Data sheet acquired from Harris Semiconductor SCHS036B – Revised July 2003 # CMOS 64-Stage Static Shift Register High-Voltage Types (20-Volt Rating) ■ CD4031B is a static shift register that contains 64 D-type, master-slave flip-flop stages and one stage which is a D-type master flip-flop only (referred to as a 1/2 stage). The logic level present at the DATA input is transferred into the first stage and shifted one stage at each positive-going clock transition. Maximum clock frequencies up to 12 Megahertz (typical) can be obtained. Because fully static operation is allowed, information can be permanently stored with the clock line in either the low or high state. The CD4031B has a MODE CONTROL input that, when in the high state, allows operation in the recirculating mode. The MODE CON-TROL input can also be used to select between two separate data sources. Register packages can be cascaded and the clock lines driven directly for high-speed operation. Alternatively, a delayed clock output (CLD) is provided that enables cascading register packages while allowing reduced clock drive fan-out and transition-time requirements. A third cascading option makes use of the Q' output from the 1/2 stage, which is available on the next negative-going transition of the clock after the Q output occurs. This delayed output, like the delayed clock CLD, is used with clocks having slow rise and fall times. The CD4031B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes). #### Features: - Fully static operation: DC to 12 MHz typ. @ V_{DD}-V_{SS} = 15 V - Standard TTL drive capability on Q output - Recirculation capability - Three cascading modes: Direct clocking for high-speed operation Delayed clocking for reduced clock drive requirements Additional 1/2 stage for slow clocks - 100% tested for quiescent current at 20 V - Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C - Noise margin (over full package-temperature range) 1 V at V_{DD} = 5 V 2 V at V_{DD} = 10 V 2.5 V at V_{DD} = 15 V - 5-V, 10-V, and 15-V parametric ratings - Meets all requirements of JEDEC Tentative Standard No. 138, "Standard Specifications for Description of 'B' Series CMOS Devices" #### Applications: - Serial shift registers - Time delay circuits #### RECOMMENDED OPERATING CONDITIONS For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges: | | LIN | | | |---|------|------|-------| | CHARACTERISTIC | Min. | Max. | UNITS | | Supply-Voltage Range
(For TA=Full Package-
Temperature Range) | 3 | 18 | ٧ | #### INPUT CONTROL CIRCUIT TRUTH TABLE CD4031B Types | DATA | RECIRC. | MODE | BIT INTO
STAGE I | |------|---------|------|---------------------| | 1 | X | 0 | 1 | | 0 | X | 0 | 0 | | X | 1 | 1 | 1 | | X | 0 | 1 | 0 | #### TYPICAL STAGE TRUTH TABLE | Deta | CL | Data + 1 | | | | |------|---------|----------|--|--|--| | 0 | | 0 | | | | | 1 | | 1 | | | | | X | | NC | | | | # TRUTH TABLE FOR OUTPUT FROM Q' (TERMINAL 5) | Data + 64 | CL | Data + 641/2 | |-----------|----|--------------| | 0 | 7 | 0 | | 1 | 7 | 1 | | X | | NC | 1 = HIGH LEVEL 0 = LOW LEVEL X = DON'T CARE NC = NO CHANGE TERMINAL ASSIGNMENT ### MAXIMUM RATINGS, Absolute-Maximum Values: | STATIC E | LECTRICAL | CHARACTERISTICS | |----------|-----------|-----------------| | AU | CONDITIONS | | | LIMITS AT INDICATED TEMPERATURES (°C) | | | | | | UNITS | | |---------------------------------------|--|------|----------|---------------------------------------|-------|-------|----------|-------|-------|-------|----------| | CHARACTERISTIC | Vo | VIN | v_{DD} | | | | <u> </u> | +25 | | | | | | (V) | (V) | (V) | _ <u>5</u> 5 | -40 | +85 | +125 | Min. | Typ. | Max. | | | Quiescent Device | _ | 0,5 | 5 | 5 | 5 | 150 | 150 | _ | 0.04 | 5 | | | Current, | ' | 0,10 | 10 | 10 | 10 | 300 | 300 | _ | 0.04 | 10 | μΑ | | IDD Max. | | 0,15 | 15 | 20 | 20 | 600 | 600 | - / | 0.04 | 20 | | | | | 0,20 | 20 | 100 | 100 | 3000 | 3000 | - | 0.08 | 100 | | | Output Low (Sink) | 0.4 0,5 5 2.56 2.44 1.68 1.44 2.04 4 - | - | | | | | | | | | | | Current IOL Min. | 0.5 | 0,10 | 10 | 6.4 | 6 | 4.4 | 3.6 | 5.2 | 10.4 | - | | | u | 1.5 | 0,15 | 15 | 16.8 | 16 | 11.2 | 9.6 | 13.6 | 27.2 | _ | ٠,٠ | | | 0.4 | 0,5 | 5 | 0.64 | 0:61 | 0.42 | 0.36 | 0.51 | 1 | _ | 1 | | ᾱ, α΄, cι _D | 0.5 | 0,10 | 10 | 1.6 | 1.5 | 1.1 | 0.9 | 1.3 | 2.6 | - | ł | | _ | 1.5 | 0,15 | 15 | 4.2 | 4 · | 2.8 | 2.4 | 3.4 | 6.8 | - | mA. | | Output High (Source) | 4.6 | 0,5 | 5 | -0.64 | -0.61 | -0.42 | -0.36 | -0.51 | -1 | - | 1 . | | Current, IOH Min. | 2.5 | 0,5 | 5 | - 2 | 1.8 | 1.3 | -1.15 | -1.6 | -3.2. | | 1 | | Q, Q, Q', CLD | 9.5 | 0,10 | 10 | - 1.6 | 1.5 | -1.1 | -0.9 | -1.3 | -2.6 | - | 1 | | | 13.5 | 0,15 | 15 | 4.2 | 4 | 2.8 | -2.4 | -3.4 | -6.8 | - | | | Output Voltage: | - | 0,5 | 5 | | | 0.05 | | _ | 0 | 0.05 | | | Low Level. | ×: | 0,10 | 10 | : | | 0.05 | | - | 0 | 0.05 | 1 | | VOL Max. | | 0,15 | 15 | * | | 0.05 | | _ | . 0 | 0.05 | l v | | Output Voltage: | - | 0,5 | | | | 4.95 | | 4.95 | 5 | | l ' | | High Level, | · | 0,10 | | | | 9.95 | | 9.95 | 10 | _ | | | V _{OH} Min, | | 0,15 | | | | 14.95 | | 14.95 | 15 | | <u> </u> | | Input Low | 0.5, 4.5 | - | 5 | | | 1.5 | | - | | 1.5 | | | Voltage | 1,9 | - | 10 | 3 | | | | | | 3 | , | | V _{IL} Max. | 1.5, 13.5 | - | 15 | 4 4
3.5 3.5 | | | | | 4 | V | | | Input High | 0.5, 4.5 | | 5 | | | | | | • | | | | Voltage, | 1;9 | - | 10 | 7 7 | | | | | ł | | | | V _{IH} Min. | 1.5, 13.5 | | 15 | | | 11 | | 11 | | _ | <u> </u> | | Input Current
I _{IN} Max. | | 0,18 | 18 | ±0.1 | ±0.1 | ±1 | ±1 | _ | ±10-5 | ±0.1 | μΑ | Fig. 1 — Logic diagram. Fig. 2 — Typical output low (sink) current characteristics (Q sink current = 4X ordinate). Fig. 3 — Minimum output low (sink) current characteristics (Q sink current = 4X ordinate). Fig. 4 — Typical output high (source) current characteristics. Fig. 5 — Minimum output high (source) current characteristics. ### CD4031B Types DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C; Input t_r , t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω | CHARACTERISTIC | TEST CONDITIONS | | UNITS | | | |--|---------------------|------|-------|-----------|-------| | CHARACTERISTIC | V _{DD} (V) | Min. | Тур. | Тур. Мах. | | | Propagation Delay Time: | 5 | _ | 250 | 500 | | | Clock to Q, tpHL, tpLH; | 10 | - | 110 | 220 | ns | | Clock to Q, tPLH | 15 | _ | 90 | 180 | | | Clock to Q', tpHL, tpLH; | 5 | _ | 190 | 380 | | | Clock to Q, tpHL | 10 | - | 80 | 160 | ns | | | 15 | | 65 | 130 | | | • | 5 | _ | 100 | 200 | | | Clock to CL _D | 10 | | 50 | 100 | ns | | | 15 | | 40 | 80 | | | Transition Time to the total | 5 | _ | 100 | 200 | 1 | | Transition Time, t _{THL} , t _{TLH} (Any Output, except Q, t _{THL}) | 10 | _ | 50 | 100 | ns | | (Any Output, except Q, (THL) | 15 | – | 40 | 80 | | | Q, t _{THL} | 5 | _ | 50 | 100 | | | | 10 | - | 25 | 50 | ns | | | 15 | - | 20 | 40 | | | | 5 | _ | 30 | 60 | | | Minimum Data Setup Time, tS | 10 | _ | 15 | 30 | ns ns | | | 15 | - | 10 | 20 | | | | 5 | _ | 30 | 60 | | | Minimum Data Hold Time, tH | 10 | _ | 15 | 30 | ns | | | 15 | _ | 10 | .20 | | | | 5 | _ | 120 | 240 | | | Minimum Clock Pulse Width, tw | 10 | - | 50 | 100 | ns | | | 15 | - | 40 | 80 | | | Maximum Clark Input Francis | 5 | 2 | 4 | _ | | | Maximum Clock Input Frequency, | 10 | 5 | 10 | . — | MHz | | fcL** | 15 | 6 | 12 | - | | | Clock Input Rise or Fall Time, | 5 | _ | | 1000 | | | | 10 | | _ | 1000 | μs | | trCL/tfCL* | 15 | | - | 200 | | | Input Capacitance, C _{IN}
(Any Input) | | _ | 5 | 7.5 | pF | ^{*}If more than one unit is cascaded in the parallel clocked application, t_rCL should be made less than or equal to the sum of the propagation delay at 50 pF and the transition time of the output driving stage. **Maximum Clock Frequency for Cascaded Units; $f_{\text{max}} = \frac{1}{\text{(n-1) CL}_D \text{ prop. delay + Q prop. delay + set-up time}}$ where n = number of packages b) Not Using Delayed Clock: fmax = propagation delay + set-up time Fig. 6 — Typical propagation delay time as a function of load capacitance (see table). Fig. 7 — Typical propagation delay time as a function of load capacitance (see table). Fig. 8 — Typical transition time as a function of load capacitance (except Q, t_{THL}). #### CD4031B Types Fig. 9 — Typical transition time as a function of load capacitance (Q, t_{THL}). Fig. 10 — Typical dynamic power dissipation as a function of clock input frequency. Fig. 11 - Dynamic power dissipation test circuit. Fig. 12 — Cascading using direct clocking for high-speed operation (see clock rise and fall time requirement). Fig. 13 — Quiescent-devicecurrent test circuit. Fig. 14 - Cascading using delayed clocking for reduced clock drive requirements. Fig. 15 - Input-leakage current. Fig. 16 — Cascading using half-clock-pulse delayed data output (Q^\prime) to permit use of slow rise and fall time clock inputs. Fig. 17 - Input-voltage test circuit. #### Chip dimensions and ped layout for CD4031B Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch). ti.com 28-Feb-2005 #### **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |------------------|-----------------------|-----------------|--------------------|------|----------------|-------------------------|------------------|--| | CD4031BE | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | Level-NC-NC-NC | | CD4031BF3A | ACTIVE | CDIP | J | 16 | 1 | None | Call TI | Level-NC-NC-NC | | CD4031BNSR | ACTIVE | SO | NS | 16 | 2000 | Pb-Free
(RoHS) | CU NIPDAU | Level-2-260C-1 YEAR/
Level-1-235C-UNLIM | | CD4031BPW | ACTIVE | TSSOP | PW | 16 | 90 | Pb-Free
(RoHS) | CU NIPDAU | Level-1-250C-UNLIM | | CD4031BPWR | ACTIVE | TSSOP | PW | 16 | 2000 | Pb-Free
(RoHS) | CU NIPDAU | Level-1-250C-UNLIM | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. None: Not yet available Lead (Pb-Free). **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight. (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### 14 LEADS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. ### N (R-PDIP-T**) ### PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. ### **MECHANICAL DATA** ### NS (R-PDSO-G**) ## 14-PINS SHOWN #### PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. ### PW (R-PDSO-G**) #### 14 PINS SHOWN ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2005, Texas Instruments Incorporated This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.