SKKT 330, SKKH 330

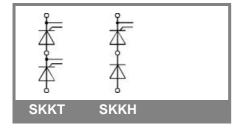
SEMIPACK® 3

Thyristor / Diode Modules

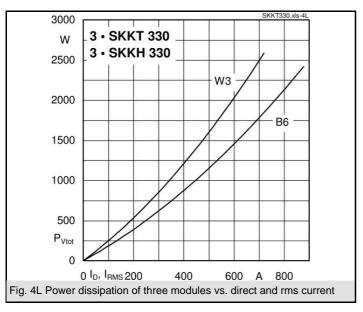
SKKH 330 SKKT 330

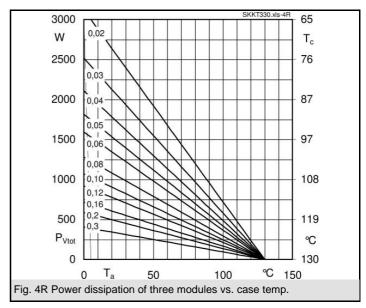
Features

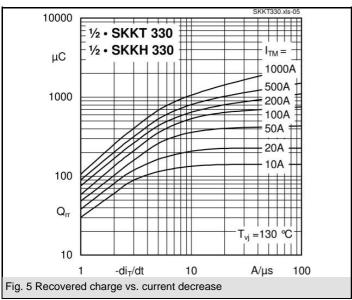
- Heat transfer through aluminium nitride ceramic isolated metal baseplate
- Precious metal pressure contacts for high reliability
- Thyristor with amplifying gate
- UL recognized, file no. E 63 532

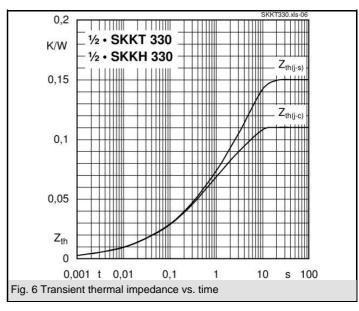

Typical Applications

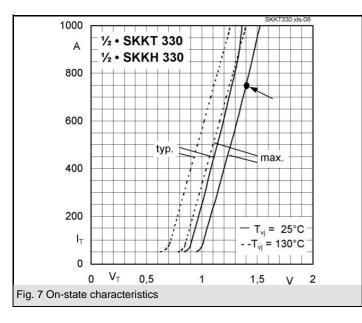
- DC motor control (e. g. for machine tools)
- Temperature control

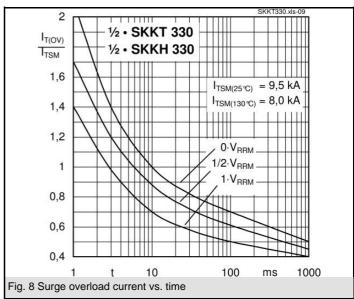

 (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions
- 2) The screws must be lubricated

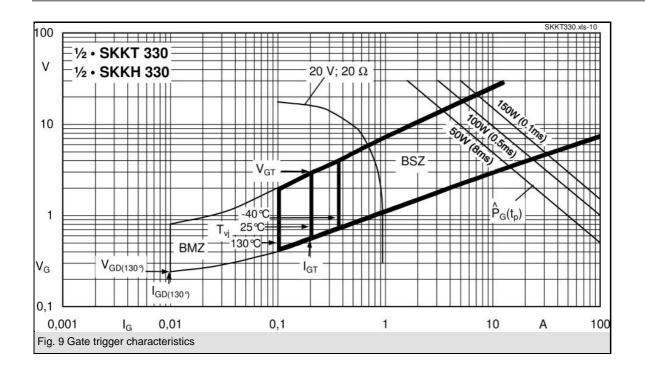

V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 510 A (maximum value for continuous operation)			
V	V	I _{TAV} = 330 A (sin. 180; T _c = 80 °C)			
900	800	SKKT 330/08E	SKKH 330/08E		
1300	1200	SKKT 330/12E	SKKH 330/12E		
1500	1400	SKKT 330/14E	SKKH 330/14E		
1700	1600	SKKT 330/16E	SKKH 330/16E		
1900	1800	SKKT 330/18E	SKKH 330/18E		

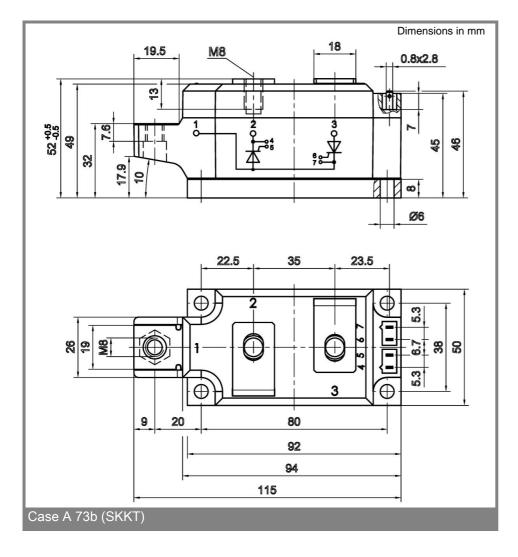

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 85 (100) °C;	305 (225)	Α
I_D	P16/200F; T _a = 35 °C; B2 / B6	520 / 650	Α
I _{RMS}	P16/200F; T _a = 35 °C; W1 / W3	585 / 3 * 485	Α
I _{TSM}	T_{v_i} = 25 °C; 10 ms	9500	Α
	$T_{vj} = 130 ^{\circ}\text{C}; 10 \text{ms}$	8000	Α
i²t	$T_{vj} = 25 ^{\circ}\text{C}; 8.3 10 \text{ms}$	451000	A²s
	T _{vj} = 130 °C; 8,3 10 ms	320000	A²s
V_T	T_{v_j} = 25 °C; I_T = 750 A	max. 1,4	V
$V_{T(TO)}$	$T_{vj} = 130 ^{\circ}\text{C}$	max. 0,8	V
r _T	$T_{vj} = 130 ^{\circ}C$	max. 0,6	mΩ
$I_{DD}; I_{RD}$	T_{vj} = 130 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 50	mA
t_{gd}	$T_{vj} = 25 \text{ °C}; I_G = 1 \text{ A}; di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	$T_{vj} = 130 ^{\circ}C$	max. 250	A/µs
(dv/dt) _{cr}	$T_{vj} = 130 ^{\circ}C$	max. 1000	V/µs
t _q	$T_{vj} = 130 ^{\circ}C$	50 150	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	150 / 500	mA
IL	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	300 / 2000	mA
V_{GT}	$T_{vj} = 25 ^{\circ}C; d.c.$	min. 3	V
I_{GT}	$T_{vj}^{3} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 200	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T_{vj} = 130 °C; d.c.	max. 10	mA
$R_{th(j-c)}$	cont.; per thyristor / per module	0,11 / 0,055	K/W
R _{th(j-c)}	sin. 180; per thyristor / per module	0,116 / 0,058	K/W
R _{th(j-c)}	rec. 120; per thyristor / per module	0,13 / 0,065	K/W
R _{th(c-s)}	per thyristor / per module	0,04 / 0,02	K/W
T_{vj}		- 40 + 130	°C
T_{stg}		- 40 + 130	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M _s	to heatsink	5 ± 15 % ¹⁾	Nm
M _t	to terminals	9 ± 15 % ²⁾	Nm
а		5 * 9,81	m/s²
m	approx.	600	g
Case	SKKT	A 73b	
	SKKH	A 76b	

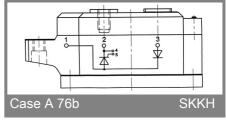



SKKT 330, SKKH 330









This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.