- Wide Operating Voltage Range of 2 V to 6 V
- Outputs Can Drive Up To 10 LSTTL Loads
- Low Power Consumption, 80- μ A Max Icc
- Typical $\mathrm{t}_{\mathrm{pd}}=20 \mathrm{~ns}$
- ± 4-mA Output Drive at 5V
- Low Input Current of 1μ A Max
- AND-Gated (Enable/Disable) Serial Inputs
- Fully Buffered Clock and Serial Inputs
- Direct Clear

Description/ordering information

These 8-bit shift registers feature AND-gated serial inputs and an asynchronous clear (CLR) input. The gated serial (A and B) input permit complete control over incoming data; a low at either input inhibits entry of the new data and resets the first flip-flop to the low level at the next clock (CLK) pulse. A high-level input enables the other input, which then determines the state of the first flip-flop. Data at the serial inputs can be changed while CLK is high or low, provided the minimum setup time requirements are met. Clocking occurs on the low-to-high-level transition of CLK.

```
MC54HC164...J OR W PACKAGE MC74HC164...AD,N,NS, OR PW PACKAGE (TOP VIEW)
```


MC54HC164...FK PACKAGE

NC-No Internal connection

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PARTNUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	PDIP -AN	Tube of 25	MC74HC164 AN	MC74HC164 AN
	PDIP -N	Tube of 25	MC74HC164N	MC74HC164N
	SOIC - D	Tube of 50	MC74HC164AD	HC164
		Reel of 2500	MC74HC164AD	
		Reel of 250	MC74HC164DT	
	SOP -NS	Reel of 2000	MC74HC164NSR	HC164
	TSSOP - PW	Tube of 90	MC74HC164PW	HC164
		Reel of 2000	MC74HC164PWR	
		Reel of 250	MC74HC164PWT	
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP - J	Tube of 25	MC54HC164J	MCJ54HC164J
	CFP - W	Tube of 150	MC54HC164W	MCJ54HC164W
	LCCC - FK	Tube of 55	MC54HC164FK	MCJ54HC164FK

FUNCTION TABLE

INPUTS				OUTPUTS		
$\overline{C L R}$	CLK	A	B	Q A	Q ${ }_{\text {в }}$.	Q H
L	X	X	X	L	L	L
H	L	X	X	Qao	Qbo	Qно
H	\uparrow	H	H	H	QAn	QGn
H	\uparrow	L	X	L	QAn	$Q_{G n}$
H	\uparrow	X	L	L	QAn	$Q_{G n}$

$\mathrm{Q}_{A 0}, \mathrm{Q}_{\mathrm{B},}, \mathrm{Q}_{\mathrm{H}}=$ the level of $\mathrm{Q}_{A}, \mathrm{Q}_{\mathrm{B}}$, or Q_{H}, respectively,
before the indicated steady-state input conditions were established
$\mathrm{Q}_{\mathrm{An}}, \mathrm{Q}_{\mathrm{Gn}}=$ the level of Q_{A} or Q_{G} before the most recent
\uparrow transition of CLK: indicates a 1-bit shift
logic diagram (positive logic)

Pin numbers shown are for the AD,J,N,NS, PW, and W packages.

Typical clear, shift, and clear sequence

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right.$ or $\left.\mathrm{V}_{1}>\mathrm{V}_{C C}\right)$ (see Note 1).	$\pm 20 \mathrm{~mA}$
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{0}<0\right.$ or $\left.\mathrm{V}_{0}>\mathrm{V}_{\mathrm{CC}}\right)$ (see Note 1).	$\pm 20 \mathrm{~mA}$
Continuous output current, $\mathrm{I}_{0}\left(\mathrm{~V}_{0}=0\right.$ to $\left.\mathrm{V}_{C C}\right)$	$\pm 25 \mathrm{~mA}$
Continuous current through $\mathrm{V}_{C C}$ or GND.	$\pm 50 \mathrm{~mA}$
Package thermal impedance, $\Theta_{\text {JA }}$ (see Note 2): AD package.	$86^{\circ} \mathrm{C} / \mathrm{W}$
N package	... $80^{\circ} \mathrm{C} / \mathrm{W}$
NS package	...76 ${ }^{\circ} \mathrm{C} / \mathrm{W}$
PW package	$.113^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	${ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7

Recommended operating conditions (see Note 3)

NOTE 3: All unused inputs of the device must be held at $V_{C C}$ or GND to ensure proper device operation. Refer to the Tl application report. Implications of Slow or Floating CMOS Inputs, literature number SCBAOO4.
\dagger If this device is used in the threshold region (from $\mathrm{V}_{\mathrm{IL}} \max =0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{IH}} \min =1.5 \mathrm{~V}$), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at $t_{t}=1000 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

Electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		VCC	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MC54HC164		MC74HC164		UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX			
VOH	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{IOH}=-20 \mu \mathrm{~A}$		2 V	1.9	1.998		1.9		1.9		V
			4.5 V	4.4	4.499		4.4		4.4			
			6 V	5.9	5.999		5.9		5.9			
		$\mathrm{IOH}=-4 \mathrm{~mA}$	4.5 V	3.98	4.3		3.7		3.84			
		$\mathrm{l} \mathrm{OH}=-5.2 \mathrm{~mA}$	6 V	5.48	5.8		5.2		5.34			
V_{OL}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{loL}=20 \mu \mathrm{~A}$	2 V		0.002	0.1		0.1		0.1	V	
			4.5 V		0.001	0.1		0.1		0.1		
			6 V		0.001	0.1		0.1		0.1		
		$\mathrm{IOL}=4 \mathrm{~mA}$	4.5 V		0.17	0.26		0.4		0.33		
		$\mathrm{IOH}=5.2 \mathrm{~mA}$	6 V		0.15	0.26		0.4		0.33		
1	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {Cc }}$ or 0		6 V		± 0.1	± 100		± 1000		± 1000	nA	
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {cc }}$ or $0, \quad 10=0$		6 V			8		160		80	$\mu \mathrm{A}$	
C_{i}			2 V to 6V		3	10		10		10	pF	

Timing requirements over recommended operating free-air temperature range (unless otherwise noted)

			$V_{C c}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		MC54HC164AN		MC74HC164AN		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency		2 V		6		4.2		5	MHz
			4.5 V		31		21		25	
			6 V		36		25		28	
t_{w}	Pulse duration	$\overline{\text { CLR }}$ low	2 V	100		150		125		ns
			4.5 V	20		30		25		
			6 V	17		25		21		
		CLK high or low	2 V	80		120		100		
			4.5 V	16		24		20		
			6 V	14		20		18		
	Setup time before CLK \uparrow	Data	2 V	100		150		125		ns
			4.5 V	20		30		25		
			6 V	17		25		21		
		$\overline{\mathrm{CLR}}$ inactive	2 V	100		150		125		
			4.5 V	20		30		25		
			6 V	17		25		21		
t_{h}	Hold time, data after CLK \uparrow		2 V	5		5		5		ns
			4.5 V	5		5		5		
			6 V	5		5		5		

Switching characteristics over recommended operating free-air temperature range, $\mathrm{CL}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MC54HC164AN		MC74HC164AN		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$			2 V	6	10		4.2		5		MHz
			4.5 V	31	54		21		25		
			6 V	36	62		25		28		
		Any Q	2 V		140	205		295		255	Ns
t PHL	$\overline{C L R}$		4.5 V		28	41		59		51	
			6 V		24	35		51		46	
t_{pd}	CLK	Any Q	2 V		115	175		265		220	
			4.5 V		23	35		53		44	
			6 V		20	30		45		38	
t_{t}			2 V		38	75		110		95	ns
			4.5 V		8	15		22		19	
			6 V		6	13		19		16	

Operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TESTCONDITIONS	TYP	UNIT
C_{pd}	Power dissipation capacitance	No load	135	pF

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS PULSE DURATIONS

VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

NOTES: A. C_{L} includes probe and test-fixture capacitance.
B. Phase relation ships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.
C. For clock inputs, $f_{\text {max }}$ is measured when the input duty cycle is 50%.
D. The outputs are measured one at a time with one input transition per measurement.
E. $t_{\text {PLH }}$ and $t_{\text {PHL }}$ are the same as $t_{p d}$.

Figure 1. Load Circuit and Voltage Waveforms

J (R -GDIP -T **)

14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

DM PNS .	14	16	18	20
A	0.300 (7.62) BSC	0.300 $\left(\begin{array}{c}(.76) \\ \text { BSC }\end{array}\right.$	0.300 (7.62) BSC	0.300 (7.62) SSC
B NAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B NN	-	-	-	-
C NAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C NN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

4040083/F 03/03

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cop for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

MECHANICAL DATA

W(R-GDFP-F14)

CERAMIC DUAL FLATPACK

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

MC74HC164

MECHANICAL DATA

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004.

MECHANICAL DATA

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
D. The 20 pin end lead shoulder width is a vendor option, either half or full width.

MECHANICAL DATA

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
D. Falls within JEDEC MS-012 variation AB.

MECHANICAL DATA

NS(R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14-PINS SHOWN

PIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.15

14 PINS SHOWN

PIM **	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.15.
D. Falls within JEDEC MO-153.

