BD132

FEATURES

- High current (max. 3 A)
- Low voltage (max. 45 V).

APPLICATIONS

• General purpose power applications.

DESCRIPTION

PNP power transistor in a TO-126; SOT32 plastic package. NPN complement: BD131.

PINNING

PIN	DESCRIPTION
1	emitter
2	collector, connected to metal part of mounting surface
3	base

and symbol.

QUICK REFERENCE DATA

SYMBOL	PARAMETER CONDITIONS		MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	-45	V
V_{CEO}	collector-emitter voltage	open base	_	-45	V
I _{CM}	peak collector current		_	-6	А
P _{tot}	total power dissipation	T _{mb} ≤ 60 °C	_	15	W
h _{FE}	DC current gain	$I_C = -0.5 \text{ A}; V_{CE} = -12 \text{ V}$	40	_	
f _T	transition frequency	$I_C = -0.25 \text{ A}; V_{CE} = -5 \text{ V}; f = 100 \text{ MHz}$	60	_	MHz

1997 Mar 04 1

BD132

LIMITING VALUES

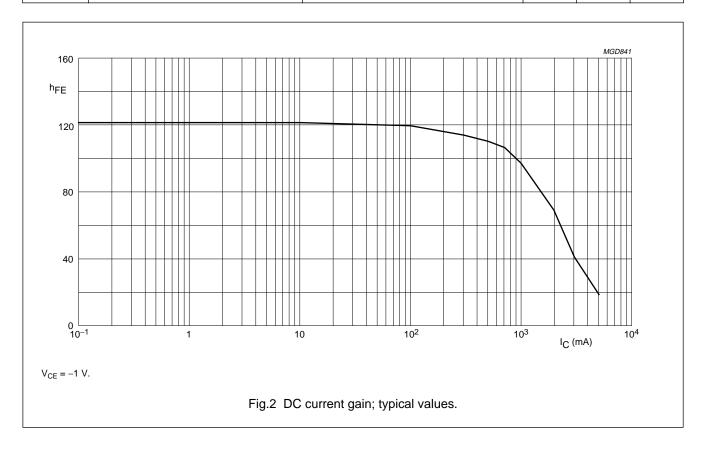
In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	-45	V
V_{CEO}	collector-emitter voltage	open base	_	-45	V
V_{EBO}	emitter-base voltage	open collector	_	-4	V
I _C	collector current (DC)		_	-3	Α
I _{CM}	peak collector current		_	-6	Α
I _{BM}	peak base current		_	-0.5	Α
P _{tot}	total power dissipation	T _{mb} ≤ 60 °C	_	15	W
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		_	150	°C
T _{amb}	operating ambient temperature		-65	+150	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient	note 1	100	K/W
R _{th j-mb}	thermal resistance from junction to mounting base		6	K/W

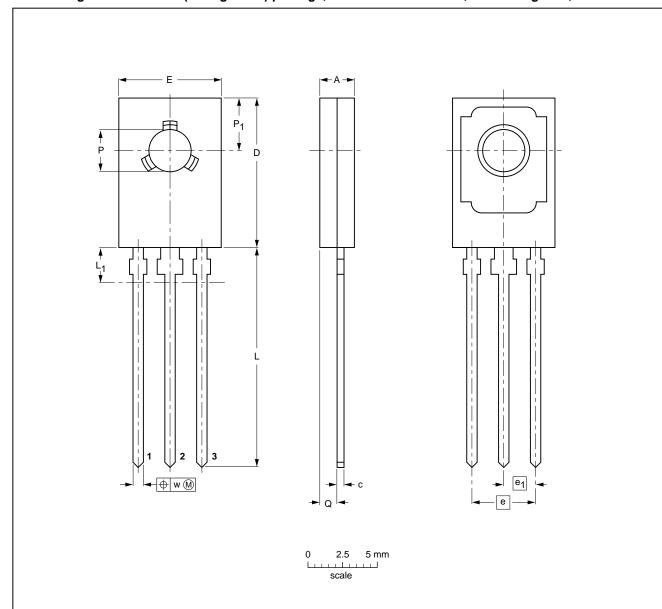
Note


1. Refer to TO-126; SOT32 standard mounting conditions.

BD132

CHARACTERISTICS

 $T_j = 25$ °C unless otherwise specified.


SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{CBO}	collector cut-off current	$I_E = 0; V_{CB} = -40 \text{ V}$	_	-50	nA
		$I_E = 0$; $V_{CB} = -40 \text{ V}$; $T_j = 150 ^{\circ}\text{C}$	_	-10	μΑ
I _{EBO}	emitter cut-off current	I _C = 0; V _{EB} = -3 V	_	-50	nA
h _{FE}	DC current gain	$I_C = -0.5 \text{ A}; V_{CE} = -12 \text{ V}$	40	_	
		$I_C = -2 \text{ A}; V_{CE} = -1 \text{ V}; \text{ see Fig.2}$	20	_	
V _{CEsat}	collector-emitter saturation voltage	$I_C = -0.5 \text{ A}; I_B = -50 \text{ mA}$	_	-300	mV
		$I_C = -2 \text{ A}; I_B = -200 \text{ mA}$	_	-700	mV
V _{BEsat}	base-emitter saturation voltage	$I_C = -0.5 \text{ A}; I_B = -50 \text{ mA}$	_	-1.2	V
		$I_C = -2 \text{ A}; I_B = -200 \text{ mA}$	_	-1.5	V
f _T	transition frequency	$I_C = -0.25 \text{ A}; V_{CE} = -5 \text{ V};$ $f = 100 \text{ MHz}; T_{amb} = 25 ^{\circ}\text{C}$	60	_	MHz

BD132

PACKAGE OUTLINE

Plastic single-ended leaded (through hole) package; mountable to heatsink, 1 mounting hole; 3 leads SOT32

DIMENSIONS (mm are the original dimensions)

UNIT	Α	bp	С	D	E	е	e ₁	L	L ₁ ⁽¹⁾ max	Q	Р	P ₁	w
mm	2.7 2.3	0.88 0.65	0.60 0.45	11.1 10.5	7.8 7.2	4.58	2.29	16.5 15.3	2.54	1.5 0.9	3.2 3.0	3.9 3.6	0.254

Note

1. Terminal dimensions within this zone are uncontrolled to allow for flow of plastic and terminal irregularities.

OUTLINE		REFER	ENCES	EUROPEAN ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT32		TO-126			97-03-04	

BD132

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify us for any damages resulting from such improper use or sale.