbf{f_{ac}}$	5		kc

LIFE TEST

Storage Life Test = 1000 hours at + 95°C minimum.

END OF LIFE

 I_{EBO} at $V_{EB}\,=\,-40\,$ Vdc; $\,-6.0\,$ mAdc maximum.

 I_{CBO} at $V_{CB}\,=\,-60\,$ Vdc; $\,-6.0\,$ mAdc maximum.

 h_{FE} at $I_C = -2.0 \, Adc$; 13.3 minimum