Introduction

Introduction

The Universa Seria Bus (USB) is a fast and flexible interface for connecting
devices to computers. Every new PC has at least a couple of USB ports. The
interface is versatile enough to use with standard peripheras like keyboards
and disk drives as well as more specidized devices, including one-of-a-kind
designs. USB is designed from the ground up to be easy for end users, with
no user configuring required in hardware or software.

In short, USB is very different from the legacy interfaces it's replacing. A
USB device may use any of four transfer types and three speeds. On attach
ing to a PC, a device must respond to a series of requests that enable the PC
to learn about the device and establish communications with it. In the PC,
every device must have a low-levd driver to manage communications
between applications and the system's USB drivers.

Developing a USB device and the software that communicates with it
requires knowing something about how USB works and how the PC's oper-
ating system implements the interface. In addition, the right choice of con-

USB Complete

Introduction

traller chip, device class, and tools and techniques can go a long way in
avoiding snags and smplifying what needs to be done. This book is a guide
for developers of USB devices. Its purpose is to introduce you to USB and to
help get your project up and running and troublefree as quickly and easily as

possible.
Who should read this book?

This book is for you if you want to know how to design a USB peripherd,
or if you want to know how to communicate with USB peripherals from the
applications you write. These are some of questions the book answers:

¢ What is USB and how do peripherals use it to communicate with PCs?
There'salot to the USB interface. Learning about it can be daunting at
first. This book's focus is on the practical knowledge you'll need to com
plete your project.

* How can | decide if my project should use a USB interface? Maybe your
design isn't suited for USB. I'll show you how to decide whether it is. If
the answer isyes, I'll help you decide which of USB's speeds and transfer
typesto use.

* Howdo | choosea USB controller chip for my peripheral desgn?Evey USB
peripheral must contain an intelligent controller. There are dozens of
controller chips designed for use in USB peripherals. In this book, | com
pare popular chip families and offer tips on how to decide, based on both
your projects needs and your own background and preferences.

» How do applications communicate with USB peripheral s? To communicate
with a USB peripheral, a PC needs two things. a device driver that knows
how to communicate with the PC's USB drivers and an application that
knows how to talk to the device driver. Some peripherals can use drivers
that are built into Windows. Others may require a custom driver. This
book will show you when you can use Windows built-in drivers and how
to communicate with devices from Visual Basic and Visud C++ applica
tions. Youl'l also find out what's involved in writing a device driver and
what tools can help to speed up the process.

USB Complete

Introduction

* How do USB peripherals communicate? USB peripheradstypicaly use a
combination of hardware and embedded code to communicate with
PCs. In this book, | show how to write the code that enables Windows to
identify a device and load the appropriate device driver, aswell asthe
code required for exchanging data with applications.

« How do | decide whether my peripheral can use bus power, or whether it
needs its own supply? A. big advantage to USB isthat many peripheras can
be powered entirely from the bus. Find out whether your device can use
this capability and how to manage power use, especialy for devices that
use battery power.

« Howcan| besurethat my devicewill operate as smoothly as possiblefor its
end users? On the periphera side, smooth operation requires understand
ing the specification's requirements and how the device can meet them.
In the PC, proper operation requires a correctly structured information
(INF) file that enables Windows to identify the device and software that
knows how to communicate with the device as efficiently as possible.
This book has information and examples to help with each of these.

What's new in the Second Edition?

In the months after the publication of the first edition of USB Complete,
much happened in the world of USB, including the release of version 2.0 of
the USB specification. USB 2.0 supports a bus rate of 480 Megabits per sec-
ond, forty times faster than USB 1.1. This and other developments in hard-
ware and software prompted this second edition of the book.

Rather than just tacking on a chapter about USB 2.0, I've revised the book
from start to finish to reflect the changes in 2.0. By popular request, another
addition is Visuad C++ code to accompany the Visual Basic examples for
application communications with USB devices. I've also expanded the mate-
rid about Windows drivers and applications to include Windows 2000, and
have added information on new controller chips and development tools.
Other additions and updates are sprinkled throughout, many prompted by
reader suggestions.

USB Complete

Introduction

Is this book really complete?

Although the title is USB Complete, please don't expect this book to contain
every possible fact about USB. That would take a library. The Complete in
the title means that this book will guide you from knowing nothing about
USB to developing al of the code required to get a USB periphera up and
communicating with a PC.

There are many other worthy topics related to USB, but limitations of time
and space prevent me from including them dl.

My focus is on communicating with Windows PCs. Although the basic
principles are the same, | don't include details about how to communicate
with peripherads on a Macintosh or a PC running Linux or other non-Win-
dows operating systems.

| cover the basics of the device driver's responsibilities and what's involved in
writing a driver, but the details of driver writing can easily fill a book (and in
fact there are excellent—and lengthy—books on this topic). This book will
help you decide when you need to write a custom driver and when and how
to use a class driver included with Windows.

To understand the materia in the book, it's helpful to have basic knowledge
in afew areas. | assume you have some experience with digital logic, applica-
tion programming for PCs and writing embedded code for peripherals. You
don't have to know anything at al about USB.

Additional Resources, Updates, and Corrections

For more about usng USB, | invite you to vist my USB Centrd page at
Lakeview Research's website, www.Lvr.com. This is where you'll find com-
plete code examples, updates, links to vendors, information and tools from
other sources, as well as links to anything else | find that's relevant to deve-
oping USB products. If you have a suggestion, code, or other informatior
that you'd like me to post or link to, let me know at jan@Ilvr.com.

In spite of my very best efforts, I know from experience that errors will dif
through in this book. As they cometo light, I'll document them and make

USB Complete

Introduction

list available at Lakeview Research's website. If you find an error in the book,
please let me know and I'll add it.

Thanks!

USB is way too complicated to write about without help. | have many peo-
ple to thank.

| owe an enormous thank you to my technica reviewers, who generoudy
read my rough and rocky drafts and provided feedback that has improved
the book enormoudy. (With that said, every error in this book is mine and
mine aone.)

| thank Paul E. Berg of PEB Consulting; Brian Buchanan, Mark Hastings,
Lane Hauck, Bijan Kamran, Kosta Koeman, Tim Williams, and Dave
Wright of Cypress Semiconductor; Joshua Buergel of BSQUARE Inc.; Gary
Crowell of Micron Technology; Fred Dart of Future Technology Devices
International (FTDI); Dave Dowler; Mike Fahrion and the engineers at
B&B Electronics; John M. Goodman, author of Hard Disk Screts, Peter
Norton's Inside the PC, Memory Management for All of Us, and other books;
John Hyde, USB enthusiast and author of USB Design by Example; David
James of 1Zerol Technologies, Christer Johansson of High Tech Horizon;
Jon Lueker of Intel Corporation; Bob Nathan of NCR Corporation; Robert
Severson of USBMicro; and Craig R. Smith of Ford Motor Company,
R&VT department.

Others | want to thank for their help in my researching and writing this
book are Walter Banks of Byte Craft; Jason Bock; Michael DeVault of
DeVaSys Embedded Systems; Pete Fowler, Joseph McCarthy, and Don Park-
man of Cypress Semiconductor; Brad Markisohn of INDesign LLC; Daniel
McClure of Tyco Electronics; Tawnee McMullen of Belkin Components;
Rich Moran of RPM Systems Corporation; Dave Navarro of PowerBasic;
and Amar Ragjan of American Concepts Consulting.

I hope you find the book useful. Comments invited!

Jan Axelson, June 2001
jan@Ilvr.com

USB Complete

A Fresh Start

1

A Fresh Start

Computer hardware doesn't often get a chance to start fresh. Anything new
usualy has to remain compatible with whatever came before it. This is true
of both computers and the peripherals that connect to them. Even the most
revolutionary new peripheral has to use an interface supported by the com-
puters it connects to.

But what if you had the chance to design a periphera interface from scratch?
What qualities and features would you include? It's likely that your wish list
would include these:

» Easy to use, sothere's no need to fiddle with configuration and setup
details.

* Fast, so the interface doesn't become a bottleneck of slow communica
tions.

* Reliable, so that errors are rare, with automatic correction of errors that
do occur.

* Flexible, so many kinds of peripherals can use the interface.

Chapter 1

* Inexpensive, so users (and the manufacturers who will build the inter
face into their products) don't balk at the price.

» Power-conserving, to save battery power on portable computers.

» Supported by the operating system, so developers don't have to strug
gle with writing low-level drivers for the peripherals that use the inter
face.

The good news is that you don't have to create this ideal interface, because
the developers of the Universal Serial Bus (USB) have done it for you. USB
was designed from the ground up to be a smple and efficient way to com-
municate with many types of peripheras, without the limitations and frus-
trations of existing interfaces.

Every new PC has a couple of USB ports that you can connect to a key-
board, mouse, scanners, external disk drives, printers, and standard and cus-
tom hardware of al kinds. Inexpensive hubs enable you to add more ports
and peripherals as needed.

But one result of USB's ambitious goals has been challenges for the develop-
ers who design and program USB peripherals. A result of USB's versatility
and ease of use is an interface that's more complicated than the interfaces it
replaces. Plus, any new interface will have difficulties ust because it's new.
When USB first became available on PCs, Windows didn't yet include
device drivers for al popular periphera types. Protocol analyzers and other
development tools couldn't begin to be designed until there was a specifica
tion to follow, so the sdection of these was limited at first. Problems like
these are now disappearing, and the advantages are increasing with the avail-
ability of more controller chips, new development tools, and improved oper-
ating-system support. This book will show you ways to get a USB periphera
up and running as smply and quickly as possble by making the best poss-
ble use of tools available now.

This chapter introduces USB, including its advantages and drawbacks, a
look a what's involved in designing and programming a device with a USB
interface, and a bit of the history behind the interface.

A Fresh Start

What USB Can Do

USB is a likely solution any time you want to use a computer to communi-
cate with devices outside the computer. The interface is suitable for one-
of-kind and smadl-scale designs as well as mass-produced, standard
periphera types.

To be successful, an interface has to please two audiences: the users who
want to use the peripherals and the developers who design the hardware and
write the code that communicates with the device. USB has features to
please both.

Benefits for Users

From the user's perspective, the benefits to USB are ease of use, fast and reli-
able data transfers, flexibility, low cost, and power conservation. Table 11
compares USB with other popular interfaces.

Ease of Use

Ease of use was a mgjor design goal for USB, and the result is an interface
that's a pleasure to use for many reasons:

One interface for many devices. USB is versatile enough to be usable with
many kinds of peripherals. Instead of having a different connector type and
supporting hardware for each peripheral, one interface serves many.

Automatic configuration. When a user connects a USB periphera to a
powered system, Windows automatically detects the periphera and loads
the appropriate software driver. The first time the peripheral connects, Win-
dows may prompt the user to insert a disk with driver software, but other
than that, installation is automatic. There's no need to locate and run a
setup program or restart the system before using the peripheral.

No user settings. USB peripherals don't have user-selectable settings such as
port addresses and interrupt-request (IRQ) lines. Available IRQ lines are in
short supply on PCs, and not having to alocate one for a new periphera is
often reason enough to use USB.

Chapter 1

Table 1-1: Comparison of popular computer interfaces. Where a standard
doesn't specify a maximum, the table shows the typical maximum.

Number of Length Speed
Interface Format Devices | (maximum, |(maximum, Typical Use
(maximum) feet) bits/sec.)
Mouse
16 (or up to -
asynchronous ; 15M,12M, |keyboard, disk
audio
RS-232 20k (115k
CHT = el IR N S e
ardwar €
32 unit loads
RS-435 (up to 256 Data acquisition
(TIA/BIA- awn;:ergglnous devices with 4000 10M and control
485) ome systems
hardware)
asynchronous Printers, hand-
IrDA serial infrared 2 6 1 held computers
. . synchronous Microcotroller
Microwire serial 8 10 M communications
synchronous Microcotroller
SPI serid 8 10 2IM communications
2 synchronous Microcotroller
I"C serial 40 18 34M communications
400M
|IEEE- 134 . (increasing to| Video, mess
(FireWire) serial 64 15 3.2G with | storage
|EEE-1394b
I%Eﬂéiﬁ parale 15 60 8M I nstrumentation
Ethernet serial 1024 1600 10'\/%1]\/'/ Networked PC
: 2 (more with :
serial current Music, show
MIDI loop flovrv];éggugh 50 31.5k control
. 2 (8 with Printers,
Parald NN orallel |daisy-chain | 10-30 gM |scanners, disk
support) dives

A Fresh Start

bl

:-;‘. i ; - i L& -'h':l:1 ‘ l_,i_:
CETITERRRRARRRE S R

Figure 1-1: The two USB connectors (right) are much more compact than typical
RS-232 serial (left) and Centronics parallel (center) connectors.

Frees hardware resources for other devices. Using USB for as many
peripheras as possible frees up IRQ lines for the peripheras that do require
them. The PC dedicates a series of port addresses and one interrupt-request
(IRQ) line to the USB interface, but beyond this, individua peripherads
don't require additional resources. In contrast, each non-USB periphera
requires dedicated port addresses, often an IRQ line, and sometimes an
expansion ot (for a paralel-port card, for example).

Easy to connect. With USB, there's no reed to open the computer's enclo-
sure to add an expansion card for each periphera. A typica PC has at least
two USB ports. You can expand the number of ports by connecting a USB
hub to an existing port. Each hub has additiona ports for attaching more
peripheras or hubs.

Simple cables. The USB's cable connectors are keyed so you can't plug
them in wrong. Cables can be as long as 5 meters. With hubs, a device can
be as far as 30 meters from its host PC. Figure 1-1 shows that the USB con-
nectors are small and compact in contrast to typical RS-232 and parall€el

Chapter 1

connectors. To ensure reliable operation, the specification includes detailed
requirements that all cables and connectors must meet.

Hot pluggable. You can connect and disconnect a periphera whenever you
want, whether or not the system and periphera are powered, without dam+
aging the PC or peripheral. The operating system detects when a device is
attached and readies it for use.

No power supply required (sometimes). The USB interface includes
power-supply and ground lines that provide +5V from the computer's or
hub's supply. A peripheral that requires up to 500 milliamperes can draw al
of its power from the bus instead of having its own supply. In contrast, most
other peripherals have to choose between including a power supply in the
device or using a bulky and inconvenient externa supply.

Speed

USB supports three bus speeds. high speed at 480 Megabits per second, full
speed at 12 Megabits per second, and low speed at 1.5 Megabits per second.
Every USB-capable PC supports low and full speeds. High speed was added
in verson 2.0 of the specification, and requires USB 2.0-capable hardware
on the motherboard or an expansion card.

These speeds are signaling speeds, or the bit rates supported by the bus. The
rates of data transfer that individual devices can expect are lower. In addition
to data, the bus must carry status, control, and error-checking signds. Plus,
multiple peripherals may be sharing the bus. The theoreticadl maximum rate
for a gngle transfer is over 53 Megabytes per second at high speed, about 1.2
Megabytes per second at full speed, and 800 bytes per second at low speed.

Why three speeds? Low speed was included for two reasons. Low-speed
peripherals can often be built more cheapy. And for mice and devices that
require flexible cables, low-speed cables can be more flexible because they
don't require as much shielding.

Full speed is comparable to or better than the speeds attainable with existing
seria and paralld ports and can serve as a replacement for these.

A Fresh Start

After the release of USB 1.0, it became clear that a faster interface would be
useful. Investigation showed that a speed increase of forty times was feasible
while keeping the interface backwards-compatible with low- and full-speed
devices. High speed became an option with the release of version 2.0 of the
USB specification.

Reliability

The reliability of USB results from both the hardware design and the data-
transfer protocols. The hardware specifications for USB drivers, receivers,
and cables eliminate most noise that could otherwise cause data errors. In
addition, the USB protocol enables detecting of data errors and notifying
the sender so it can retransmit. The detecting, notifying, and retransmitting
are typicaly done in hardware and don't require any programming or user
intervention.

Low Cost

Even though USB is more complex than earlier interfaces, its components
and cables are inexpensive. A device with a USB interface is likely to cost the
same or less than its equivalent with an older interface. For very low-cost
peripheras, the low-speed option has less stringent hardware requirements
that may reduce the cost further.

Low Power Consumption

Power-saving circuits and code automatically power down USB peripheras
when not in use, yet keep them ready to respond when needed. In addition
to the environmental benefits of reduced power consumption, this feature is
especialy useful on battery-powered computers where every milliampere
counts.

Benefits for Developers

The above advantages for users are also important to hardware designers and
programmers. The advantages make users eager to use USB peripheras, so
there€'s no need to fear wasting time developing for an unpopular interface.
And many of the user advantages also make things easier for developers. For

Chapter 1

example, USB's defined cable standards and automatic error checking mean
that developers don't have to worry about specifying cable characteristics or
providing error checking in software.

USB aso has advantages that benefit developers specifically. The devel opers
include the hardware designers who select components and design the cir-

cuits, the programmers who write the software that communicates with
USB peripheras, and the programmers who write the embedded code inside

the peripherals.

The benefits to developers result from the flexibility built into the USB pro
tocol, the support in the controller chips and operating system, and the fact
that the interface isn't controlled by a single vendor. Although users aren't
likely to be aware of these benefits, they'll enjoy the result, which isinexpent
Sve, trouble-free, and feature-rich peripherals.

Flexibility

USB's four transfer types and three speeds make it feasible for many types of

peripheras. There are transfer types suited for exchanging large and small

blocks of data, with and without time congtraints. For data that can't toler-
ate delays, USB can guarantee a transfer rate or maximum time between
transfers. These abilities are especialy welcome under Windows, where
accessing peripherals in rea time is often a chalenge. The operating system,
device drivers, and application software can gill introduce unavoidable
delays, but USB makes it as easy as possible to achieve transfers that are
closetored time.

Unlike other interfaces, USB doesn't assign specific functions to signals or
make other assumptions about fow the interface will be used. For example,
the status and control lines on the PC's paralld port were defined with the
intention of communicating with line printers. There are five input lines
with assigned functions such as indicating a busy or paper-out condition.
When developers began using the port for scanners and other peripherals
that send large amounts of data to the PC, the limitation of having just five
inputs was an obstacle. (Eventualy the interface was expanded to alow
eight

A Fresh Start

bits of input.) USB makes no such assumptions and is suitable for just about
any device type.

For communicating with common device types such as printers and
modems, there are USB classes with defined device requirements and proto-
cols. This saves developers from having to re-invent these.

Operating System Support

Windows 98 was the first Windows operating system to reliably support
USB, and its successors, including Windows 2000 and Windows Me, sup-
port USB as well. This book focuses on Windows programming for PCs,
but other computers and operating systems aso have USB support. On
Apples iMac, the only peripheral connectors are USB. Other Macintoshes
aso support USB, and support is in progress for Linux, NetBSD, and
FreeBSD.

However, a clam of operating-system support can mean many things. The
level of support can vary! At the most fundamenta level, an operating sys-
tem that supports USB must do three things:

» Detect when adevice is attached to or removed from the system.

¢ Communicate with newly attached devices to find out how to exchange
data with them.

* Provide a mechanism that enables software drivers to communicate with
the host computer's USB hardware and the applications that want to
access USB peripherals.

At a higher level, operating system support may aso mean the incluson of
software device drivers that enable application programmers to access
devices by cdling functions supported by the operating system. If the oper-
ating system doesn't include a device driver appropriate for a specific periph-
eral, the periphera vendor has to provide one.

Microsoft has added class drivers with each release of Windows. Device
types with included drivers now include human interface devices (key-
boards, mice, joydticks), audio devices, modems, dill-image cameras and
scanners, printers, and mass-storage devices. A filter driver can support

Chapter 1

device-specific features and abilities. Applications use Applications Program
Interface (API) functions or other operating-system components to commu-
nicate with the device drivers.

In the future, Windows will likely include support for more device classes.
In the meantime, some chip vendors provide drivers that developers can use
with their chips, either as-is or with minima modifications.

USB device drivers use the new Win32 Driver Model (WDM), which
defines an architecture for drivers that run under Windows 98, Windows
2000, Windows Me, and future Windows editions. The aim is to enable
developers to support al of the operating systems with a single driver. The
redity is that some devices ill require two, though similar, WDM drivers,
one for Windows 98/Windows Me and one for Windows 2000.

Because Windows includes low-level drivers that handle communications
with the USB hardware, writing a USB device driver i easier than writing a
driver for devices that use other interfaces.

Peripheral Support

On the peripheral side, each USB device's hardware must include a control-
ler chip that handles the details of USB communications. Some controllers
are complete microcomputers that include a CPU and memory to store
device-specific code that runs insde the periphera. Others handle only
USB-specific tasks, with a data bus that connects to another microcontroller
that performs non-USB related functions and communicates with the USB
controller as needed.

The peripheral is responsible for responding to requests to send and receive
configuration data, and for reading and writing other data when requested.
In some chips, some functions are microcoded in hardware and don't need
to be programmed.

Many USB controllers are based on popular architectures such as Intel's
8051, with added circuits and machine codes to support USB. If you're
dready familiar with a chip architecture that has a USB-capable variant,
there's no need to learn an entirely new architecture in order to use USB.

10

A Fresh Start

Most peripheral manufacturers provide sample code for their chips. Using
this code as a dtarting point for your own developing can give you a quick
start.

USB Implementers Forum

Unlike other interfaces, where you're pretty much on your own when it
comes to getting a design up and running, USB offers plenty of help via the
USB Implementers Forum, Inc. (USB-IF) and its website (www.usb.org).
The Forum is the non-profit corporation founded by the companies that
developed the USB specification. The Forum's mission is to support the
advancement and adoption of USB technology.

To that end, the Forum offers information, tools, and testing. The informa-
tion includes the specification documents, white papers that delve into spe-
cific topics in detail, FAQs, and a web board where developers can post and
answer guestions on any USB-related topic. The tools include software and
hardware to help in developing and testing products. Testing includes devel-
oping compliance tests to verify proper operation, holding compliance
workshops where developers can have their products tested, and granting
the rights to use the USB Logo on products that pass the tests.

It's Not Perfect

All of USB's advantages mean that it's a good candidate for use with many
peripheras. But one interface can't do it al.

User Challenges

From the user's perspective, the downside to USB includes lack of support
in older hardware and operating systems, speed and distance limits that
make USB impractical for some uses, and problems with some products due
to difficulties experienced by the developers of early USB products.

Lack of Support for Legacy Hardware

Older ("legacy™) computers and peripherads don't have USB ports. If you
want to connect a non-USB peripheral to a USB port, a solution is a con-

11

Chapter 1

verter that trandates between USB and the older interface. Several sources
have converters for use with peripheras with RS-232, RS-485, and Cen
tronics-type paralel ports. However, the converter solution is useful only for
peripherals that use conventiona protocols supported by the converter's
device driver. For example, a paralelport converter is likely to support
printers but not other periphera types.

If you want to use a USB peripheral with a PC that doesn't support USB,
the solution is to add USB capabilities to the PC. This requires two things:
USB host-controller hardware and an operating system that supports USB.
The hardware is available on expansion cards that plug into a PCI dot (or on
a replacement motherboard). The version of Windows should be Windows
98 or later. A few peripherals have drivers for use with later releases of Win-
dows 95, but it's best not to count on these being available. If the hardware
doesn't meet Windows 98's minimum requirements, it will need upgrades.
The upgrades may end up costing more than a new system with USB, so
replacing the system may be the best option.

If upgrading the PC to support USB isn't feasible, what about using a con-
verter to trandate the periphera's USB interface to the PC's RS-232, para-
lel, or other interface? Interface converters are generally designed for use
between a USB port on a PC and a peripheral with a legacy interface. A con-
verter for the other direction would be much more complicated because the
peripheral would have to contain the host-controller hardware and code that
normally resides in the PC. So a converter isn't normally an option when the
PC has the legacy interface.

Even on new systems, users may occasondly run applications on older
operating systems such as MS-DOS. But the drivers that Windows 98 appli-
cations use to communicate with USB devices are specific to Windows.
Without a driver, theré's no way to access a USB periphera. Although t's
possible to write a USB driver for DOS, the redlity is that few peripherals
provide one.

However, for the mouse and keyboard, which are standard, essential periph-
erals, the system's BIOS is likely to include support to ensure that the
periphera is usable any time, including from within DOS, from the BIOS

12

A Fresh Start

screens that you can view on bootup, and from Windows Safe mode (used
in system troubleshooting). If there is no BIOS or other support, the system
will need to have an old-style keyboard interface and a spare keyboard for
these uses.

Speed Limits

USB is versdtile, but it's not designed to do everything. USB's high speed
makes it competitive with the IEEE-1394 (Firewire) interfaces 400 Mega-
bits per second, but IEEE-1394b will be fagter ill, at 3.2 Gigabytes per sec-
ond.

Distance Limits

USB was designed as a desktop bus, with the expectation that peripherals
would be relatively close a hand. A cable segment can be as long as 5
meters. Other interfaces, such as RS-232, RS-485, and Ethernet, allow
much longer cables. You can increase the length of a USB link to as much as
30 meters by using cables that link five hubs and a device, using 6 cable seg
ments of 5 meters each.

To extend the range beyond this, an option is to use a USB interface on the
PC, then convert to RS-485 or another interface for the long-distance
cabling and periphera interface.

Peer to Peer Communications

The assumption that USB is a desktop bus also means that every USB sys-
tem has a host computer to manage the bus communications. Peripheras
can't talk to each other directly. All communications are to or from the host
computer. Other interfaces, such as IEEE-13%4, dlow direct periph-eral-to-
peripheral communications.

USB provides a partiad solution with USB OnThe-Go, introduced in 2001
in a supplement to the 2.0 specification. USB On-The-Go defines a host
computer with reduced capabilities, suitable for use in embedded devices
that need to connect to asingle USB peripheral.

13

Chapter 1

Products with Problems

When USB works, it's great. But the redity is that some USB products don't
work as well as they should. When something misbehaves, the result can be
an inability to communicate with a peripherd or an application or system
crash. The source of the problem may be in hardware or software, in the PC
or in the peripheral. Problems like these are a result of USB's complexity and
newness combined with inadequate testing.

But there are plenty of products that do perform exactly as they should. The
problems are diminishing as the operating-system support has improved and
developers have become more familiar with USB.

Developer Challenges

From the developer's perspective, the main downside to USB is the increased
complexity of the programming. Bugs in the USB hardware n the periph-
erd or PC can aso dow project development and cause problems after a
product is released. However, these problems are dso diminishing as the
operating-system support increases, more chips and development tools are
available, and everyone gains more experience.

Protocol Complexity

To program a USB peripherad, you need to know a fair amount about the
USB's protocols (the rules for exchanging data on the bus). The controller
chips handle much of the communications automaticaly, but they still must
be programmed, and this requires the knowledge to write the programs and
the tools to do the programming. Chips vary in how much support they
require to perform USB communications. On the PC sde, the device driver
insulates application programmers fom having to know many of the details,
but device-driver writers need to be familiar with USB protocols and the
driver's responsibilities.

In contrast, some older interfaces can connect to very simple circuits with
very basic protocols. For example, the PC's origind parald printer port is
just a series of digital inputs and outputs. You can connect to basic input
and output circuits such as relays, switches, and analog-to-digital converters,

14

A Fresh Start

with no computer intelligence required on the peripherad side and no device
driver required on the PC (just direct port reads and writes).

Evolving Support in the Operating System

Windows includes class drivers that enable applications to communicate
with some devices. This is great if you can design your device to use one of
the provided drivers. If not, in many cases you can use or adapt a driver pro-
vided by the controller-chip vendor, so you don't have write a driver from
scratch. Several vendors offer toolkits that make the job of writing USB
drivers easier.

Hardware Bugs

Some early host-controller hardware wasn't bugfree, and some periphera
chips have had problems as well. In most cases, the manufacturers make
fixes available with new drivers or coding workarounds. The way to keep on
top of these problems is to choose your hardware carefully and visit manu-
facturers websites for the latest information and fixes.

Fees

The USB Implementers Forum provides the USB specification, related doc-
uments, software for compliance testing, and much more, al for free on its
website. Anyone can develop USB software without paying alicensing fee.

However, anyone who sdlls a device with a USB interface must obtain legal
access to use a Vendor ID. The administrative fee for obtaining a Vendor 1D
from the Forum is $1500. Or if you join the Forum at $2500/year, the Ven
dor ID is free, along with many other benefits such as compliance work-
shops. The Vendor ID and a Product ID assigned by the vendor are
embedded in each device to identify it to the operating system. The feeisno
problem for developers of high-volume products, but it can be an impedi-
ment to developers for the hobbyist market who expect to sell only smal
quantities of inexpensive devices. Some chip manufacturers will assign their
Vendor ID and a block of Product IDs to customers for use with the manu-
facturer's chips.

15

Chapter 1

History

To understand what USB is dl about, it helps to know a little history. The
main reason that new interfaces don't come around very often is that exist-
ing interfaces have the irresstible pull of al of the existing peripheras that
users don't want to scrap. Also, using an existing interface saves the time and
expense of designing something new. This is why the designers of the origi-
na IBM PC chose compatibility with the existing Centronics pardld inter-
face and the RS-232 serial-port interface—to speed up the design process
and enable users to connect to printers and modems aready on the market.
These interfaces proved serviceable for close to two decades. But as com-
puter power and the number of peripherals have increased, the older inter-
faces have became a bottleneck of slow communications, with limited
options for expansion.

The Motivation for Change

A break with tradition is justified when the desire for enhancements over-
shadows the inconvenience and expense of changing. This is the Stuation
that prompted the development of USB. The result is a versatile interface
that can replace existing interfaces to standard and custom peripherals on
computers of al types.

In the past, development of a new interface was often the work of a single
company. Hewlett Packard developed the HP Interface Bus (HPIB), which
came to be known as the GPIB (genera-purpose interface bus) for lab
equipment, and the Centronics Data Computer Corporation popularized a
printer interface that is still referred to as the Centronics interface.

But an interface controlled by a single company isn't ideal. The company
may forbid others from using the interface, or charge licensing fees. Even if
the interface is freely available, a company may be reluctant to commit its
products to an interface controlled by another company who may be a com-
petitor and may change the interface without warning.

For these reasons, more recent interfaces are often the product of a collabo-
ration of manufacturers who share acommon interest. |n some cases, an

16

A Fresh Start

organization like the IEEE (Ingtitute of Electrical and Electronics Engineers)
or TIA (Telecommunications Industry Association) sponsors committees to
develop specifications and publishes the results. In fact, many of the older
manufacturers standards have been taken over by these organizations. The
IEEE-1284 standard evolved from the Centronics interface, and the GPIB
was the basis for |EEE-488.

In other cases, the developers of a standard form a new organization to
release the standard and handle other development issues. Thisis the
gpproach used for USB. The copyright on the USB 2.0 specification is
assigned jointly to seven corporations, al heavily involved with PC hard
ware or software: Compaqg, Hewlett-Packard, Intel, Lucent, Microsoft,
NEC, and Philips. All have agreed to make the specification available with-
out charge (which is a refreshing change from the standards published by
other organizations). The USB Implementers Forum's website has the latest
versons of al USB specifications and other information for both developers
and end users.

An early specification with many USB-like features was the ACCESS.bus
soonsored by Philips and Digital Equipment Corporation, who made it
avallable as an open standard. ACCESS.bus was in turn derived from the
I°C synchronous seria bus. Although the eectrica interface is different,
many of the functions and features are alot like what ended up in USB.

ACCESS.bus was designed for interfacing keyboards, pointing devices, and
other devices a speeds of 100 kilobits per second. The bus supports up to
125 devices and 10-meter cables. Devices are hot-pluggable. The cable
includes +5V and ground wires. Classes are defined for keyboards, pointing
devices (caled locators), monitor/display control and text devices. Unlike
USB, ACCESS.bus uses opentcollector drivers, with one data wire and one
clock wire.

ACCESS.bus never caught on with PCs, but is sill used in other applica
tions, including smart battery control.

17

Chapter 1

The Specification's Release

Release 1.0 of the USB specification in January 1996 followed severd years
of development and preliminary releases. The 1.1 release is dated September
1998. USB 1.1 fixed problems identified in release 1.0 and added one new
transfer type (Interrupt OUT). In this book, 1.x refersto USB 1.0 and 1.1.
April 2000 saw the release of USB 2.0 with the new high-speed option. An
Engineering Change Notice (ECN) in December 2000 provided corrections
and defined a new mini-B connector.

Although companies may begin designing products while a specification is
dill under development, by necessity, the availability of products on the
market lags the specifications release.

USB cpability first became available on PCs with the release of Windows
95's OEM Service Release 2. There were at least two editions of this release,
OSR 2.1 and 2.5. Neither was available directly to retail customers. They
were sold only to vendors who instaled Windows 95 on the PCs they sold.
The USB support in these versions was limited and buggy, and there weren't
alot of USB peripherals available, so use of USB was limited in this era

Things improved with the release of Windows 98 in June 1998. By this
time, many more vendors had USB peripheras available, and USB began to
take hold as a popular interface. A service pack for Windows 98 and the
rdlease of Windows 98 Second Edition (SE) fixed some bugs and further
enhanced the USB support. The origina verson of Windows 98 is caled
Windows 98 Gold, to digtinguish it from Windows 98 SE.

This book concentrates on PCs running Windows 98 and |later Windows
editions. Windows NT4 preceded Windows 98 and doesn't have USB sup-
port built in, but its successor, Windows 2000, does. Windows 98's succes
sor, Windows Me, aso supports USB. Generally, Windows 2000 is more
stable and is targeted for business users, while Windows 98 and Windows
Me are more flexible and targeted for home users.

Following these editions is Windows XP, which is based on the Windows
2000 kernd but includes editions for both home and business usars, with
the goal of replacing both Windows 98/Windows Me and Windows 2000.

A Fresh Start

In this book, the term PC includes dl of the various computers that share
the common ancestor of the original IBM PC. The expresson Windows 98
and later means Windows 98, Windows 98 SE, Windows 2000, Windows
Me, and Windows XP, and is dso likely to apply to any Windows editions
that follow. A USB-capable PC is assumed to be using Windows 98 or later.

USB 2.0

A big step in USB's evolution was version 2.0, whose main added feature is
support for much faster transfers. The origina hope when researching the
new high speed was a 20-times increase in speed, but studies and tests
showed that this estimate was low. In the end, a 40-times increase was found
to be feasible, for a bus speed of 480 Megabits per second. This makes USB
much more attractive for peripherals such as printers, scanners, drives, and
even video.

USB 2.0 is backwards compatible with USB 1.1. Version 2.0 peripheras can
use the same connectors and cables as 1.x peripherals. To use the new, higher
speed, peripherals must connect to 2.0-compliant hosts and hubs. 2.0 hosts
and hubs can adso communicate with 1.x peripherals. A 2.0-compliant hub
with a dower peripheral attached will trandate as needed between the
peripherd's speed and high speed. This increases the hub's complexity but
makes good use of the bus time without requiring different hubs for differ-
ent speeds.

USB versus IEEE-1394

The other mgjor interface choice for new peripherals is IEEE-1394. Apple
Computer's implementation of the interface is caled Firewire. USB and
IEEE-1394 take complimentary approaches, with IEEE-1394 being faster
and more flexible, but more expensive. |IEEE-13%4 is best suited for video
and other links where speed is essentia or a host PC isn't available. USB is
best suited for typical peripheras such as keyboards, printers, scanners, and
disk drives as well as low- to moderate-speed, cost-sensitive applications. For
many devices, either interface would work.

19

Chapter 1

With USB, a dingle host controls communications with many peripheras.
The host handles most of the complexity, so the peripheras eectronics
can be relaively smple and inexpensive. |IEEE-1394 uses a peer-to-peer
model, where peripherals can communicate with each other directly. A
single communication can aso be directed to multiple receivers. The result
is a more flexible interface, but the peripherals electronics are more
complex and expensive.

|[EEE-1394's 400 Megabits per second is more than 30 times faster than
USB |.x's 12 Megabits per second. As USB is getting faster with version
2.0, |IEEE-13%4 is getting faster with the proposed IEEE-1394.b. Its 3.2
Gigabits per second is over six times faster than USB 2.0's 480 Megabits
per second.

20

Is USB Right for My Project?

2

Is USB Right for My
Project?

Before you can decide if USB is suitable for a project, you need to know a
litle more about how USB works and what it can do. This chapter presents
some fast facts about USB, with the focus on what's relevant when deciding
whether or not USB is a good choice for a project. There's dso a look at the
stepsin developing a USB peripheral.

Fast Facts

Some of the first questions you might have relating to whether or not USB
is suitable for a project are these:

* What are the minimum requirements that a PC must meet in order to
use USB peripherals?

» How do devices connect to the PC?
* Inrea-world terms, how fast can a peripheral exchange data with a PC?

21

Chapter 2

» How do applications communicate with the peripheral ?
« What are the responsbilities of the code inside the peripheral ?

This section answers these questions.

Minimum PC Requirements

Before you decide to design a USB peripherd, it makes sense to be sure that
the PCs that will use the peripheral can use the interface. To use USB, a PC
needs hardware and software support. The hardware consists of a USB host
controller and a root hub with one or more USB ports. The software sup-
port is an operating system that supports USB.

The Host Controller

An interface won't succeed if PC manufacturers don't support it. Fortu-
nately, both PC and peripherd manufacturers have enthusiasticaly sup-
ported USB. Just about any new PC will have a USB host controller and at
least two port connectors. PCs as old as 1997 are likely to have hardware
support for USB. Microsoft and Intel's PC 2001 System Design Guide
requires new PCs to have two user-accessible USB ports. The USB Imple-
menters Forum's website has a usbready utility that examines a PC's resources
and reports whether or not the PC supports USB.

If a computer doesn't have USB support built into its motherboard, you can
add one on an expansion card that plugs into a dot on the PCI bus. For por-
tables, USB controllers on PC cards are available.

Early USB controllers complied with the 1.x specification and supported
low and full speeds. 2.0-compliant controllers also support high speed.

The Operating System

The other side of USB support is in the operating system. Your developing
will be much easier if you require users to be running Windows 98 or later.
Windows 95 had some USB support, but the support was greatly improved
and enhanced in Windows 98. Windows % and Windows 98 can't use the
same device drivers. Windows NT 4 doesn't support USB at al. However, if
you're developing a peripheral that needs to run under NT, you can use

Is USB Right for My Project?

BSQUARE's USB Extension to WinDK to write a driver that enables the
peripheral to be used under NT. DOS and Windows 3.x have no USB sup-
port built in.

The Components

The physical components of the Universa Serial Bus consist of the circuits,
connectors, and cables between a host and one or more devices.

The host is a PC or other computer that contains two components. a host
controller and a root hub. These work together to enable the operating sys-
tem to communicate with the devices on the bus. The host controller for-
mats data for transmitting on the bus and translates received datato a
format that operating-system components can understand. The host con-
troller aso performs other functions related to managing communications
on the bus. The root hub has one or more connectors for attaching devices.
The root hub, in combination with the host controller, detects the attach-
ment and removal of devices, carries out requests from the host controller,
and passes data between devices and the host controller.

The devices are the peripherals and additional hubs that connect to the bus.
A hub has one or more ports for connecting devices. Each device must con-
tain circuits and code that knows how to communicate with the host. The
specification defines the cables and connectors that connect devices to hubs.

Bus Topology

The topology, or arrangement of connections, on the bus is a tiered star
(Figure 21). At the center of each star is a hub. Each point on a star is a
device that connects to one of the hub's ports. The devices may be addi-
tional hubs or other peripherals. The number of points on each star can
vary, with a typica hub having two, four, or seven ports. When there are
multiple hubs in series, you can think of them as connecting in a tier, or
series, one above the next.

The tiered star describes only the physical connections. In programming, al
that matters is the logical connection. In communicating with a USB

23

Chapter 2

4 B
[rooT)
\ HE
.'/‘l
|
PERIPHER AL ! PERIPHERAL
[______ ™ e 2]
.Y | P
"y iy i
> 2 -
Il '-,I |
PERIPHERAL [—— HH 1 PCRIELERAL
\ / |
i /\ |
4 %

7 kb
Lol .
¢ N &
.-’rf f \
|I HUE .I !: HE .II
1\\ ,-"'I il \.\ ‘/"
~ : A
] S \\
\\ .,
| Ny
™ ",
by .
™, | M
J \\ I- \
————— W et e e - _.._\“*. - S
. | | -
| PERIPHERAL | PERIFHERAL l ‘ PEAIPHERAL | PERIPHERAL

== = = |

Figure 2-1: USB uses a tiered star topology, where each hub is the center of a
star that can connect to peripherals or additional hubs.

device, neither the host or the device knows or cares whether a communica-
tion passes through one hub or five. The hubs manage this automatically.

All of the devices on a bus share one data path to the host computer. Only
one device can communicate with the host a a time. For more bandwidth,
you can add a second data path to the host by ingaling an expansion card
with another host controller and root hub. Expansion cards with multiple
host controllers are also available.

24

Is USB Right for My Project?

Figure 2-2 shows a few of the possible configurations for a PC with two
USB connectors. If you have just two USB peripherads, you can plug one
into each port on the PC. If you have up to five peripherals, you can plug
one peripheral into one of the PC's ports and attach a hub with four down
stream connectors to the other. You can then connect the remaining four
peripherals to the hub. Some peripherals are compound devices that contain
both a periphera and a hub. You can cascade up to five externa hubs in
series, up to atotal of 127 peripheras and hubs (including the root hub). Of
course, it may be impractical to have this many devices sharing a data path.

In some cases, especialy with compound devices where the hubs are hidden
indde the periphera, the peripherals may appear to be using a daisy-chain
type of connection, where each new peripheral hooks to the last one in a
chain. But the USB's topology is more flexible and complicated than a daisy
chain. Each peripheral connectsto a hub that manages communications
with the host, and the peripherds and hubs aren't limited to connecting in a
single chain.

Defining Terms

In the universe of USB, severd everyday words have specific meanings.
Along with host, defined earlier as the computer that controls the interface,
three other such terms are function, hub, and device.

The USB specification defines a function as a device that provides a capabil-
ity to the host. Examples of functions are a mouse, a set of speskers, or a
data-acquigition unit.

A hub is a device that contains one or more connectors or internal connec-

tions to USB devices dong with the hardware to enable communicating
with each device. Each connector represents a USB port.

A 1 x hub repesats received USB traffic in both directions, and aso contains
the intelligence to manage power, send and respond to status and control
messages, and prevent full-speed data from transmitting to low-speed
devices. A 2.0 hub does al of this and more. A 2.0 hub supports high speed.
And instead of just repeating received data, as needed the hub converts

25

Chapter 2

PER! PHERAL JfE
iy PERIPHERAL]
—]
H PHERA
| PEHiF"I-ERﬁL
[Seah ac TRORLY
HOST PC A I
HOST PC COVPOUND DEVI CE
PERI PHERAL + 1-PCRT HUB \"‘E

HCST PC WTH 2 PERI PHERALS
HOST PC WTH 6 PERI PHERALS

ﬁ“‘*———*’f-. PERIFFERAL

HOST PC
FERIFFERAL
f

PERIPHERAL 2-PORT HUB

HOST PC WITH 15 PERIPHERALS

FRAHRL

PHMMJEI

FERIFHERAL

- B
N

Figure 2-2: There are many possible configurations for connecting USB devices

to a host PC. These are a few of the options for a host with two ports.

26

Is USB Right for My Project?

between low- and full-speed and high-speed data and performs other func-
tions that ensure that bus time is used efficiently.

A device, or peripheral, is something you attach to a USB port on a PC or
hub. The officid definition of a device is a function or a hub—except for
the special case of the compound device, which contains a hub and one or
more functions. Generdly, the host treats a compound device the same as if
the hub and its functions were each a separate physical device. Every device
on the bus has a unique address, except again for a compound device, whose
hub and functions each have unique addresses.

A composite device is a multi-function device with multiple, independent
interfaces. It has one address on the bus but each interface can have a differ-
ent device driver on the host.

If you're thinking that this terminology is confusing, you're not alone.

What is a Port?

This is also a good time to clarify the meaning of the word port in relation to
USB. A USB port is different in some ways from the traditional serial and
parallel portson aPC.

In a general sense, a computer port is an addressable location that is available
for attaching additiona circuits. Usually the circuits terminate at a connec-
tor that enables attaching a cable to a periphera such as a keyboard, display,
or printer. In some cases, the peripheral circuits are hard-wired to the port.
Software monitors and controls the port circuits by reading and writing to
the port's address. Computer memory also consists of addressable locations,
but the CPU accesses memory with different machine instructions. On PCs,
most memory addresses connect only to the system's data bus, not to other
peripherd circuits.

USB ports differ from many other ports because al ports on the bus share a
sngle path to the host. With the RS-232 serid interface, each port is inde-
pendent from the others. If you have two RS-232 ports, each has its own
data path, and each cable carries its own data and no one else's. The two
ports can send and receive data at the same time.

27

Chapter 2

USB uses a different approach. Each host controller supports a single bus, or
data path. Each connector on the bus represents a USB port, but unlike RS-
232, dl devices share the available time. So even though there are multiple
ports, each with its own connector and cable, there is only one data path.
Only one device, or the hogt, transmits a a time. A single host may support
multiple USB host controllers, however, each with its own bus. Other inter-
faces that share a data path include |IEEE-1394 and SCS.

The Host's Duties

The host PC is in charge of the bus. The host has to know what devices are
on the bus and the capabilities of each. The host must also do its best to
ensure that all devices on the bus can send and receive data as needed. A bus
may have many devices, each with different requirements, and al wanting to
transfer data at the same time. The host's job is not trivial!

Fortunately, the host controller's hardware and the USB support in Win-
dows do much of the work of managing the bus. Each device attached to the
host must have a device driver, which is a software component that enables
gpplications to communicate with the device. Some peripherals can use
device drivers included with Windows, while others require custom drivers.
Other system-level software components manage communications between
the device driver and the host-controller and root-hub hardware.

Applications don't have to worry about the details of USB communications.
All they have to do is send and receive data using standard operating-system
functions that are accessible from just about al programming languages.

The tasks below are ones that the host performs. The descriptions are in
genera terms. Later chapters in this book have more specifics.

Detect Devices

On power-up, the hubs make the host aware of all attached USB devices. In
a process called enumeration, the host assigns an address and requests addi-
tiona information from each device. After power-up, whenever a device is
removed or attached, the host learns of the event and enumerates any newly

28

Is USB Right for My Project?

attached device and removes any detached device from the devices available
to applications.

Manage Data Flow

The host manages the flow of data on the bus. Multiple peripherds may
want to transfer data at the same time. The host controller handles this by
dividing the available time into segments caled frames and microframes,
and by giving each transmission a portion of a frame or microframe.

Transfers that must occur at specific rate are guaranteed to have the amount
of time they need in each frame. During enumeration, a devices driver
requests the bandwidth it will need for transfers that must have guaranteed
timing. If the bandwidth isn't available, the host doesn't alow communica
tions to begin. The driver must then request a smaler portion of the band-
width, or wait until the requested bandwidth is available. Transfers that have
no guaranteed timing use the remaining portion of the frames, and may
have to wait.

Error Checking

The host aso has error-checking duties. It adds error-checking bits to the
data it sends. When a device receives data, it performs calculations on the
data and compares the results with the received error-checking bits. If the
results don't match, the device doesn't acknowledge receiving the data and
the host knows that it should retransmit. (USB also supports one transfer
type that doesn't allow re-transmitting, in the interest of maintaining a con-
stant transfer rate.) In a similar way, the host error-checks the data it receives
from devices.

The host may receive other indications that a device can't send or receive
data. The host can then inform the device's driver of the problem, and the
driver can notify the application so it can take appropriate action.

Provide Power

In aldition to its two signa wires, a USB cable has +5V and ground wires.
Some peripherals can draw al of their power from these lines. The host pro-
vides power to all devices on power-up or attachment, and works with the

29

Chapter 2

devices to conserve power when possible. Each full-power, bus-powered
device can draw up to 500 milliamperes. The ports on a battery-powered
host or hub may support only low-power devices, which are limited to 100
milliamperes. Windows doesn't support hosts with low-power ports, how-
ever. A device may aso have its own power supply, using bus power only
during the initid communications with the host.

Exchange Data with Peripherals

All of the above tasks support the host's main job, which is to exchange data
with peripherals. In some cases, a device driver requests the host to attempt
to send or receive data at a requested rate, while in others the host commu-
nicates only when an application or other software component requests it.
The device driver reports any problems to the appropriate application.

The Peripheral's Duties

In many ways, the periphera’s duties are a mirror image of the host's. When
the hogt initiates communications, the peripheral must respond. But periph-
erals also have duties that are unique.

A device can't begin USB communications on its own. Instead, it must wait
and respond to a communication from the host. (An exception is the remote
wakeup feature, which enables a device to request a communication from
the host.)

The USB controller in the device handles many of the communication's
responsibilities automatically. The amount of support required in the
device's firmware varies with the chip.

The peripheral must perform al of the tasks described below. The descrip-
tions arein general terms. Later chaptersin this book have more specifics.

Detect Communications Directed to the Chip

Each device monitors the device address in each communication on the bus.
If the address doesn't match the device's stored address, the device ignores
the communication. If the address does match, the device stores the data in
its receive buffer and generates an interrupt to signa that data has arrived. In

30

Is USB Right for My Project?

amogt dl chips, this is built into the hardware and thus automatic. The
device's program code doesn't have to take action or make decisions until the
chip has detected a communication containing its address.

Respond to Standard Requests

On power-up, or when the device attaches to a powered system, the device
must respond to the requests made by the host in the enumeration process.
The host may adso send standard requests any time after enumeration com-
pletes.

All USB devices must respond to requests that query the capabilities and sta-
tus of the device or request the device to take other action. On receiving a
request, the device places any data or status information to send in response
in its transmit buffer. In some cases, such as setting an address or configura
tion, the device takes other action in addition to responding with informa-
tion.

The specification defines eleven requests, and a class or vendor may define
additiona requests. The device doesn't have to carry out every request, how-
ever; it just has to respond to the request in an understandable way. For
example, when the host requests a onfiguration that the device doesn't sup-
port, the device responds with an indicator that the request isn't supported.

Error Check

Like the hogt, the device adds error-checking bits to the data it sends. On
receiving data that includes error-checking hits, the device does the error-
checking calculations. The device's response or lack of response informs
the host whether to re-transmit. These functions are built into the hardware
and don't need to be programmed. When appropriate, the device aso detects
the acknowledgement that the host sendsin reply to data it has received.

Manage Power

A device may be bus-powered or it may have its own power supply. For
devices that use bus power, when there is no bus activity, the device must
enter its low-power Suspend state. During Suspend, the device must con-

31

Chapter 2

tinue to monitor the bus and exit the Suspend state when bus activity
resumes.

When the host enters a low-power state, such as Windows 98's Standby
state, al communications on the bus cease, including the periodic timing
markers the host normally sends. When the devices that connect to the bus
detect the absence of bus activity for three milliseconds, they must enter the
Suspend state and limit the current they draw from the bus. A host may aso
reguest to suspend communications with a specific device.

Devices that don't support the remote-wakeup feature can consume no more
than 500 microamperes from the bus in the Suspend state. If the
remote-wakeup feature is available and enabled by the host, the limit is 25
milliamperes. These are average values over a 1 second; the peak current can
be greater.

Exchange Data with the Host

All of the above tasks support the main job of the device's USB port, which
is to exchange data with the host. After the device is configured, it must
respond to requests to send and receive data.

The host may poll the device at regular intervals or only when an applica-
tion requests to communicate with it. The device's configuration, the host's
device driver, and the applications that use the device together determine
what type of requests the host makes and how often it makes them.

For most transfers where the host sends data to the device, the device must
respond to each transfer attempt by sending a code that indicates whether it
accepted the data or was too busy to handle it. For most transfers where the
device sends data to the hogt, the device must respond to each attempt by
returning data or a code indicating there was no data to send or the device
was busy. Typicaly, the hardware responds automatically according to set-
tings made previoudy in firmware. Some transfers don't use acknowledge-
ments and the sender just assumes the receiver has received al transmitted
data.

The controller chip's hardware handles the details of formatting the data for
the bus. This includes adding error-checking bits to data to transmit, check-

32

Is USB Right for My Project?

ing for errors in recelved data, and sending and receiving the individua bits
on the bus.

Of course, the device must aso do anything else it's responsible for. For
example, a mouse must aways be ready to detect movement and mouse
clicks, a data-acquisition unit has to read the data from its sensors, and a
printer must trandate received data into images on paper.

What about Speed?

A device controller may support low speed, full speed, or full and high
speeds. Virtudly dl hubs support low- and full-speed devices. The exception
is a hub embedded in a compound device that has only low-speed functions.
This hub would communicate at full speed with the hogt, but at low speed
with its embedded device(s). A low- or full-speed periphera can connect to
any USB hub. Users can be completely unaware of whether a device is low
or full speed, because there are no user settings or configurations to worry
about.

High-speed peripherals are likely to be dual-speed devices that are also
usable when connected to any hub. A 1 .x host or hub doesn't support high
speed a al because high speed didn't exist when the 1 .x specifications were
written. To ensure that high-speed devices don't confuse 1.x hosts and hubs,
al high-speed devices must respond to standard enumeration requests at full
speed. This enables any host to identify any device.

Other than responding to standard requests, a high-speed device doesn't
have to function at full speed. But because 1.x hosts and hubs are likely to
remain in use for a while, and because supporting full speed is easy to do,
most high-speed devices will aso be completely functiond at full speed.

The actual rate of data transfer between a peripheral and host is less than the
bus speed and isn't dways predictable. Some of the transmitted bits are used
for identifying, synchronizing, and error-checking rather than data, and the
data rate also depends on the type of transfer and how busy the busis.

For time-sensitive data, USB supports transfer types that have a guaranteed
rate or guaranteed maximum latency. Isochronous transfers have a guaran-

33

Chapter 2

teed rate, where the host can request a specific number of bytes to transfer to
or from a periphera in a defined time period. A full-speed transfer can move
up to 1023 bytes in each 1-millisecond frame. A high-speed transfer can
move up to 3072 bytes in each 125-microsecond microframe. Isochronous
transfers have no error correcting, however. Interrupt transfers have error
correcting and guaranteed maximum latency, which means that a precise
rate isn't guaranteed, but the time between transfer attempts will be no
greater than a specified amount. At low speed, the reguested maximum
interval may range from 10 to 255 milliseconds. At full speed, the range is 1
to 255 milliseconds. At high speed, the range is 125 microseconds to 4.096
seconds.

Because the bus is shared, there's no guarantee that a particular rate or maxi-
mum latency will be available to a device. If the bus is too busy to adlow a
requested rate or maximum latency, the host will refuse to complete the con-
figuration process that enables the host's software to attempt the transfers.
Also, dthough the host controller can guarantee bandwidth will be avail-
able, it's up to the device driver, application software, and device firmware to
ensure that there is data to transfer when the host controller is ready for it.

At full speed, the fastest transfers on an otherwise idle bus are bulk transfers,
with a theoretical maximum of 1.216 Megabytes/second at full speed and
53.248 Megabytes/second a high speed. The host controller's driver may
limit a single bulk transfer to a dower rate, however. The transfers with the
most guaranteed bandwidth are high-speed interrupt and isochronous trans-
fers at 24.576 Megabytes/second.

Although the low-speed bus speed is 1.5 Megabits per second, the fastest
guaranteed delivery for a single transfer is 8 bytes in 10 milliseconds, or just
800 bytes per second. Low speed has uses, however, because the cables can
be cheaper, circuit-board layout is smpler, and the controller chips may be

cheaper.

34

Is USB Right for My Project?

The Development Process

After you've made the decision to use a USB interface with your periphera,
what's next? Designing a USB product involves both getting the periphera
up and running and developing the PC software to communicate with the
peripheral.

Elements in the Link
A USB peripheral needs dl of the following:

A controller chip with a USB interface.

Code in the peripheral to carry out the USB communications.

Whatever hardware and code the peripheral needs to carry out its other
functions (processing data, reading inputs, writing to outputs).

A host that supports USB.

Device-driver software on the host to enable applications to communi

cate with the peripheral.

If the peripheral isn't a standard type supported by the operating system,

the host must have application software to enable usersto access the
peripheral. For standard peripheral types such as a mouse, keyboard, or

disk drive, you don't need custom application software (though you may
want to write a test application).

Tools for Developing

To develop a USB peripherd, you need the following tools:

An assembler or compiler to create the firmware (the code that runs
inside the device's controller chip). If you use assembly code, you'll need
across assembler that runs on a PC and trandates your source code into
the machine code the controller understands. If you use C or another
high-level language, you'll need a compiler that can generate the machine
code for your controller.

A device programmer or development kit that enables you to store the
assembled or compiled code in the controller's program memory.

35

Chapter 2

* A programming language and devel opment environment on the host for
writing and debugging the host software. The host software may include
adevice driver or filter driver and/or application code. To write adevice
driver, you'll need Visual C++, which is capable of compiling the WDM
(Win32 Driver Mode!) drivers required for USB devices.

» A monitor program, protocol andyzer, or other debugging tools to help
in developing your firmware.

Steps in Developing a Project

For a project of any size, you'll want to create the project a piece a atime, in
modules, and get each piece working before moving on to the next. In writ-
ing the firmware, you can begin by writing just enough code to enable Win-
dows to detect and enumerate the device. When that's working, you can
move on to exchanging smal blocks of data with applications. From there
you can add specific code for your application. The steps in project develop-
ment include initia decisions, enumerating, and exchanging data:

Initial Decisions
Before you begin the developing, you need to gather data and make some
decisions:

1 Specify the requirements of your device. For the USB interface, how
much data does it need to transfer, and how fast? Do you need error correct
ing? How much power will the device draw? What else does the device need
to do?

2. Use the answer to #1 to specify the requirements of the controller chip.

3. Using your requirements, decide whether the PC will communicate with
the periphera usng Windows built-in drivers, a generic device driver from
another source, or a custom driver.

4. Select a controller chip that matches your requirements. If you have a
favorite chip family, start by looking for a controller in that family.

36

Is USB Right for My Project?

Enumerating
Here's what you need to do to get Windows to enumerate your device:

1 Write the code the controller chip needs to be enumerated by its host.
The details vary with the chip, but every chip must be able send a series of
descriptors to the host. The descriptors are data structures that describe the
chip's USB capabilities and how they'll be used. The chip must dso have
program code or hardware that recognizes and responds to the requests that
the host sends when it enumerates the device. Chip vendors generaly pro

vide example code that you can use with very few modifications.

2. Create or obtain an INF (information) file so that Windows can identify
the device when it enumeratesit. The INF file is atext file that you can cre
ate with any text editor. The file names the driver that the device will use. At
this point, you can use any generic driver supported by the chip's descrip

tors. Again, chip vendors often provide sample INF files. If your device uses
one of the classes supported by Windows, you may be able to use an INF file
included with Windows.

3. If necessary, design and build a circuit to connect the chip to the host. In
many cases, you'll initidly use a development board available from the chip's
vendor.

4. Load the code into the device and plug the device into the host's bus.
Windows should enumerate the device, adding it to the Control Panel and
identifying it correctly.

5 Debug and repesat as needed!

Exchanging Data

These are the steps related to getting the device to perform its intended
functions.

1 Add ahilities to the device by adding code to the controller chip's firm
ware and components that connect to the chip.

2. If you're using a custom driver, write the driver code to communicate
with the device.

37

Chapter 2

3. If needed, write application code o communicate with the USB device. If
you're designing a mouse, keyboard, or other standard device, you can access
the device from any application.

When the code is debugged, you're ready to program the code into the chip
and test on your fina hardware.

But before you begin with any of this, it's useful to know a more about how
the host enumerates and transfers data with devices, so you can make the
right choices about controller chips and drivers. This is the purpose of the
following chapters.

38

Inside USB Transfers

3

Inside USB Transfers

To design and program a USB device, you need to know a certain amount
about the inner workings of the interface. This is true even though the hard-
ware and system software handle many of the details automaticaly.

This and the next three chapters are a tutorial on how USB transfers data.
This chapter has essentials that apply to al transfers. The following chapters
cover the four transfer types supported by USB, the enumeration process,
and the standard requests used in control transfers.

You don't need to know every hit of this information to get a project up and
running, but I've found that understanding something about how the trans-
fers work helps in deciding which transfer types to use, in writing the firm
ware for the controller chip, and in tracking down the inevitable bugs that
show up when you try out your circuits and code.

The USB interface is complicated, and much of what you need to know is
interwoven with everything else. This makes it hard to know where © start.
In genera, | begin with the big picture and work down to the detals.
Unavoidably, some of the things | refer to aren't explained in detail until

39

Chapter 3

later. And some things are repeated because they're important and relevant
in more than one place.

The information in these chapters is dense. If you don't have a background
in USB, you won't absorb it al in one reading. You should, however, get a
fed for how USB works, and will know where to look later when you need
to check the details.

The ultimate authority on the USB interface is the specification published
by its sponsoring members. The specification document, titled not surpris-
ingly, Universal Serial Bus Specification, is available on the USB Implement-
ers Forum's website (www.usb.org). However, by design, the specification
omits information and tips that are unique to any operating system or con-
troller chip. This type of information is essentiad when you're designing a
product for the real world, so I've included it.

Transfer Basics

You can divide USB communications into two categories, depending on
whether they're used in configuring and setting up the device or in the appli-
cations that carry out the device's purpose. In configuration communica
tions, the host learns about the device and prepares it for exchanging data
Most of these communications take place when the host enumerates the
device on power up or attachment. Application communications occur
when the host exchanges data for use with applications. These are the com-
munications that perform the functions the device is designed for. For
example, for a keyboard, the application communications are the sending of
keypress data to the host to tell an application to display a character.

Configuration Communications

During enumeration, the device's firmware responds to a series of standard
requests from the host. The device must identify each request, return
requested information, and take other actions specified by the requests.

On PCs, Windows performs the enumeration, so there's no user program-
ming involved. However, to complete the enumeration, Windows must

40

Inside USB Transfers

have two files available: an INF file that identifies the filename and location
of the device's driver, and the device driver itsdf. If the files are available and
the firmware isin order, the enumeration processisinvisible to users.

Depending on the device and how it will be used, the device driver may be
one that's included with Windows or one provided by the product vendor.
The INF file is atext file that you can usually adapt if needed from an exam-
ple provided by the driver's provider. Chapter 11 has more details about
device drivers and INF files.

Application Communications

After the host has exchanged enumeration information with the device and
a device driver has been assigned and loaded, the application communica
tions can be fairly straightforward. At the host, applications can use standard
Windows API functions to read and write to the device. At the device, trans-
ferring data typicaly requires placing data to send in the USB controller's
transmit buffer, reading received data from the receive buffer, and on com-
pleting a transfer, ensuring that the device is ready for the next transfer.
Most devices dso require additiona firmware support for handling errors
and other events.

Each data transfer on the bus uses one of four transfer types. control, inter-

rupt, bulk, or isochronous. Each has a format and protocol suited for partic-
ular uses.

Managing Data on the Bus

USB's two signd lines carry data to and from al of the devices on the bus.
The wires form a single transmission path that al of the devices must share.
(As explained later in this chapter, a cable segment between a 1 .x device and
a 2.0 hub on a high-speed bus is an exception, but even here, dl data shares
the path between the hub and host.) Unlike RS-232, which has a TX line to
carry data in one direction and an RX line for the other direction, USB's
pair of wires carries a single differential signal, with the directions taking
turns.

41

Chapter 3

El

FRAME

START OF

BEVICE |, EWGPOINT

ENDRO IWT & |

"ENDPOINT 2

EnPOINT 2
ENOPOINT 3
EMDPOINT 3|
END-POINT @

5. ENGPOINT 3

OF FRARE
CE 1, EMDPRINT 2|

L1}
DEW
r-}E\'IEE 2, ENDPOINT @

DEVICE &, EWD-POINT 3
ART OF FRARE

BEVICE i
DEV ICE

UMUSED

WMLISED
DEVICE |
DEVIEE 2

STAHT

(DEVICE 5. BNDPaINT 3

W

DEVICE 5
Il.'F'-.'II.'F 2

}

HILLISFCaun FRARE I =HILL I'SECOME FRAHE 1-HILL | SECOkD FRAHE

Figure 3-1: At low and full speeds, the host schedules transactions within 1-
millisecond frames. Each frame begins with a Start-of-Frame packet, followed by
transactions that transfer data to or from device endpoints. The host may
schedule transactions anywhere it wants within a frame. The process is similar at
high speed, but using 125-microsecond microframes.

The hogt is in charge of seeing that all transfers occur as quickly as possible.
It manages the traffic by dividing time into chunks called frames, or microf-
rames at high speed. The host gives each transfer a portion of each frame or
microframe (Figure 3-1). For low- and full-speed data, the frames are one
millisecond. For high speed data, the host divides each frame into eight 125
microsecond microframes. Each frame or microframe begins with a Start-
of-Frame timing reference.

Each transfer consists of one or more transactions. Control transfers always
have multiple transactions because they have multiple stages, each conssting
of one or more transactions. Other transfers use multiple transactions when
they have more data than will fit in a single transaction. Depending on how
the host schedules the transactions and the speed of a devices response, a
transfers transactions may al be in a single frame or microframe, or they
may be spread over multiple (micro)frames.

Because al of the transfers share a data path, each transaction must include a
device address. Every device has a unique address assigned by the host, and
al data travels to or from the host. Each transaction begins when the host
sends a block of information that includes the address of the receiving device
and a specific location, called an endpoint, within the device. Everything a
device sends is in response to receiving a request from the host to send data
or gatus information.

42

Host Speed and Bus Speed

Inside USB Transfers

A 1 x host supports low and full speeds. A 2.0 host with user-accessible ports

must support low, full, and high speeds.

A 1.x hub doesn't convert between speeds; it just passes received traffic on,
changing only the edge rate of the signals to match the destination's speed.
In contrast, a 2.0 hub acts as a remote processor. It converts between high
speed and low or full speed as needed and performs other functions that
help make efficient use of the bus time. The added intelligence of 2.0 hubs
is a mgjor reason why the high-speed bus remains compatible with 1 .x hard-
ware. It also means that 2.0 hubs are much more complicated interndly

than 1 .x hubs.

The traffic on a bus segment is high speed only if the host controller and all
upstream (toward the host) hubs are 2.0-compliant. Figure 3-2 illustrates. A

AND
ROOT HUE
TR
HIGH SPEED A |\ LOW/FULL SPEED
i | i =3
M[GH SPEED .// _LOW SPEED
./- ¥ —‘--.:w
I l[FuLL sreep |
J L l L m;
HIGH- 5PEED EULL-SPEED | | LOW-SPEED
N | DEVIEE DEVICE | “pevICE | I % HUB |
o - | = m
- =2 —
t N LOW SPEED FULL SPEED* ;]—JT
""" TR — ~ |
FILL SPEED ¥ = -
\.FiLL seeeo i FuLL seeens! (| ow
|) L i SPEED
HIGH §PEED [1 | | =
P ~ap LOW-SPEED | | HIGH-SPEED | LOw-JPEED
HIGH=3PEED BEVICE DEN 1CE DEY ICE
DEVICE | .
FULL -5 PEED
FULL- SPEED DEVICE
DEVICE
«FUL-SPEED ENUMERATION IS REQU RED.
ADDITIONAL FULL-SPEED FUNCTI ONALI TY
IS CPTI ONAL.

Figure 3-2: A USB 2.0 bus uses high speed whenever possible, switching to low

and full speeds when necessary.

43

Chapter 3

high-speed bus may also have 1.x hubs, and if so, any bus segments down
stream (away from the host) are low or full geed. Traffic to and from low-
and full-speed devices travels at high speed between the host and any 2.0
hubs that connect to the host with no 1 .x hubs in between. Traffic between
a20hub and al .x hub or another low- or full-speed device travels a low or
full speed. A bus with only a 1 .x host controller supports only low and full
speeds, even if the bus has 2.0 hubs and devices.

Elements of a Transfer

Understanding USB transfers requires looking insde them severd levels
deep. Each transfer is made up of transactions. Each transaction is made up
of packets. And each packet contains information. To understand transac-
tions, packets, and their contents, you aso need to know about endpoints
and pipes. So that's where well begin.

Device Endpoints

All transmissions travel to or from a device endpoint. The endpoint is a
buffer that stores multiple bytes. Typicaly it's a block of data memory or a
register in the controller chip. The data stored at an endpoint may be
received data, or data waiting to transmit. The host aso has buffers for
received data and for data ready to transmit, but the host doesn't have end-
points. Instead, the host serves as the starting point for communicating with
the device endpoints.

The specification defines a device endpoint & "a uniquely addressable por-
tion of a USB device that is the source or sink of information in a communi-
cation flow between the host and device" This suggests that an endpoint
carries data in one direction only. However, as I'll explain, a control end-
point is a specia case that is bidirectiond.

The unique address required for each endpoint consists of an endpoint
number and direction. The number may range from O to 15. The direction
is from the host's perspective: IN is toward the host and OUT is away from
the host. An endpoint configured to do control transfers must transfer data

44

Inside USB Transfers

in both directions, so a control endpoint actudly consists of a pair of IN and
OUT endpoints that share an endpoint number.

Every device must have Endpoint O configured as a control endpoint.
Theré's rarely a need for additional control endpoints. They're alowed, how-
ever, and some controller chips support them.

The other transfer types send data in one direction only (though status and
control informetion may flow in the opposte direction). A single endpoint
number can support both IN and OUT endpoint addresses. For example,
Endpoint 1 on a device might support an IN endpoint address for transfers
to the host aswell as an OUT endpoint address for transfers from the host.

In addition to Endpoint O, a full-speed device can have up to 30 additiona
endpoints (1 through 15, with each supporting both IN and OUT). A low-
gpeed device is limited to two additiona endpoints with any combination of
directions (for example Endpoint 1 IN and Endpoint 1 OUT, or Endpoint
1IN and Endpoint 2 IN).

Every transaction on the bus includes an endpoint number and a code that
indicates the direction of data flow and whether or not the transaction is ini-
tiating a control transfer. The codes are IN, OUT, and Setup:

Transaction Types of Transfers that
Source of Data Use this Transaction Contents
Type T
ype
IN device all generic data
ouT host all generic data
Setup host control arequest

As with the endpoint directions, the naming convention for IN and OUT
transactions is from the perspective of the host. In an IN transaction, data
travels from the periphera to the host. In an OUT transaction, data travels
from the host to the peripheral.

In a Setup transaction, data aso travels from the host to the peripheral, but
a Setup transaction is a specia case because it initiates a control transfer.
Devices need to identify Setup transactions so they know how to interpret
the data they contain. Setup transactions are also the only type that devices

45

Chapter 3

must always accept. Any transfer may use IN or OUT transactions, but only
control transfers use Setup transactions.

Each transaction contains a device address and an endpoint address. When a
device receives an OUT or Setup transaction containing the devices address,
the hardware stores the received data in the appropriate location for the end-
point and typicaly triggers an interrupt. An interrupt-service routine in the
device then processes the received data and does whatever else the transac-
tion requires. When a device receives an IN transaction containing its device
address, if the device has data ready to send to the host, the hardware sends
the data from the specified endpoint onto the bus and typicaly triggers an
interrupt. An interrupt-service routine in the device then does whatever is
needed to get ready for the next IN transaction.

Pipes: Connecting Endpoints to the Host

Before a transfer can occur, the host and device must establish a pipe. A USB
pipe isnt a physical object; it's just an association between a device's end-
point and the host controller's software.

The host egtablishes pipes shortly after system power-up or device attach
ment, on requesting configuration information from the device. If the
device is removed from the bus, the host removes the no-longer-needed
pipes. The host may aso request new pipes or remove unneeded pipes at
other times by requesting an alternate configuration or interface for a device.
Every device has a Default Control Pipe that uses Endpoint O.

The configuration information received by the host includes a descriptor for
each endpoint that the device wants to use. Each endpoint descriptor is a
block of information that tells the host what it needs to know about the
endpoint in order to communicate with it. This includes the endpoint
address, the type of transfer to use, the maximum size of data packets, and,
when appropriate, the desired interval for transfers.

In some cases, the host accepts a requested configuration only after ensuring
that the bus has enough idle bandwidth to do the transfers at the requested
rate. This is true when the configuration requires pipes that will carry isoch
ronous transfers, which have a guaranteed rate (transactions per second),

46

Inside USB Transfers

and interrupt transfers, which have a guaranteed maximum latency (time
between transactions).

In these cases, the host examines the available bandwidth before establishing
the pipe. If the bandwidth is available, the host accepts the configuration
request and ensures that the transfers will have the time they need. If the
bandwidth isn't available, the host denies the configuration request and the
requesting software must try again, either waiting until the bandwidth is
avallable or selecting a new configuration that requests less bandwidth. For
pipes that carry requests without guaranteed timing, the host doesn't check
available bandwidth; it just promises to fit the transfers into the available
time as best asiit can.

Types of Transfers

USB is designed to handle many types of peripherals with varying require-
ments for transfer rate, response time, and error correcting. The four types
of data transfers each handle different needs, and a device can support the
transfer types that are best suited for its purpose. Table 31 summarizes the
features and uses of each transfer type.

Control transfers are the only type that have functions defined by the USB
specification. Control transfers enable the host to read information about a
device, set a device's address, and select configurations and other settings.
Control transfers may also send custom requests that send and receive data
for any purpose. All USB devices must support control transfers.

Bulk transfers are intended for situations where the rate of transfer isn't crit-
ical, such as sending a file to a printer or receiving data from a scanner. In
these applications, quick transfers are nice, but the data can wait if necessary.
If the bus is very busy with other transfers that have guaranteed transfer
rates, bulk transfers must wait, but if the bus is idle, bulk transfers are very
fast. Only full- and high-speed devices can do bulk transfers. Devices aren't
required to support bulk transfers, but a specific device class might require
it.

Interrupt transfers are for devices that must receive the host's or devices
attention periodically. Other than control transfers, interrupt transfers are

47

Chapter 3

Table 3-1: Each of the USB's four transfer types is suited for different application

types.
Trande Type Contrd Bulk Interrupt Isochronous
Typicd Use Configuration |Printer, Mouse, Audio
scanner keyboard
Required? yes no no no
Allowed on Tow-speed yes no yes no
devices?
Data bytes/millisecond per 15,872 53,248 24,576 (three | 24,576 (three
transfer, maximum possible | (thirty-one |(thirteen 512- |1024-byte |1024-byte
per pipe (high speed). ~ |64-byte byte transactions/ | transactions/
AS&Jm%gga./tranSfer = MaXH transactions/ |transactions/ |microframe) | microframe)
MUM Packet Sz€. microframe) | microframe)
Data bytes'millisecond per [832(thirteen | 1216 64 (one64- | 1023(one
transfer, maximum possible | 64-byte (nineteen 64- |byte 1023-byte
per pipe (full _speed) ASSUMeS| transactions/ | byte transaction/ |transaction/
dataltransfer = maximum frame) transactions/ | frame) frame)
packet size. frame)
Data bytes'millisecond per |24 (three8 [notallowed [0.8 (8 bytes [not allowed
transfer, maximum possible | pyte per 10
per pipe (low speed). ASSUMES| transactions) milliseconds)
data/transfer = maximum
packet size.
Direction of data flow INand OUT |IN or OUT IN or OUT IN or OUT
(1.0 supports
IN only)

Reserved bandwidth for all 10 at low/full |none 90 at low/full speed, 80 at
transfers of the type speed, 20 at high speed (isochronous &

high speed interrupt combined)

(minimum) (maximum)
Error correction? yes yes yes no
Message or Stream data? message stream stream stream
Guaranteed delivery rate? no no no yes
Guaranteed [atency (maximum|no no yes yes

time between transters)?

the only way that low-speed devices can transfer data. Keyboards and mice
use interrupt transfers to send keypress and mouse-movement data. Inter-
rupt transfers can use any speed. Devices aren't required to support interrupt
transfers, but a specific device class might require it.

48

Inside USB Transfers

Isochronous transfers have guaranteed delivery time but no error correcting.
Data that might use isochronous transfers incudes audio files to be played in
rea time. This is the only transfer type that doesn't support automatic re-
transmitting of data received with erors, so occasonal erors must be
acceptable. Only full- and high-speed devices can do isochronous transfers.
Devices aren't required to support isochronous transfers, but a specific
device class might require it.

Chapter 4 has more detailed descriptions of each transfer type, with the
focus on what you need to know in order to use each. But before we get into
that, there are additional things to understand about how the bus transfers
data

Stream and Message Pipes

In addition to classifying a pipe by the type of transfer it carries, the specifi-
cation defines pipes as either stream or message, according to whether or not
information travels in one or both directions. Control transfers are the only
transfers that use the bidirectional message pipes; al others use unidirec-
tional stream pipes.

Control Transfers Use Message Pipes

In a message pipe, each transfer begins with a Setup transaction containing a
request. To complete the transfer, the ost and device may exchange data
and status information, or the device may just send status information.
There is dways at least one transaction that sends information in each direc-
tion.

If the device supports the request, it takes the requested action. If the device
doesn't support the request, it responds with a code to indicate this.

All Other Transfers Use Stream Pipes

In a stream pipe, the data has no format defined by the USB specification.
The receiving device just accepts whatever arrives. The device firmware or
host software can then process the data in whatever way is appropriate for
the application.

49

Chapter 3

Of course, even with stream data, the sending and receiving devices will
need to agree on a format of some type. For example, a host application may
define a code that requests a device to send a series of bytes indicating a tem-
perature reading and the time of the reading. Although the host could use
control transfers with a vendor-defined Get_Temperature request, it might
prefer to use interrupt transfers to guarantee that the host will request a new
reading at intervals. In an interrupt transfer, the data is in a stream pipe and
doesn't have to conform to the format for control transfers.

Initiating a Transfer

When a device driver in the host wants to communicate with a device, it ini-
tiates a transfer. The specification defines a transfer as the process of making
and carrying out a communication request. A transfer may be very short,
sending as little as a byte of data, or very long, sending the contents of a
largefile.

Typicdly, a Windows application opens communications with a device
using a handle retrieved using standard APl functions. To begin a transfer,
an application may use the handle in calling an APl function to request the
transfer from the devices driver. Applications can request data from a device
or provide data to send to the device. A request from an application might
be "send the contents of the file data.txt on the host" or "get the contents of
Report 0 from the device." When an application requests a transfer, the oper-
ating system passes the request to the appropriate device driver, which in
turn passes the request to other system-level drivers and on to the host con-
troller. The host controller then initiates the transfer on the bus.

In some cases, the driver is configured to request periodic transfers, and
applications read the retrieved data or provide data to send in these transfers.
Other transfers, such as those done in enumeration, are initiated by the
operating system on detecting the device.

Transactions: the Building Blocks of a Transfer

Figure 33 shows the elements of a typical transfer, and Table 32 lists the
elements that make up each of the four transfer types. A lot of the terminol-

50

Inside USB Transfers

ogy here begins to sound the same. There are transfers and transactions,
stages and phases, data transactions and data packets, Status stages and
handshake phases. Data stages have handshake packets and Status stages
have data packets. It takes a while to absorb it all. | created Table 32 to use
as a memory-jogging reference when | found myself getting confused about
the terminology. With that reminder to teke it dowly, we can move on to
the detalils.

Each transfer consists of one or more transactions, and each transaction in
turn consists of one, two, or three packets.

TRANSFER TRANSFER TRANSFER |
i i
e EACH TRANSFER
\ S CONTAINS 1 DR MORE
% ~ ~~—___ TRANSACTIONS
I‘\.\ .\.""-\-._ T — L.

L e =

TRAMSACT1ON

EACH TRANSACT [ON

-H-\"'\-\.‘_H- CONTAINS A TOKENW
\ '“ﬂ-.h PACKET AMD HMAY
= CONTAIN A DATA
G AND/OR HANDSHAKE
~~_ PACKET
\\N e)
‘ DATA ‘ \ HAND SHAKE ‘
PACKET PACKET

EACH PACKET CONTAINS
A PID AND MAY CONTAIN
ADDITIONAL TNFORMATION

4 AND CRC (ERROQR-CHECKING)
H"‘“xﬁ BITS
it LA B s,)
) ADD L S0
[PID INFG } CRC

Figure 3-3: A USB transfer consists of transactions. The transactions in turn
contain packets, and the packets contain a packet identifier (PID), PID-check
bits, and sometimes additional information.

51

Chapter 3

Table 3-2: Each of the four transfer types consists of one or more stages, with
each stage made up of two or three phases. (This table doesn't show the
additional transactions required for the split transactions and PING protocol

used in some transfers.)

Transfer Type

Stages (0 or more transac-
tions)

Phases (packets). Each
downstream, low-speed
packet is also preceded by a
PRE packet.

Control

Setup

Token

Data

Handshake

Data (IN or OUT)
(optional)

Token

Data

Handshake

Status (IN or OUT)

Token

Data

Handshake

Bulk

Data (IN or OUT)

Token

Data

Handshake

Interrupt

Data (IN or OUT)

Token

Data

Handshake

I sochronous

Data (IN or OUT)

Token

Data

The three transaction types are defined by their purpose and direction of
data flow: Setup for sending control-transfer requests to a device, IN for
receiving data from a device, and OUT for sending other data to the device.
The specification defines a transaction as the delivery of service to an end-
point. Service in this case can mean either the host's sending a chunk of
information to the device, or the host's requesting and receiving a chunk of
information from the device.

Each transaction includes identifying, error-checking, status, and control
information, as well as any data to be exchanged. A complete transfer may

52

Inside USB Transfers

take place over multiple frames, but a transaction is a single communication
that must complete uninterrupted. No other communication on the bus can
break into the middle of a transaction.

Devices must be able to respond quickly with requested data or status infor-
mation in a transaction. Program code in the device may prepare an end-
point to respond to a transaction request, but hardware handles responding
to the request when it arrives.

A transfer with a small amount of data may require just one transaction. If
the amount of data is large, a transfer may use multiple transactions, with a
portion of the data in each.

Transaction Phases

Each transaction has up to three phases, or parts that occur in sequence:
token, data, and handshake. Each phase consists of one or two transmitted
packets. Each packet is a block of information with a defined format. All
packets begin with a Packet ID (PID) that contains identifying information,
as Table 33 shows. Depending on the transaction, the PID may be followed
by an endpoint address, data, status information, or a frame number, aong
with error-checking hits.

In the token phase of a transaction, the host sends a communications
request in a token packet. The PID indicates the transaction type, such as
Setup, IN, OUT, or Start-of-Frame.

In the data phase, the host or device may transfer any kind of information in
a data packet. The PID indicates the data-toggle value used to indicate the
data's position when there are multiple data packets.

In the handshake phase, the host or device sends status, or handshaking,
information in a handshake packet. The PID holds the status code (ACK,
NAK, STALL, NYET). The specification sometimes uses the terms status
phase and status packet to refer to the handshake phase and packet.

The token phase has one additiona use. A token packet may carry a Start-
of -Frame (SOF) marker, which is atiming reference that the host sends
at 1-millisecond intervas at full speed and 125-microsecond intervals

53

Chapter 3

Table 3-3: The PID (packet identifier) provides information about a transaction.

(Sheet 1 of 2)
Packet PID vaue |[Transfer |Source|Bus Speed |Description
Type Name types
used in
Token ouT o001 |4l host all Endpoint addressfor OUT
(identifi_es (host-to-device) transaction.
transaction Iy 0 |l host |al Endpoint address for IN
type) (device-to-host) transaction.
SOF 0101 Start-of- | host al Start-of-Frame marker and
Frame frame number.
SETUP 1101 control | host all Endpoint address for Setup
transaction.
Data (carries| DATAO | Q011 al host, |l Datatoggle, data
dataor device seguencing
status code) pATAT |11 |all host, |al Datatoggle, data
device sequencing
DATA2 |01 isoch. host, [high Data sequencing
device
MDATA |11 |isoch., host, |high Data sequencing
interrupt [device
Handshake |ACK 0010 |al host, |all Receiver accepts error-free
(carries device data packet.
status code) [yAK 1010 |control, |device [all Receiver can't accept data
bulk, or sender can't send data or
interrupt has no datato transmit.
STALL |1110 control, |device |4l A control request isn't sup-
bulk, ported or the endpoint is
interrupt halted.
NYET 0110 |control |device |high Device accepts error-free
Write, data packet but isn't yet
bulk ready for another or hub
OUT, doesn't yet have
split complete-split data.
transac-
tions

54

Inside USB Transfers

Table 3-3: The PID (packet identifier) provides information about a transaction.

(Sheet 2 of 2)
Pecket PD Vdue |Transfer |Source|Bus Speed |Description
Type Name types
used in
Spedid PRE 1100 |control, |host |full Preamble issued by host to
interrupt indicate that the next packet
islow speed.
ERR 1100 |dl device |high Returned by ahub to report
hub alow- or full-speed error in
a split transaction.
SPLIT |1000 |4l host [high Precedes atoken packet to
indicate asplit transaction.
PING 0100 [control fhost |high Busy check for bulk OUT
Write, and control Write data
buk QUT transactions after NYET.
reserved (0000 |- - - For future use.

a high speed. This packet also contains a frame number that increments
and rolls over on reaching the maximum. The number indicates the frame
count, so the eight microframes within a frame al use the same number. An
endpoint may synchronize to the Start-of-Frame packet, or use the frame
count as a timing reference. The Start-of-Frame marker also keeps devices
from entering the low-power Suspend state when there is no other USB traf-
fic.

Low-speed devices don't see the SOF packet. Instead, the devices hub uses a
smpler End-of-Packet (EOF) signal called the low-speed keep-dive sgnd,
sent once per frame. As the SOF does for full-speed devices, the low-speed
keep-alive keeps low-speed devices from entering the Suspend state.

Of the four specid PIDs, one is used only with low-speed devices, one is
used only with high-speed devices, and two are used when a low- or
full-speed device's 2.0 hub communicates at high speed with the host.

The specia low-speed PID is PRE, which contains a preamble code that
tells hubs that the next packet is low speed and the hub should enable com-
munications with any attached low-speed devices. On a low- and full-speed
bus, the PRE PID precedes all token, data, and handshake packets directed

55

Chapter 3

to low-speed devices. High-speed buses encode the PRE in the SPLIT

packet, so they don't send it separately. Low-speed packets sent by a device
don't require a PRE PID.

The PID used only with high-speed devicesis PING. The host sends a
PING to find out if a high-speed device endpoint is busy before sending the
next data packet in a bulk or control transfer with multiple data packets.
The device responds with a status code.

The SPLIT PID identifies a token packet as part of a split transaction. To
make better use of bus time, 2.0 hosts and hubs send low- and full-speed
traffic a high speed. When the host begins a transaction destined for a low-
or full-speed device, the 2.0 hub nearest to the device is responsible for com-
pleting the transaction with the device, storing any returned data or Status
information, and reporting it back in one or more later transactions. This
way, the entire bus doesn't have to wait for a transaction to complete at a
lower speed. These specia transactions between the hub and host are called
split transactions.

The ERR PID is used only in split transactions. A 2.0 hub uses this PID to
report an error to the host in a low- or full-speed transaction. The ERR and
PRE PIDs have the same value, but won't be confused because a hub never
sends a PRE to the host or an ERR to a device.

Packet Sequences

Every transaction has a token packet. The host is aways the source of the
this packet, which sets up the transaction by identifying the packet type, the
receiving device and endpoint, and the direction of any data that the trans-
action will transfer. If it's a low-speed transaction on a full-speed bus, a PRE
packet precedes the token packet. If it's a split transaction, a SPLIT packet
precedes the token packet.

Depending on the transfer type and whether or not a device has information
to send, a data packet may follow the token packet. The direction specified
in the token packet determines whether the host or device sends the data
packet.

56

Inside USB Transfers

In al transfer types except isochronous, the device that receives a data packet
returns a handshake packet containing a code that indicates the success or
failure of the transaction. The absence of an expected handshake packet
indicates a more drastic failure.

Timing Constraints and Guarantees

The dlowed delays between the token, data, and handshake packets of a
transaction are very short, intended to alow only for cable delays and
switching times, plus a brief time to allow the hardware to prepare a
response, such as a status code, in response to a received packet.

The maximum packet sizes for the transfer type and endpoint limit the
amount of data a transaction can contain. A transfer with multiple transac-
tions may take place over multiple frames, which don't have to be contigu-
ous. For example, in a full-speed bulk transfer of 512 bytes, the maximum
number of bytes in a single transaction is 64, so transferring all of the data
would require at |least 8 transactions.

Although devices must complete each transaction quickly, the bus can
accommodate transfers with devices that need extra time to respond. The
amount of ime alowed varies with the transfer type, but can be as long as
five seconds. If a request will take a long time to carry out, the request
should be defined so that the request and response use separate transfers.
This way, after receiving a request for data, the device can prepare its
response for later retrieval by the host. The host uses this technique when it
requests a hub to reset a port. The host requests the hub to reset a port, and
the hub responds that it has received the request and has begun the reset sig-
naing. Later, the host sends a second request to find out if the reset is com-
plete.

Split Transactions

A 2.0 hub communicates with a 2.0 host a high speed unless a 1.x hub lies
between them. When a low- or full-speed device is attached to a 2.0 hub,
the hub converts between speeds as needed. But speed conversion isn't the
only thing the hub does to manage multiple speeds. High speed is 40 times
faster than full speed and 320 times faster than low speed. It doesn't make

57

Chapter 3

HIGH SPEED ‘ LOW- OR
2.@ HDST s 2.8 HUE e —— | FNL-BPEED
:} | EEYICE
| | L
T,
1 THE HOST INITIATES AND COMPLETES THE START-SPLIT TRAMSACTION WITH THE HUB
|
- a - LOW- R
2.0 HOST .8 HUE LOW OR FULL SPRRD | my)-SPEED
-} DEVICE

2, THE HUB INITIATES AND COMPLETES THE TRANSACTION WITH THE DEYICE

R ST s i —
7 [HIGH SPEED " LOW- QR

1.8 HOYT 2.8 HuB | SR — FuLL-SPEED |
DEY ICE

i =
|

i —

3. THE HOST I N TI ATES AND COVWPLETES THE COWPLETE- SPLI T TRANSACTI ON WTH THE HUB.

Figure 3-4: In a transfer that uses split transactions, the host communicates at
high speed with a 2.0 hub, and the hub communicates at low or full speed with
the device. Isochronous transactions may use multiple start-split or complete-
split transactions.

sense for the entire bus to wait while a hub exchanges low- or full-speed data
with a device.

The solution is split transactions (Figure 34). A 2.0 host uses split transac-
tions when it communicates with a low- or full-speed device on a high-speed
bus. What would be a single transaction at low or full speed usudly requires
two types of split transactions, one or more start-split transactions to send
information to the device and one or more complete-split transactions to
receive information from the device. The exception is isochronous OUT
transactions, which don't use complete-split transactions because there is
nothing to return.

Even though there are more transactions, split transactions make better use
of the bus time because they minimize the amount of bus time spent waiting

58

Inside USB Transfers

for a low- or full-speed device to respond. Table 34 compares the structure
and contents of transactions with low- and full-speed devices at different bus
Speeds.

I'll start by explaining how split transactions work in bulk and control trans-
fers, which don't have the timing constraints of interrupt and isochronous
transfers. In the start-split transaction, the 2.0 host sends the start-split
token packet (SSPLIT), followed by the usua low- or full-speed token
packet, and any data packet destined for the device. The devices 2.0 hub
returns ACK or NAK. The host is then free to use the bus for other transac-
tions. The device knows nothing of the transaction yet.

On returning ACK in a dtart-split transaction, the hub has two responsibili-
ties. It must complete the transaction with the device. And it must continue
to handle any other bus traffic it receives from the host or other attached
devices.

To complete the transaction, the hub converts the packet or packets received
from the host to the appropriate speed, sends them to the device, and stores
the device's response, if any. Depending on the transaction, the device may
return data, a tandshake, or nothing. To the device, the transaction has pro-
ceeded at the expected low or full speed and is now complete. The device
has no knowledge that it's a split transaction. The host hasn't yet received the
devices response.

While the hub is completing the transaction with the device, the host may
initiate other bus traffic that the devices hub must handle as well. The two
functions are handled by separate hardware modules within the hub.

For dl but isochronous OUT transactions, when the host thinks the hub has
had enough time to complete the transaction with the device, it begins a
complete-split transaction with the hub.

In the complete-split transaction, the host sends a complete-split token
packet (CSPLIT), followed by the usua low- or full-speed token packet to
request the data or status information the hub has received from the device.
The hub returns the requested data or a status code. This completes the
transaction. The host doesn't return ACK. If the hub doesn't have the packet
ready to send, it returnsa NYET status code, and the host retries later. The

59

Chapter 3

Table 3-4: When a low- or full-speed device has a transaction on a high-speed
bus, the host uses start-split (SSPLIT) and complete-split (CSPLIT) transactions
with the device's 2.0 hub. The hub is responsible for completing the transaction
at low or full speed and reporting back to the host.

Transaction Phase

Bus Speed |Transction T
= P Taen Data Handshake
Setup. OUT PRE if low speed,| PRE if low speed,| status (except for
LowFull- speed up, L S/FS token data isochronous)
communications . PRE if low gpesd,
with the device IN PRLESIIfFlg\f[\gipe?d '| dataor status |status (except for
isochronous)
Setup, OUT SSALIT, data status (bulk and
High-speed com- (isochronous LS/FS token control only)
munications Olég'fﬁno CSPLIT,
between the 2.0 : LS/FS token daus
hub and host in | transaction)
transactions with SSALIT, status (bulk and
alow- or full- LS/FS token) control only)
speed device IN CHLT
LS/FS tokén) data or status -

device has no knowledge of the complete-split transaction because it com-
pleted the transaction with its hub earlier.

In gplit transactions in interrupt and isochronous transfers, the process is
smilar, but with more grictly defined timing. The god is to transfer data to
the host as soon as possible after the device has data available to send, and to
transfer data to the device just before the device is ready for new data. To
achieve this, isochronous transactions with large packets use multiple start
or complete splits, transferring a portion of the datain each.

Unlike with bulk and control transfers, the start-split transactions in inter-
rupt and isochronous transfers have no handshake phase, just the start-gplit
token followed by an IN, OUT, or Setup token and data if it's an OUT or
Setup transaction.

In an interrupt transaction, the hub schedules the start split in the microf-
rame just before the earliest time that the hub is expected to begin the trans-
action with the device. For example, assume that the microframes in aframe

60

Inside USB Transfers

are numbered in sequence, YO through Y7. If the start split is in YO, the
transaction with the device may occur as early as YI. The device may have
data or a handshake response to return to the host as early as Y 2. The results
of previous transactions and bit stuffing can affect when the transaction
with the device actuadly occurs, so the host schedules complete-split transac-
tionsin Y2, Y3, and Y4. If the hub doesn't yet have the information to
return in the complete split, it returns a NYET status code and the host
retries.

Full-speed isochronous transactions can transfer up to 1023 bytes. To ensure
that the data transfers just in time, or as soon as the device has data to send
or is ready to receive data, transactions with large packets use multiple start
splits or complete splits, with up to 188 bytes of data in each. This is the
maximum amount of full-speed data that can transfer in a microframe. A
single transaction's data can require up to eight start-split or complete-salit
transactions.

In an isochronous IN transaction, the host schedules complete-split transac-
tions in every microframe where it's expected that the device will have at
least a portion of the data to return. Requesting the data in smaller chunks
ensures that the host receives the data as quickly as possible. The host
doesn't have to wait for all of the data to transfer from the device at full
speed before beginning to retrieve it.

In an isochronous OUT transaction, the host sends the data in one or more
start-gplit transactions. The host schedules the transactions so the hub's
buffer will never be empty, but will contain as few bytes as possible. Each
SPLIT packet contains bits to indicate its data's postion in the low- or full-
speed data packet (beginning, middle, end, or dl). There is no complete-
split transaction.

Ensuring that Transfers Are Successful

To help ensure that every transfer succeeds, USB uses handshaking and
error-checking.

61

Chapter 3

Handshaking

Like other interfaces, USB uses status and control, or handshaking, infor-
mation to help to manage the flow of data. In hardware handshaking, dedi-
cated lines carry the handshaking information. An example is the RTS and
CTS lines in the RS-232 interface. In software handshaking, the same lines
that carry the data also carry handshaking codes. An example is the XON
and XOFF codes transmitted on the data linesin RS-232 links.

USB uses software handshaking. A code indicates the success or failure of al
transactions except in isochronous transfers. In addition, in control trans-
fers, the Status stage enables a device to report the success or failure of the
entire transfer.

Most handshaking signals transmit in the handshake packet, though some
use the data packet. The defined status codes are ACK, NAK, STALL,
NYET, and ERR. A sixth status indicator is the absence of an expected
handshake code, indicating a more serious bus error. In al cases, the receiver
of the handshake, or lack of one, uses the information to help it decide what
to do next. Table 35 shows the status indicators and where they transmit in
each transaction type.

ACK

ACK (acknowledge) indicates that a host or device has received data without
error. Devices must return ACK in the handshake packets of Setup transac-
tions. Devices may also return ACK in the handshake packets of OUT
transactions. The host returns ACK in the handshake packets of IN transac-
tions.

NAK

NAK (negative acknowledge) means the device is busy or has no data to
return. If the host sends data at a time when the device is too busy to accept
it, the device sends a NAK in the handshake packet. If the host requests data
from the device when the device has nothing to send, the device sends a
NAK in the data packet. In either case, NAK indicates a temporary condi-
tion, and the host retries |ater.

62

Inside USB Transfers

Table 3-5: The location, source, and contents of the handshake signal depend
on the type of transaction.

Transaction type| Data packet Data packet Handshake H%na%?(heatke
or PING query | source contents packet source | PITKE
Setp host data device ACK
ouT host data device ACK.
NAK,
STALL,
NYET (high
speed only), ERR
(fromhubin
complete split)
device data, host ACK
NAK,
STALL,
ERR (from hubin
complete split)
. none none device A,
(high spesd only) NAK,
STALL

Hosts never send NAK. Isochronous endpoints don't support NAK because
they have no handshake packet for returning the NAK. If a device or the
host misses isochronous data, it's gone.

STALL

The STALL handshake can have any of three meanings. unsupported con-
trol request, control request failed, or endpoint failed.

When a device receives a control-transfer request that the endpoint doesn't
support, the device returns a STALL to the host. The device adso sends a
STALL if it supports the request but for some reason can't take the requested
action. For example, if the host sends a Set Configuration request that
reguests the device to set its configuration to 2, and the device supports only
configuration 1, the device returns a STALL. To clear this type of STALL,
the host just needs to send another Setup packet to begin a new control
transfer. The specification cals this type of stall a protocol sdl.

63

Chapter 3

Another use of STALL is to respond to transfer requests when the end-
point's Halt festure is set, indicating that the endpoint is unable to send or
receive data at al. The specification calsthistype of stal a functional stall.

Buk and interrupt endpoints must support the functiona all. Although
control endpoints may aso support this use of STALL, it's not recom-
mended. A control endpoint in a functiona stal must continue to respond
normally to other requests related to contrdling and monitoring the STALL
condition. And if the endpoint is capable of doing this, it's clearly capable of
sending and receiving data and shouldn't be staled! Isochronous endpoints
don't support STALL because they have no handshake packet for returning
the STALL

On receiving a functional STALL, the host drops all pending requests to the
device and doesn't resume communications until it has sent a successful
regquest to clear the Halt feature on the device. Hosts never send STALL.

NYET

Only high-speed devices use NYET, which stands for not yet. High-speed
bulk and control transfers have an improved protocol that enables the host
to find out before sending data if a device is ready to receive it. At full and
low speeds, when the host wants to send data in a control, bulk, or interrupt
transfer, it sends the token and data packets and receives a reply from the
device in the handshake packet of the transaction. If the device isn't ready
for the data, it returns a NAK and the host tries again later. This can waste a
lot of bustime if the data packets are large and the device is often not ready.

High-speed bulk and control transactions with multiple data packets have a
better way to do it. After receiving a data packet, a device endpoint can
return a NYET handshake, which says that the data was accepted but the
endpoint isn't yet ready to receive another data packet. When the host
thinks the device might be ready, it sends a PING token packet, and the
endpoint returns an ACK to indicate it's OK to send the next data packet or
NAK or STALL if it's not OK. Sending a PING is more efficient than send-
ing the entire data packet only to find out the device wasn't ready and hav-
ing to resend later.

64

Inside USB Transfers

Even after responding to a PING or OUT with ACK, the endpoint is
allowed to return NAK on receiving the data packet that follows, though
this should be rare. The host then tries again with another PING.

A 2.0 hub may dso use NYET in complete-split transactions, as described
earlier. Hosts and low- and full-speed devices never send NYET.

ERR

The ERR handshake is used only by high-speed hubs in complete-split
transactions. ERR indicates the device didn't return an expected handshake
in the transaction the hub is completing with the host.

No Response

The final type of status indication occurs when the host or a device expects
to recelve a handshake, but receives nothing. This usualy indicates that the
receiver's error-checking cal culation detected an error and informs the
sender that it should try again or if multiple tries have failed, take other
action.

Reporting the Status of Control Transfers

In addition to reporting the status of transactions, the same ACK, NAK,
and STALL codes report the success or failure of complete control transfers.
An additional status code is a zero-length data packet, which reports success-
ful completion of a control transfer with a host-to-device Data stage. Table
3-6 shows the locations of the different status indicators for control trans-
fers.

For control Write transfers, where the device receives data in the Data stage,
the transfer's status is returned in the data packet of the Status stage. A zero-
length data packet means the transfer was successful. Or the device may
return a NAK or STALL. The host then returns an ACK i the handshake
packet of the Status stage to indicate that it received the response.

For control Read transfers, where the host receives data in the Data stage,
the device returns the status of the transfer in the handshake packet of the
Status stage. The host normally waits to receive al of the packets in the Data

65

Chapter 3

Table 3-6: Depending on the direction of the Data stage, the status information
for a control transfer may be in the data or handshake packet of the Status

stage.
Transfer Type and Status Stage Status stage's data | Status stage's hand-
Direction Diredtion packet shake packet
Device sends status:
Control Write (Host O-length data packet
sends data to IN (success), NAK Host returns ACK
device) (busy), or STALL
(failed)
Device sends status:
Control Read (Device ouT Host sends O-length ACK (success),
sends data to host) data packet NAK (busy), or
STALL (failed)

stage, then sends a zero-length data packet in the Status stage. The device
responds with ACK, NAK, or STALL. However, if the host begins the Sta-
tus stage before al of the data packets have been sent, the device must aban
don the Data stage and return a status code.

Error Checking

The specification for USB hardware, including the drivers, receivers, and
cables, spdls out desgn and performance requirements that ensure that
errors due to line noise will be rare. Still, especidly because the interface uses
externa cabling, there is a chance that a noise glitch or an unexpectedly dis-
connected cable could corrupt a transmission. For this reason, USB packets
include error-checking bits that enable a receiver to identify virtualy any
received data that doesn't match what was sent. In addition, for transfers
that require multiple transactions, a data-toggle value keeps the transmitter
and receiver synchronized to ensure that no transactions are missed entirely.

Error-checking Bits

All token, data, and Start-of -Frame packets include bits for use in aror-
checking. The bit values are calculated using a mathematical agorithm, or
procedure, called the cyclic redundancy check (CRC). The specifi-

66

Inside USB Transfers

cation has details on how the CRC is cdculated. It's not something you'll
ever have to do in code, however, because the hardware handlesiit.

The CRC is applied to the data to be checked. The transmitting device per-
forms the calculation and sends the result dong with the data. The receiving
device performs the identical calculation on the received data. If the results
match, the data has arrived without error and the receiving device returns an
ACK. If the results don't match, the receiving device sends no handshake.
This tells the sender to retry.

Typicaly, the host tries a total of three times, though the specification gives
the host some flexibility in determining he number of retries. If there's ill
no handshake, the host gives up and informs the driver of the problem.

The PID field in token packets uses a simpler form of error checking. The
lower four bits in the field are the PID, and the upper four bits are its com-
plement. The receiver can check the integrity of the PID by complementing
the upper four bits and ensuring that they match the PID. If not, the packet
is corrupted and is ignored.

The Data Toggle Bit

In transfers that require multiple transactions, te data-toggle bit can ensure
that no transactions are missed by keeping the transmitting and receiving
devices synchronized. The data-toggle bit is included in the PID field of the
token packets for IN and OUT transactions. DATAO is a code of 0011, and
DATAL is 1011, so hit 3 indicates the data-toggle state. In controller chips,
a register bit often indicates the data-toggle state. Another name for this bit
isDATAO/1, sometimes aso caled DATAL/0 (1).

Both the sender and receiver keep track of the data toggle. On configuring
the device, the bits on both are set to DATAO.

When the receiver detects an incoming data transaction, it compares the
received data-toggle bit to the state of its own data toggle. If the bits match,
the receiver toggles its bit and returns an ACK handshake packet to the
sender. The ACK causes the sender to toggle its hit.

67

Chapter 3

The next received packet in the transfer should contain a data-toggle of
DATAI, and again the receiver toggles its bit and returns an ACK. The data
toggle continues to alternate until the transfer compl etes.

If the receiver is busy, it returns a NAK. If it detects corrupted data, it
returns no response. If the sender doesn't receive an ACK, it doesn't toggle its
bit and instead tries again with the same data and data toggle.

If areceiver returns an ACK but for some reason the sender doesn't see it,
the sender will think that the receiver didn't get the data and will try again,
with the same data and data-toggle bit. In this case, the receiver of the
repeated data doesn't toggle its bit and ignores the data, but does return an
ACK. This re-synchronizes the data toggles. The same thing happens if the
sender mistakenly sends the same data toggle twice in arow.

A Windows host handles the data toggles without requiring any user pro-
gramming. Some periphera controller chips adso handle the data-toggles
completely automatically, while others require some firmware control.

In some cases, if the device is interested only in receiving the newest data
and doesn't care about the sequence, it won't bother to compare the data tog-
gles. Instead, it can just return ACKs without comparing or toggling the hit.

In full-speed isochronous transfers, the host aways uses a data toggle of
DATAO. Full-speed isochronous transfers can't use the data toggle because
they have no handshake packet for returning an ACK or NAK and no time
to resend missed data.

Some high-speed isochronous transfers use DATAO, DATAI, and additional
PIDs of DATA2 and MDATA. High-speed isochronous IN transfers that
have two or three transactions per microframe use DATAO, DATAI, and
DATAZ2 encoding to indicate the transaction's position in the microframe:

Number of IN Transactions Data PID
in the Microframe First Transaction| Second Transaction| Third Transaction
1 DATAO - -
2 DATAI DATAO -
3 DATA2 DATAI DATAO

Inside USB Transfers

High-speed isochronous OUT transfers that have two or three transactions
per microframe use DATAO, DATAL, and MDATA encoding to indicate
whether more data will follow in the microframe:

Number of OUT Data PID:
Transactions in the
Microframe First Transaction |Second Transaction| Third Transaction
1 DATAO - -
2 MDATA DATA1 -
3 MDATA MDATA DATA2

69

A Transfer Type for Every Purpose

A

A Transfer Type for
Every Purpose

Now that you know a little more about how transfers work, it's time to look
in more detail a the four transfer types. control, bulk, interrupt, and isoch+
ronous.

Control Transfers

Control transfers have two uses. They carry the requests that are defined by
the USB specification and used by the host to learn about and configure
devices. And they can also carry requests defined by a class or vendor for any
other purpose.

Availability

Every device must support control transfers over the default pipe at End-
point 0. A device may aso have additional pipes configured for control

70

Chapter 4

transfers, but in redlity there's no need for more than one. Even if a device
needs to send a lot of control requests, the host may alocate bandwidth
according to the number and size of requests, rather than by the number of
control pipes, so additiona control endpoints would offer no advantage.

Structure

As Chapter 3 explained, control transfers use a defined structure with two or
three stages: Setup, Data (optional), and Status. A stage consists of one or
more transactions.

Every control transfer must have Setup and Status stages. The Data stage is
optional, though a particular request may require it. Because every control
transfer requires transferring information in both directions, the control
transfers message pipe uses both the IN and OUT addresses of the end-

point.

In a control Write transfer, the data in the Data stage travels from the host to
the device. In a control Read transfer, data in the Data stage travels from the
device to the host. Figure 4-1 and Figure 4-2 show the stages of control
Read and Write low- and full-speed transfers on a low/full-speed bus. There
are differences, described later in this chapter, for some high-speed transfers
and for low- and full-speed transfers with 2.0 hubs.

In the Setup stage, the host begins a Setup transaction by sending informa-
tion about the request. The token packet contains a PID that identifies the
transfer as a control transfer. The data packet contains information about
the request, including the request number, whether or not the transfer has a
Data stage, and if so, in which direction the data will travel.

The USB specification defines 11 standard requests. Successful enumeration
requires specific responses b some requests, such as the one that sets the
devices address. For other requests, a device can return a code that indicates
that the request isn't supported. A specific class may require a device to sup-
port class-specific requests, and any device may support vendor-specific or
device-specific requests.

71

COMTROL WRITE TRANSFER,
TOREN FACKET
HOST » DEWICE

|DLE—— SETUP

A Transfer Type for Every Purpose

SETUP TRAMGACT 10M
DATA PACKET
HOST } DEYICE

HANDSHAKE PACHET
DEVICE HO3T

THE HIGT SENDS
A SETUR PACKET

DATA ACK IBLE
DATAR

THE HOST SENDS THE DEV | CE

THE REQUEST. HUST RETURN

THIS PACKET 15 AN ACK.

ALWAYS B BYTES

COMTROL WRITE TRANSEER

DATA TRANSACT[ONLS]

A COWTROL WRAITE TRAMSFER MAY HAVE @ OR HORE DATA TRANSACTIONS

TAKEM PACKET
HOST » DEYICE

IDLE ——

THE HOST SEMDS
AN TOUT" PACKET.

QLT [r——DATA

BATA PACKET
HOET DEYICE

HANDSHAKE PACKET
BEVICE » HOST

THE FI1RST DATA
PACKET [5 DATAI.
ANY DATA PACKETS
THAT FOLLOW
ALTERMATE DATA®/|

THE HOST SEND3I
DATA

ACE F——IDLE

\ HAK — |BLE

\\ ———
STALL '_lt:'LE

\ DATA ERROR IDLE

THE DEYICE
BETURNS
STaTUE

COMTROL WR|TE TRANSFER,

TOKEM PACKET
HOET » DEVICE

STATUS TRAMSACTION
BATA PACKET
DEVICE » HOST

HANDSHAKE PACKET
HOET ¥ DEYICE

IDLE—| IN

THE HOST SENMDS
AN “IN" PACKET

\
\

B-LENGTH
g MK f— 1DLE
BATAL
it F—1puE ™ BATARREOR .o
§ STALL = IDLE
DATA ERROR . o
THE DEVICE iIF THE HOST
RETURNS RECEIVED THE
STATUS DATA WITHOUT

ERRGR, IT
BETURNE AN ALK .

Figure 4-1: A control Write transfer contains a Setup transaction, zero or more
Data transactions, and a Status transaction. Not shown are the PING protocol
used in high-speed transfers with multiple data packets and the spilit transactions

used with low- and full-speed devices on a high-speed bus.

72

Chapter 4

COMTROL READ TRAMSFER,
TOKEN PACKET

HOST » DEVICE

I1BLE ——{ EETUF

SETUP TRAMSACTION
DPATA PACRET

HO3T) DEVICE

HAMDSHAKE PACKET

DEVICE) HOST

OATA p——————] AR —— |DLE
DATAR

THE HOST SENDS THE DBEYICE

THE DATA MUST RETURN

THIS PACKET 1% AH ALK

k]
ALWAYS. & BYTES.

EHN'IEDL AEAD TRAMIFER, DATA TRAMSACTIQM{S)

el
TOKEN PACKET

HOST » DEYICE

1BLE 1M

THE HOST SENDS
AN TINT PACKET

DATA PACKET
DEYICE } HOST

ATA
TROL READ TRAMSFER MAY HAVE | OR MORE DATA TRANSACT [OWS
HANDSHAKE PACKET

HOST 3 DEVICE

ACK IBLE
PACKE! 15 DATAI
ANY DATA PACKETS DATA ERROR o p
THAT FOLLOW
ALTERMATE DATAR/ |
— |DLE
— |DLE
DATA ERROR .
THE DEVICE IF THE HOST
SEMDS DATA RECE|VED THE
R ANOTHER TA WITHOUT
RES PONSE Eimu.l o

IT
RETURNE AN ACK .

-I:‘HTHL'IL READ TRAMSFER, STATUS TRANSACT [OM

TOKEN PACKET
HOST » DEYICE

DATA PACKET
HOET » DEYICE

1DLE out

e

THE HOST SEMNDS

AN TOUT™ PACKET

B-=LENGTH
DATA

BATAL

THE HOET SEHDS
A B-LENCTH DATA
PACKET.

HANDIHAKE PACKET
DEVICE » HOST

ACK —— IDLE

= IGLE

= |BLE

\OATA ERROR IBLE
THE DEVICE
RETURNS
STATUS

Figure 4-2: A control Read transfer contains a Setup transaction, one or more

data transactions, and a status transaction. Not shown are the split
transactions used with low- and full-speed devices on a high-speed bus.

73

A Transfer Type for Every Purpose

When a Data stage is present, it consists of one or more IN or OUT transac-
tions, adso caled Data transactions. Depending on the request, the host or
peripheral may be the source of these transactions, but all data packets in
this (or any) stage must be in the same direction.

As described in Chapter 3, if a high-speed control Write transfer has more
than one data packet in the Data stage, and if the device returns NYET after
receiving a data packet, the host uses the PING protocol before sending the
next packet.

The Status stage consists of one IN or OUT transaction, also caled the sta-
tus transaction. In the Status stage, the device reports the success or failure
of the previous stages. The source of the Status stage's data packet is the
receiver of the data in the previous Data transaction. When there is no Data
stage, the device sends the Status sage's data packet. The data or handshake
packet sent by the device in the Status stage contains a code that indicates
the success or failure of the transfer's Setup and Data stages.

If a host is doing a control transfer with a low- or full-speed device on a
high-speed bus, the host uses the split transactions described in Chapter 3
for al of the transfer's transactions. To the device, the transaction is no dif-
ferent. The devices hub carries out the transaction with the device and
reports back to the host when requested.

Data Size

The maximum size of the data packet in the Data stage varies with the
device's speed. For low-speed devices, the maximum is 8 bytes. For full
speed, the maximum may be 8, 16, 32, or 64 bytes. For high speed, the
maximum must be 64 bytes. These bytes include only the information
transferred in the data packet, excluding the PID and CRC hits.

All data packets except the last must be the maximum packet size. The host
reads the maximum packet size from the descriptors retrieved during enu-
meration. For the Default Control Pipe, the size is in the device descriptor.
For other control endpoints, the size is in the endpoint descriptor. If a trans-
fer has more data than will fit in one data transaction, the host sends or
reguests the data in multiple transactions.

74

Chapter 4

In some control Read transfers, the amount of data returned by the device
can vary. If the amount is less than the requested number of bytes and an
even multiple of the maximum packet size, the device should indicate that
there is no more data to send by returning a Gbyte data packet in response
to the next IN token packet.

Speed

The host must make its best effort to ensure that al control transfers get
through as quickly as possible. The host controller reserves a portion of the
bus bandwidth for control transfers: 10 percent for low and full speed and
20 percent for high speed. If the control transfers don't need this much time,
bulk transfers may use what remains. If the bus has unused bandwidth, con-
trol transfers may use more than the reserved amount.

The hogt attempts to parcel out the available time as fairly as possible to al
requests. Within a transfer, one frame or microframe may carry multiple
transactions, or the transactions may be in different (micro)frames.

There are two opinions on whether control transfers are appropriate for
transferring data other than configuration data. Some say that control trans-
fers should be reserved for servicing the standard USB requests as much as
possible. This helps to ensure that the transfers complete quickly by keeping
the bandwidth reserved for them as open as possible. But the specification
doesn't forbid other uses for control transfers, and others believe that devices
should be free to use control transfers for any purpose. Low-speed devices
have no other choice except periodic interrupt transfers, which can waste
bandwidth if data transfers are infrequent.

Table 41 compares the amount of data that each transfer type can move at
each of the three speeds. Control transfers aren't the most efficient way to
transfer data. In addition to the data being transferred, each transfer with
one data packet has an overhead of 63 bytes (low speed), 45 bytes (full
speed), or 173 bytes (high speed). Each Data stage requires token and hand-
shake packets, so stages with larger data packets are more efficient.

A single low-speed control transfer with 8 data bytes uses 29% of a frames
bandwidth, though the transfer's individual transactions may be spread

75

A Transfer Type for Every Purpose

Table 4-1: The maximum possible rate of data transfer varies greatly with the
transfer type and bus speed.

Maximum data-transfer rate per endpoint (kilobytes/second with
Transfer Type data payload/transfer = maximum packet size for the speed)
Low Speed Full Speed High Speed
Control 24 832 15872
Interrupt 0.8 64 24576
Bulk 1216 53,248
not allowed
Isochronous 1023 24576

among multiple frames. In a control transfer with multiple data packets in
the data stage, the data may transfer in the same or different (micro)frames.

If the bus is very busy, al control transfers may have to share the reserved
portion of the bandwidth. At low speed, the reserved bandwidth requires
three frames to complete one 8-byte transfer. At full speed, the reserved
bandwidth can carry one 64-byte transfer per frame (though again, any one
transfer may be spread over multiple frames). And at high speed, the
reserved bandwidth can carry six 64-byte transfers per microframe, or 512
per frame.

Devices don't have to respond immediately to control-transfer requests. The
specification has timing limits that apply to most requests. However, a
device class may require faster response to standard and class-specific
requests. Where dtricter timing isn't specified, in a transfer where the host
requests data from the device, the device may delay as long as 500 millisec-
onds before it has the data ready for the host. To find out if data is available,
the host sends a token packet requesting the data. If the data is ready, the
device sends it immediately in that transaction's data packet. If not, the
device returns a NAK to advise the host to retry later. The host keeps trying
at intervals, for up to 500 milliseconds.

In a transfer where the host sends data to the device, the device can delay as
long as 5 seconds before accepting all of the data and completing the Status
stage. The 5 seconds doesn't include any delays the host adds between pack-
ets. In a transfer with no Data stage, the device must complete the request
and the Status stage within 50 milliseconds.

76

Chapter 4

Detecting and Handling Errors

If a device doesn't return an expected handshake packet during a control
transfer, the host tries twice more. If the host receives no response after a
tota of three tries, it notifies the software that requested the transfer and
stops communicating with the endpoint until the problem is corrected. The
two retries include only those sent in response to no handshake at al. A
NAK isn't an error.

Control transfers use data-toggle bits to ensure that no data is lost. In the
data stage of a Control Read transfer, on receiving a data packet from the
device, the host normally returns an ACK, then sends an OUT token packet
to begin the Status stage. If the device for any reason doesn't see the ACK
returned after the transfer's final data packet, it must interpret a received
OUT token packet as evidence that the handshake was returned and the
Status stage can begin.

Devices must accept al Setup packets. If a new Setup packet arrives before a
previous transfer completes, the device must abandon the previous transfer
and start the new one.

Bulk Transfers

Bulk transfers are useful for transferring data when time isn't critical. A bulk
transfer can send large amounts of data without clogging the bus, because
the transfers defer to the other transfer types and wait until time is available.
Uses for bulk transfers include sending data from the host to a printer, send-
ing data from a scanner to the host, and reading and writing to a disk. On
an otherwise idle bus, bulk transfers are the fastest transfer type.

Availability

Only full- and high-speed devices can do bulk transfers. Devices aren't
required to support bulk transfers, though a specific device class may require
it.

77

A Transfer Type for Every Purpose

Structure

A bulk transfer consists of one or more IN or OUT transactions (Figure
4-3). A bulk transfer is one-way. A transfer's transactions must al be IN
transactions, or adl OUT transactions. Transferring data in both directions
requires a separate pipe and transfer for each direction.

A bulk transfer ends in one of two ways. when the requested amount of data
has transferred, or when a data packet contains less than the maximum data,
including a zero-length packet.

To conserve bus time, the host uses the PING protocol in some high-speed
contral transfers. If a high-speed bulk OUT transfer has more than one data
packet and if the device returns NYET after receiving one of these packets,
the host uses PING to find out when it's OK to begin the next data transac-
tion. In a bulk transfer on a high-speed bus with a low- or full-speed device,
the host uses split transactions for all of the transfer's transactions.

Data Size

A full-speed bulk transfer can have a maximum packet size of 8, 16, 32, or
64 bytes. For high speed, the maximum must be 512 bytes. During enumer-
ation, the host reads the maximum packet size for each bulk pipe from the
device's descriptors. The amount of data in a transfer may be less than, equal
to, or greater than the maximum size. If the amount of data wont fit in a
single packet, the host completes the transfer using multiple transactions.

Speed

The host controller guarantees that bulk transfers will complete eventualy,
but doesn't reserve any bandwidth for the transfers. Contrd transfers are
guaranteed to have 10 percent of the bandwidth at low and full speeds, and
20 percent at high speed. Interrupt and isochronous transfers may use the
rest. So if abusisvery busy, abulk transfer may take very long.

However, when the bus & otherwise idle, bulk transfers can use the most
bandwidth of any type, and they have a low overhead, so they're the fastest
of al. When an endpoint's maximum packet size is less than the maximum,

78

Chapter 4

BULK OR IMTERRUPT IMN TRANSACTION

TOKEN PACKET DATA PACKET HANDSHAKE PACKET
HOST » DEVICE DEVICE » HOST HOST » DEVICE
DATA, ALK F—"10E
: AT ERAROR
NAK | loLe NPATA ERROR__ p
\' STALL —[DLE
THE HOST SEND3 THE DEVICE RESPONDS IF THE HO3T
AN TINT PACKET. WLITH DATA OR STATUS RECEIVED THE
RATA WITHOUT
ERROR, IT

RETURNS AN ACK.

BULK OR INTERRUPT QUT TRANSACT [ON
TOKEN PACKET DATA PACKET HANDSHAKE PACKET

HOST » DEVICE HOST » DEVICE DEVICE » HOST

! B b= A
| OLE ouT ——— |_ DATA | ACK R— IDLE
LI ol HUT e ARSI

|
\ { STALL +—— [DLE

\L]

“DATA ER
DATA ERROR OLE

THE HOST SENDS THE HOST SENDS THE DEYICE
AN “OUT" PACKET. DATA RETURNS
STATUS

Figure 4-3: Bulk and interrupt transfers use IN and OUT transactions. Their
structure is identical, but the host schedules them differently. Not shown are the
PING protocol used in high-speed bulk OUT transfers with multiple data packets
or the split transactions used with low- and full-speed devices on a high-speed

bus.

79

A Transfer Type for Every Purpose

some hosts schedule no more than one packet per frame, even if more band-
width is available.

At full speed on an otherwise idle bus, up to nineteen 64-byte bulk transfers
can transfer up to 1216 data bytes per frame, for a data rate of 1.216 Mega-
bytes per second. This leaves 18% of the bus bandwidth free for other uses.
The protocol overhead for a bulk transfer with one data packet is 13 bytes at
full speed and 55 bytes at high speed.

At high speed on an otherwise idle bus, up to thirteen 512-byte bulk trans-
fers can transfer up to 6656 data bytes per microframe, for an impressive
data rate of 53.248 Megabytes per second, using al but 2% of the bus band-
width. The protocol overhead for a bulk transfer with one data packet is 55
bytes.

Detecting and Handling Errors

Bulk transfers use error detecting. If a device doesn't return an expected
handshake packet, the host tries up to twice more. The host will aso retry

without limit on receiving NAK handshakes. Bulk transfers use data-toggle
bits to ensure that no datais lost.

Interrupt Transfers

Interrupt transfers are useful when data has to transfer within a specific
amount of time. Typica applications include keyboards, mice and other
pointing devices, joysticks, and hub status reports. Users don't want a
noticeable delay between pressing a key or moving a mouse and seeing the
result on screen. And a hub needs to report the attachment or remova of
devices promptly. Low-speed devices, which support only control and inter-
rupt transfers, are likely to use interrupt transfers for generic data. Interrupt
transfers are aso popular because Windows includes drivers that enable

gpplications to do interrupt transfers with devices that conform to the HID
Specification.

80

Chapter 4

At low and full speeds, the bandwidth available for an interrupt
endpoint is limited, but high speed loosens the limits and enables an
interrupt endpoint to transfer almost 400 times as much data as full
speed.

The name interrupt transfer suggests that a device can cause a
hardware interrupt that results in a fast response from the PC. But
the truth is that interrupt transfers, like all other USB transfers, occur
only when the host polls a device. The transfers are nterrupt-like,
however, because they guarantee that the host will request or send
data with minimal delay.

Availability
All three speeds support interrupt transfers. Devices aren't required
to support interrupt transfers, but a device class may require t. For

example, a HID-class device must support interrupt IN transfers for
sending data to the host.

Structure

An interrupt transfer consists of one or more IN transactions or one or
more OUT transactions. The structure of an interrupt transfer is
identical to that of a bulk transfer (Figure 43). The only difference is
in the scheduling. An interrupt transfer is one-way; the transactions
must be all IN transactions, or all OUT transactions. Transferring
data in both directions requires a separate transfer and pipe for each
direction.

An interrupt transfer ends in one of two ways: when the requested
amount of data has transferred, or when the data packet contains
less than the maximum data, including a zero-length packet.

In an interrupt transfer on a high-speed bus with a low- or full-speed
device, the host uses the split transactions described in Chapter 3
for all of the transfer's transactions. Unlike high-speed bulk OUT
transfers, high-speed interrupt OUT transfers don't use the PING
protocol when a transfer has multiple transactions.

81

A Transfer Type for Every Purpose

Data Size

For low-speed devices, the maximum packet size can be any value
from 1 to 8 bytes. For full speed, the maximum can range from 1 to 64
bytes. For high speed, the range is 1 to 1024 bytes. If the amount of
data in a transfer won't fit in a single transaction, the host uses
multiple transactions to complete the transfer.

Speed

An interrupt transfer guarantees a maximum latency, or time between
transaction attempts. In other words, there is no guaranteed transfer
rate, just the guarantee that there will be no more than the request
maximum latency between transaction attempts.

High-speed interrupt transfers can be very fast. A high-speed transfer
can request up to three 1024-byte packets in each 125-microsecond
microframe, which works out to 24.576 Megabytes per second. An
endpoint that requires more than 1024 bytes per microframe is a
high-bandwidth end-point. A full-speed transfer can request up to 64
bytes in each I-millisecond frame, or 64 kilobytes per second. And a
low-speed transfer can request up to 8 bytes every 10 milliseconds,
or 800 bytes per second.

The endpoint descriptor stored in the device specifies the maximum
latency. For low-speed devices, the maximum latency can be any
value between 10 and 255 milliseconds. For full speed, it can be
anywhere between 1 and 255 milliseconds. For high speed, the range
is from 125 microseconds to 4 seconds, in increments of 125
microseconds (the width of a microframe). In addition, a high-speed
interrupt endpoint with a maximum latency of 125 microseconds can
request 1, 2, or 3 transactions per interval. The host controller
ensures that transaction attempts occur within the specified time.

The host may begin each transaction at any ime up to the specified
maximum, compared to when the previous transaction began. So,
for example, with a 10-millisecond maximum at full speed, 5 transfers
could take as long as 50 milliseconds or as little as 5 milliseconds.
However, OHCI host controllers use values that correspond to
powers of 2, with a maximum of 32 milliseconds. So for a full-speed
device that requests a maximum anywhere

82

Chapter 4

from 8 to 15 milliseconds, the OHCI host begins a transaction every
8 milliseconds. A maximum latency anywhere from 32 to 255 will
cause a transaction attempt every 32 milliseconds. However, a device
should assume only that the host will comply with the specification.
The device shouldn't rely on behavior that is specific to a type of host
controller.

Because the host is free to transfer data more quickly than the
requested rate, interrupt transfers don't guarantee a precise rate of
delivery. The only exceptions are when the maximum latency equals
the fastest possible rate. For example, with a 1 .x host, a full-speed
interrupt pipe configured for 1 transaction per millisecond will use this
exact rate.

An otherwise idle bus can carry up to six low-speed, 8-byte
transactions per frame. At full speed, the limit is nineteen 64-byte
transactions. Since the minimum time between transfers is one
frame or more, each transaction in the frame would have to be for a
different endpoint address. In reality, a host may not be able to
schedule as many as nineteen full-speed interrupt transactions in a
single frame, so the practical maximum number of interrupt
transactions is likely to be less.

At high speed, the limit is two transfers per microframe, each
consisting of three 1024-byte transactions.

The protocol overhead per transfer with one data packet is 19 bytes
at low speed, 13 bytes at full speed, and 55 bytes at high speed.
High-speed interrupt and isochronous transfers combined can use
no more than 80 percent of a microframe. Full-speed isochronous
transfers and low- and full-speed interrupt transfers combined can
use no more than 90 percent of a frame. The section More about
Time-critical Transfers later in this chapter has more about the
capabilities and limits of interrupt transfers.

Detecting and Handling Errors

If a device doesn't return an expected handshake packet, host
controllers in PCs will retry up to twice more. The host will also retry
without limit on receiving NAKSs. Interrupt transfers can use data-
toggle values to ensure that all data is received without errors. As
explained earlier, if the receiver cares only about the most recent
data, it may ignore the data toggle.

83

A Transfer Type for Every Purpose

Isochronous Transfers

Isochronous transfers are streaming, real-time transfers that are
useful when data must arrive at a constant rate, or by aspecific
time, and occasional errors can be tolerated. At full speed,
isochronous transfers can transfer more data per frame than interrupt
transfers. But there is no provision for retransmitting data received
with errors.

Examples of uses for isochronous transfers include encoded voice
and music to be played in real time. But data that will eventually be
used at a constant rate doesn't necessarily require an isochronous
transfer. For example, a host may use a bulk transfer to send a music
file to a device. After the device has received the entire file, it can
play it at the appropriate rate.

Nor does the data in an isochronous transfer have to be used at a
constant rate. An isochronous transfer is a way to ensure that a large
block of data gets through quickly on a busy bus, even if the data
doesn't need to transfer in real time. Unlike with bulk transfers, once
an isochronous transfer begins, the host guarantees that the time
will be available to send the data at a constant rate, so the
completion time is predictable.

Availability

Only full- and high-speed devices can do isochronous transfers.
Devices aren't required to support isochronous transfers but a
device class may require it.

Structure

Isochronous means that the data has a fixed transfer rate, with a
defined number of bytes transferring in every frame or microframe.
None of the other transfer types guarantee to send a specific
number of bytes in each frame (with the exception of interrupt
transfers with the shortest possible maximum latency).

A full-speed isochronous transfer consists of one IN or OUT
transaction per frame in one or more frames at equal intervals. High-
speed isochronous transfers are more flexible. They can request as
many as three transactions

84

Chapter 4

per microframe or as little as one transaction every 32,768
microframes. Figure 4-4 shows the packets in full-speed isochronous
IN and OUT transactions. An isochronous transfer is one-way; the
transactions in a transfer must all be IN transactions, or all OUT
transactions. Transferring data in both directions requires a separate
transfer and pipe for each direction.

Before configuring a pipe for isochronous transfers, the host controller
compares the requested buffer size with the available remaining,
unreserved bandwidth on the bus to determine whether the
requested bandwidth is available. A full-speed transfer with the
maximum 1023 bytes per frame uses 69 percent of the USB's
bandwidth. If two full-speed devices want to establish pipes for
transferring 1023 bytes per frame, the host will refuse to configure
the second pipe because the data won't fit in the remaining
bandwidth. If the device supports an alternate interface with smaller
data packets or fewer packets per microframe, the device driver can
request this.

I SOCHRONQUS | N TRANSACTI ON

TOKEN PACKET DATA PACKET
HOST » DEVICE DEVICE » HOST
I1DLE [N DATA IDLE
DATAD
THE HOST SEND3 THE DEVICE RESPONDS
AN TIN" PACKET WITH DATA.
| SOCHRONOUS OUT TRANSACT I OM
TOKEN PACKET DATA PACKET
HOST 3 DEVICE HOST » DEVICE
IDLE - —-l ouT }~ - - = DATA } — |DLE

DATAD
THE HO3T SENDS THE HOST SENDS
AN “0UT" PACKET GATA
Figure 4-4: Isochronous transfers don't have handshake packets, so occasional
errors must be acceptable. Not shown are the split transactions used with full-
speed devices on a high-speed bus or the data sequencing in high-speed
transfers with multiple data packets per microframe.

85

A Transfer Type for Every Purpose

Or the driver can try again later in the hope that the bandwidth will
be available. When the device is configured, the transfers are
guaranteed to have the time they need.

Although isochronous transfers may send a fixed number of bytes per
frame, the data doesn't transfer at a constant number of bits per
second. Each transaction has overhead and must share the bus with
other devices. So the data is actually a burst at 12 or 480 Megabits
per second that may occur any time within the frame or microframe.
If the receiving end wants to use the data at a constant rate, such as
sending it to a speaker, the receiver must convert the received bits to
signals that span the frame time.

Isochronous transfers may also synchronize to another data source or
recipient, or to USB's Start-of-Frame signals. For example, a
microphone's input may synchronize to the output of speakers. The
specification describes several methods of synchronizing to internal
and external clocks. The descriptor for a 2.0 isochronous endpoint
can specify a synchronization type and a usage value that indicates
whether the endpoint is contains data or feedback information used
to maintain synchronization.

If a host is doing an isochronous transfer on a high-speed bus
with a full-speed device, the host uses the split transactions
described in Chapter 3 for all of the transfers transactions.
Isochronous OUT transactions use start-split transactions, but not
complete-splits, because there is no status information to report back
to the host. Isochronous transfers don't use the PING protocol.

Data Size

For full-speed endpoints, the maximum packet size can range from
0 to 1023 data bytes. High-speed endpoints can have a maximum
packet size up to 1024 bytes. If the amount of data won't fit in a
single packet, the host completes the transfer in multiple
transactions.

The amount of data in each frame doesn't have to be the same. For
example, data at 44,100 samples per second could use a sequence
of 9 frames containing 44 samples each, followed by 1 frame
containing 45 samples.

86

Chapter 4

Speed

A full-speed isochronous transaction can transfer up to 1023 bytes
per frame, or up to 1.023 Megabytes per second. This leaves 31% of
the bus bandwidth free for other uses. The protocol overhead is 9
bytes per transfer for a transfer with one data packet, or less than 1%
for a single 1023-byte transaction. The minimum requested
bandwidth for a full-speed transfer is one byte per frame, or 1
kilobyte per second.

A high-speed isochronous transaction can transfer up to 1024 bytes.
An isochronous endpoint that requires more than 1024 bytes per
microframe can request 2 or 3 transactions per microframe, for a
maximum rate of 24.576 Megabytes per second. An endpoint that
requires multiple transactions per microframe is a high-bandwidth
endpoint. The protocol overhead is 38 bytes per transfer for a
transfer with one data packet.

Because high-speed isochronous transfers dont have to do a
transaction in every frame or microframe, they can also request
less bandwidth than full-speed transfers. The minimum requested
bandwidth is one byte every 32,678 microframes, which works out to
one byte every 4.096 seconds. However, any endpoint can transfer
less data than the maximum reserved bandwidth by skipping
available transactions or transferring less than the maximum data
per transfer.

High-speed interrupt and isochronous transfers can use no more
than 80 percent of a microframe. Full-speed isochronous transfers
and low- and full-speed interrupt transfers combined can use no
more than 90 percent of of a frame. An otherwise idle high-speed
bus can carry two isochronous transfers at the maximum rate.

The section More about Time-critical Transfers later in this chapter has
more about the capabilities of isochronous transfers.

Detecting and Handling Errors

The price to pay for guaranteed on-time delivery of large blocks of
data is no error correcting. Isochronous transfers are intended for
uses where occasional, small errors are acceptable. For example,
listeners may tolerate or not

87

A Transfer Type for Every Purpose

notice a short dropout in voice or music. And in reality, under normal
circumstances, a USB transfer should experience no more than a
very occasional error due to line noise. Because isochronous
transfers must keep to a schedule, the receiver can't request a
retransmit of data if it's busy or detects an error. If the receiver
suspects errors, it can ask the sender to resend the entire transfer,
but this isn't very efficient.

More about Time-critical Transfers

Just because an endpoint is capable of a rate of data transfer
doesn't mean that a particular device and host will be able to achieve
it. Several things can limit an application's ability to send or receive
data at the maximum rate that an endpoint and host controller are
capable of. The limiting factors include bus bandwidth, the device's
capabilities, the capabilities of the device driver and application
software, and the latencies due to how Windows manages multi-
tasking.

Bus Bandwidth

When a device requests more interrupt or isochronous bandwidth
than is available, the host will refuse to configure the device. Low- and
full-speed interrupt transfers use little bandwidth, so the host isn't
likely to deny a configuration due to the requirements of these. High-
speed interrupt transfers are a different story. A high-speed
endpoint can request up to three 1024-byte data packets in each
microframe, using as much as 40 percent of the bus bandwidth. To
help ensure that devices will enumerate without problems, the initial,
default data payload of an interrupt endpoint must be 64 bytes or
less. The device driver is then free to try to increase the end-points
reserved bandwidth by requesting alternate interface settings or con-
figurations.

Isochronous endpoints can also cause bandwidth problems. A
frequent problem with isochronous endpoints on 1.x devices was
devices requesting more bandwidth than was available. The host
would properly refuse to configure the device and the user was left
with a device that didn't work without knowing why.

88

Chapter 4

To help ensure that devices will enumerate without problems, the
default interface setting of a 2.0-compliant device must use no
isochronous bandwidth. In other words, the default interface can
transfer no isochronous data at all. An obvious way to ensure this is
to include no isochronous endpoints in the default interface. After
enumeration, the device driver is free to attempt to request
isochronous bandwidth by requesting an alternate interface or
configuration with an isochronous endpoint. Note that even full-
speed endpoints must meet this requirement to be 2.0-compliant.
Microsoft and Intel's PC 2001 System Design Guide also requires the
default interface setting to use zero isochronous bandwidth.

Device Capabilities

If the host has promised that the requested USB bandwidth will be
available, there's still no guarantee that the device will be ready to
send or receive data when needed.

To use interrupt and isochronous transfers effectively, both the
sender and receiver have to be capable of sending and receiving at
the desired rate. If the device is sending data, it must write the data to
send into the transmit buffer in time to enable the hardware to place it
on the bus when the host requests it. If the device is receiving data,
it must read the previous data from its buffer before the new data
arrives, or either the old data will be overwritten or the device will
refuse the new data.

One way to help ensure that the device is always ready for a transfer is
to use double buffering, as described in Chapter 7. This gives the
firmware extra time to load the next data to transfer or to retrieve the
just-received data.

Host Software Capabilities

Another thing that can affect whether or not all available transfers
take place is the capabilities of the device driver and application
software on the host.

A device driver requests a transfer by submitting an 1/0 request
packet (IRP) to a lower-level driver. For interrupt and isochronous
transfers, if there is no outstanding IRP for an endpoint when its
scheduled time comes up, the transaction is skipped. To ensure
that no transfer opportunities are

89

A Transfer Type for Every Purpose

missed, drivers typically submit a new IRP immediately on
completing the previous one.

For some devices, including keyboards and mice, the driver
begins to request interrupt transfers as soon as the driver is loaded
into memory For other devices, the host's driver may begin
requesting transfers only after an application requests to send or
receive data.

The application software that uses the data also has to be able to
keep up with the transfers. For example, the driver for HID-class
devices places report data received in interrupt transfers in a buffer,
and applications use ReadFile to retrieve reports from the buffer. If
the buffer is full when a new report arrives, the driver discards the
oldest report and replaces it with the newest one. If the application
can't keep up, some reports are lost. In some cases, applications can
increase the size of the buffer the driver uses to store received data.
This can help if the application is sometimes busy, but at other
times is free to retrieve the data.

As a general rule, Visual-Basic applications are slower than
applications compiled with Visual C++ or Delphi.

One way to help ensure that an application sends or receives data
with minimal delays is to place the code that communicates with the
device driver in its own program thread. The tread should have few
responsibilities other than managing these communications. In
Visual Basic, an ActiveX Exe server can run in its own thread and
communicate with an application.

Doing fewer, larger transfers rather than multiple, small transfers can
also help. When there are multiple transactions per transfer, the
lower-level drivers take care of the scheduling. An application can
typically send or request a few large chunks of data more quickly
than it can send or request many smaller chunks.

Windows Latencies

Another factor in the performance of time-critical USB transfers is the
latencies, or delays, due to how Windows handles multi-tasking.
Windows was

90

Chapter 4

never designed as a real-time operating system that could guarantee a
rate of data transfer with a peripheral.

Multi-tasking means that multiple program threads can run at the
same time. The operating system grants a portion of the available
time to each thread. Different threads can have different priorities,
but under Windows 98, Windows 2000, and Windows Me, no thread
can be guaranteed CPU time at a defined, precise rate, such as
once per millisecond.

Latencies under Windows are often well under 1 millisecond, but in
some cases a thread can keep other code from executing for over 100
milliseconds. Windows 98's performance tends to be worse than that
of Windows 2000 or Windows Me in this respect.

A USB device and its software have no control over what other
tasks the host CPU is performing, so dealing with these latencies
can be one of the biggest challenges when timing is critical.

In general, it's best to let the device handle any real-time processing
required and make the timing of the host communications as non-
critical as possible. For example, imagine a device that reads a
sensor once per millisecond. The device could attempt to send each
reading to the host in a separate interrupt transfer, but this would
require the driver and application to be able to read a transfer every
millisecond. If the device instead collects a series of readings and
transfers them using less frequent, but larger transfers, the timing in
the host software is less critical. Data compression can also help by
reducing the amount of data that transfers.

91

Enumeration: How the Host Learns about Devices

S

How the Host Learns

Enumeration:
about Devices

Before applications can communicate with a device, the host needs
to learn about the device and assign a device driver. Enumeration
is the initial exchange of information that accomplishes this. The
process includes assigning an address to the device, reading data
structures from the device, assigning and loading a device driver, and
selecting a configuration from the options presented in the retrieved
data. The device is then configured and ready to transfer data using
any of the endpoints in its configuration.

This chapter describes the enumeration process, including the
structure of the descriptors that the host reads from the device during
enumeration. You don't need to know every detail about enumeration
in order to design a USB peripheral, but understanding a certain
amount is essential in creating the

92

Chapter 5

descriptors that will reside in the device and writing the firmware
that responds to enumeration requests.

The Process

One of the duties of a hub is to detect the attachment and
removal of devices. Each hub has an interrupt IN pipe for reporting
these events to the host. On system boot-up, the host polls its root
hub to learn if any devices are attached, including additional hubs
and devices attached to the first tier of devices. After boot-up, the
host continues to poll periodically to learn of any newly attached or
removed devices.

On learning of a new device, the host sends a series of requests
to the device's hub, causing the hub to establish a communications
path between the host and the device. The host then attempts to
enumerate the device by sending control transfers containing
standard USB requests to Endpoint 0. All USB devices must support
control transfers, the standard requests, and Endpoint 0. For a
successful enumeration, the device must respond to each request by
returning the requested information and taking other requested
actions.

From the user's perspective, enumeration should be invisible and
automatic, except for possibly a window that announces the
detection of a new device and whether or not the attempt to
configure it succeeded. Sometimes on first use, the user needs to
provide a disk containing the INF file and device driver.

When enumeration is complete, Windows adds the new device to
the Device Manager display in the Control Panel. Figure 5-1 shows an
example, To view the Device Manager, in Windows 98, click the Start
menu > Settings > Control Panel >System > Device Manager. In
Windows 2000, it's the same except that after clicking System, you
click Hardware, then Device Manager. When a user disconnects a
peripheral, Windows automatically removes the device from the
display.

93

Enumeration: How the Host Learns about Devices

S5 conholiers
Sownd, widen amd Game conliodens

Sytem devaces
i Tape drmve cortrollers
$.Tm drives

General pampn e LISE Hub
Inkal 82371 AB/ES Pl o USE Unnersal Host Controllar
RECEZ-E000

LISE Root Hub

Figure 5-1: The Device Manager in Windows' Control Panel lists all detected
USB devices. Some devices are listed under Universal Serial Bus controllers,
and others are listed by type, such as keyboard or modem.

In a typical peripheral, the device's program code contains the
information the host will request, and a combination of hardware and
firmware decodes and responds to requests for the information.
Some application-specific chips (ASICs) manage the enumeration
entirely in hardware and require no firmware support. On the host
side, under Windows there's no need to write code for enumerating,
because Windows handles it automatically. Windows will look for a
special text file called an INF file that identifies the driver to use for
the device.

Enumeration Steps

During the enumeration process, a device moves through four of
the six device states defined by the specification: Powered, Default,
Address, and

94

Chapter 5
Configured. (The other states are Attached and Suspend.) In each

state, the device has defined capabilities and behavior.

The steps below are a typical sequence of events that occurs during
enumeration under Windows. The device firmware shouldn't assume
that the enumeration requests and events will occur in a particular
order, however. The device should be ready to detect and respond
to any control request at any

time.

1. The user plugs a device into a USB port. Or the system powers
up with a device already plugged into a port. The port may be on the
root hub at the host or attached to a hub that connects
downstream of the host. The hub provides power to the port, and
the device is in the Powered state.

2. The hub detects the device. The hub monitors the voltages on
the signal lines of each of its ports. The hub has a 15-kilohm pull-
down resistor on each of the port's two signal lines (D+ and D-),
while a device has a 1.5-kilohm pull-up resistor on either D+ for a
full-speed device or D- for a low-speed device. High-speed devices
attach at full speed. When a device plugs into a port, the device's
pull-up brings that line high, enabling the hub to detect that a device
is attached. Chapter 18 has more on how hubs detect devices.

On detecting a device, the hub continues to provide power but
doesn't yet transmit USB traffic to the device, because the device isn't
ready to receive it.

3. The host learns of the new device. Each hub uses its interrupt
pipe to report events at the hub. The report indicates only
whether the hub or a port (and if so, which port) has experienced an
event. When the host learns of an event, it sends the hub a
et _Port_Status request to find out more. Get_Port_Status and the
other requests described here are standard hub-class requests
that all hubs understand. The information returned tells the host
when a device is newly attached.

4. The hub detects whether a device is low or full speed. Just
before the hub resets the device, the hub determines whether the
device is low or full speed by examining the voltages on the two
signal lines. The hub detects the speed of a device by determining
which line has the higher voltage when idle. The hub sends the
information to the host in response to the next

95

Enumeration: How the Host Learns about Devices

Get_Port_Status request. USB 1.x allowed the hub the option to
detect device speed just after reset. USB 2.0 requires speed
detection to occur before reset so it knows whether to check for a
high-speed-capable device during reset, as described below.

5. The hub resets the device. When a host learns of a new device,

the host controller sends the hub a Set_Port_Feature request that
asks the hub to reset the port. The hub places the devices USB data
lines in the Reset condition for at least 10 milliseconds. Reset is a

special condition where both D+ and D- are a logic low. (Normally, the
lines have opposite logic states.) The hub sends the reset only to the

new device. Other hubs and devices on the bus don't see it.

6. The host learns if a fall-speed device supports high speed.
Detecting whether a device supports high speed uses two special
signal states. In the Chirp J state, the D+ line only is driven and in the
Chirp K state, the D- line only is driven.

During the reset, a device that supports high speed sends a Chirp K.
A high-speed hub detects the chirp and responds with a series of
alternating Chirp Ks and Js. When the device detects the pattern
KJKJIKJ, it removes its full-speed pull up and performs all further
communications at high speed. If the hub doesn't respond to the
devices Chirp K, the device knows it must continue to communicate at
full speed. All high-speed devices must be capable of responding to
enumeration requests at full speed.

7.The hub establishes a signal path between the device and
the bus.

The host verifies that the device has exited the reset state by sending
a Get_Port_Status request. A bit in the data returned indicates
whether the device is still in the reset state. If necessary, the host
repeats the request until the device has exited the reset state.

When the hub removes the reset, the device is in the Default state.
The device's USB registers are in their reset states and the device is
ready to respond to control transfers over the default pipe at Endpoint
0. The device can now communicate with the host, using the default
address of OOh. The device can draw up to 100 milliamperes from the
bus.

96

Chapter 5

8. The host sends a Get_Descriptor request to learn the
maximum packet size of the default pipe. The host sends the
request to device address 0, Endpoint 0. Because the host
enumerates only one device at a time, only one device will respond
to communications addressed to device address O, even if several
devices attach at once.

The eighth byte of the device descriptor contains the maximum
packet size supported by Endpoint 0. A Windows host requests 64
bytes, but after receiving just one packet (whether or not it has 64
bytes), it begins the status stage of the transfer. On completion of the
status stage, a Windows host requests the hub to reset the device
(step 5). The specification doesn't require a reset here, because
devices should be able to handle the host's abandoning a control
transfer at any time by responding to the next Setup packet. But
resetting is a precaution that ensures that the device will be in a
known state when the reset ends.

9. The host assigns an address. The host controller assigns a
unigue address to the device by sending a Set_Address request. The
device reads the request, returns an acknowledge, and stores the
new address. The device is now in the Address state. All
communications from this point on use the new address. The
address is valid until the device is detached or reset or the system
powers down. On the next enumeration, the device may be assigned
a different address.

10. The host learns about the device's abilities. The host
sends a Get_Descriptor request to the new address to read the
device descriptor, this time reading the whole thing. The descriptor is
a data structure containing the maximum packet size for Endpoint O,
the number of configurations the device supports, and other basic
information about the device. The host uses this information in the
communications that follow.

The host continues to learn about the device by requesting the one
or more configuration descriptors specified in the device descriptor. A
device normally responds to a request br a configuration descriptor
by sending the descriptor followed by all of that descriptor's
subordinate descriptors. But a Windows host begins by requesting
just the configuration descriptor's nine

97

Enumeration: How the Host Learns about Devices

bytes. Included in these bytes is the total length of the configuration
descriptor and its subordinate descriptors.

Windows then requests the configuration descriptor again, this time
using the retrieved total length, up to FFh bytes. This causes the device
to send the configuration descriptor followed by the interface
descriptor(s) for each configuration, followed by endpoint descriptor(s)
for each interface. If the descriptors total more than FFh bytes,
Windows obtains the full set of descriptors on a third request. Each
descriptor begins with its length and type, to enable the host to parse
(pick out the individual elements in) the data that follows. The
Descriptors section in this chapter has more on what each descriptor
contains.

11. The host assigns and loads a device driver (except for
composite devices). After the host learns as much as it can about
the device from its descriptors, it looks for the best match in a device
driver to manage commu nications with the device. In selecting a
driver, Windows tries to match the information stored in the systems
INF files with the Vendor and Product IDs and (optional) Release
Number retrieved from the device. If there is no match, Windows
looks for a match with any class, subclass, and protocol values
retrieved from the device. After the operating system assigns and
loads the driver, the driver often requests the device to resend
descriptors or send other class-specific descriptors.

An exception to this sequence is composite devices, which have
multiple interfaces, with each interface requiring a driver. The host
can assign these drivers only after the interfaces are enabled, which
requires the device to be configured (as described in the next step).

12. The host's device driver selects a configuration. After learning
about the device from the descriptors, the device driver requests a
configuration by sending a Set Configuration request with the
desired configuration num ber. Many devices support only one
configuration. If a device supports multiple configurations, the driver
can decide which to use based on whatever information it has about
how the device will be used, or it may ask the user what to do, or it
may just select the first configuration. The device reads the

98

Chapter 5

request and sets its configuration to match. The device is now in the
Configured state and the device's interface(s) are enabled.

The host now assigns drivers for the interfaces in composite devices.
As with other devices, the host uses the information retrieved from
the device to find a matching driver.

The device is now ready for use.

The (_)ther two device states, Attached and Suspended, may exist at

any time.

Attached state. If the hub isn't providing power (VBUS) to the port,
the device is in the Attached state. This may occur if the hub has
detected anover-current condition, or if the host requests the hub
to remove power from the port. With no power on VBUS, the host
and device cant communicate, so from their perspective, the
situation is the same as when the device isn't attached at all.

Suspend State. The Suspend state means the device has seen no
activity, including Start-of-Frame markers, on the bus for at least 3
milliseconds. In the Suspend state, the device must consume
minimal bus power. Both configured and unconfigured devices must
support this state. Chapter 19 has more details.

Enumerating a Hub

Hubs are also USB devices, and the host enumerates a newly
attached hub in exactly the same way as it enumerates a device. If
the hub has devices attached, the host also enumerates each of
these after the hub informs the host of their presence.

Device Removal

When a user removes a device from the bus, the hub disables the
device's port. The host learns that the removal occurred after polling
the hub, learning that an event has occurred, and sending a
Get_Port_Status request to find out what the event was. Windows
then removes the device from the Device Manager's display and the
device's address becomes available to another newly attached
device.

99

Enumeration: How the Host Learns about Devices

Descriptor Types and Contents

Descriptors are data structures, or formatted blocks of information,
that enable the host to learn about a device. Each descriptor
contains information about either the device as a whole or an
element in the device.

All USB peripherals must respond to requests for the standard USB
descriptors. This means that the peripheral must do two things: store
the information in the descriptors, and respond to requests for the
descriptors in the expected format.

Types

As described above, during enumeration the host uses control
transfers to request descriptors from the device. As enumeration
progresses, the requested descriptors concern increasingly small
elements of the device: first the entire device, then each
configuration, each configuration's interface(s), and finally each
interface's endpoint(s). Table 5-1 lists the descriptor types.

The higher-level descriptors inform the host of any additional, lower-
level descriptors. Each device has one and only one device
descriptor that contains information about the device as a whole and
specifies the number of configurations the device supports. Each
device also has one or more configuration descriptors that contain
information about the device's use of power and the number of
interfaces supported by the configuration. Each interface descriptor
has zero or more endpoint descriptors that contain the information
needed to communicate with an endpoint. An Interface with no end-
point descriptors can still use the control endpoint for
communications.

On receiving a request for a configuration descriptor, the device
should return the configuration descriptor and all of the
configuration's interface, endpoint, and other subordinate descriptors,
up to the requested number of bytes. There is no request to retrieve,
for example, only an endpoint descriptor. Devices that support both
full and high speeds support two additional descriptor types:
device_qualifier and other_speed_configuration. These and their
subordinate descriptors contain information about the device's
behavior when using the speed not currently selected.

100

Chapter 5

Table 5-1: The specification defines standard descriptor types. A device class
may require additional descriptor types.

Descriptor Type

Required?

device

Yes

device_qualifier

Yes, for devices that support both full and high Not
speeds. Not allowed for other devices.

configuration

Yes

other_speed_configuration

Yes, for devices that support both full and high Not
speeds. allowed for other devices.

interface Yes

endpoint No, if the device uses only Endpoint O.

string No. Optional descriptive text.

interface_power No. Supports interface-level power management.

A string descriptor can store text such as the vendor's or device's
name. The other descriptors can store indexes that point to these
string descriptors, and the host can read the string descriptors using
Get_Descriptor requests.

The 2.0 specification added an interface_power descriptor that
enables power management at the interface level in addition to the
device level. The document describing this descriptor's structure and
use is USB Feature Specification: Interface Power Management.

In addition to the standard descriptors, a device may contain class-
or vendor-specific descriptors. These offer a structured way for a
device to provide more detailed information about itself. For example,
an interface descriptor may specify that the interface belongs to the
HID class and supports a HID class descriptor.

Each descriptor contains a value that identifies the descriptor type.
Table 5-2 lists values defined by the USB and HID specifications. Bit
7 is always zero. Bits 6 and 5 identify the descriptor type:
OOh=standard, Olh=class, 02h=vendor, 03h=reserved. Bits 4 through
0 identify the descriptor.

Each descriptor consists of a series of fields. Most of the field nhames
use prefixes to indicate something about the format or contents of
the data in that

101

Enumeration: How the Host Learns about Devices

Table 5-2: Each descriptor has a value that defines the information the
descriptor contains.

Type Vae Descriptor
(hexadecimal
Standard 01 device
02 configuration
03 string
04 interface
05 endpoint
06 device_qualifier
07 other_speed_configuration
08 interface_power
Class 21 HID
29 hub
Specific to the 22 report
HID class >3 physical

field: b = byte (8 bits), w = word (16 bits), bm = bit map, bcd= binary-
coded decimal, i = index, id = identifier.

Device Descriptor

The device descriptor has basic information about the device. It's the
first descriptor the host reads on device attachment and includes the
information the host needs so it can retrieve additional information
from the device.

The descriptor has 14 fields. Table 53 lists the fields in the order they
occur in the descriptor. The descriptor includes information about
the descriptor itself, the device, its configurations, and its classes.
The following descriptions group the information by function.

The Descriptor
bLength. The length in bytes of the

descriptor. bDescriptorType. The constant
DEVICE (Olh).

102

Chapter 5

Table 5-3: The device descriptor has 14 fields in 18 bytes.

(doefcfisrﬁgl) Field (bsyltzgs) Description
0 bLength 1 |Descriptor size in bytes
1 bDescriptorType 1 |[The constant DEVICE (Olh)
2 bcdUSB 2 |USB specification release number (BCD)
4 bDeviceClass 1 |Class code
5 bDeviceSubclass 1 [Subclass code
6 bDeviceProtocol 1 |Protocol Code
7 bMaxPacketSize(O) 1 [Maximum packet size for Endpoint O
8 idVendor 2 |Vendor ID
10 idProduct 2 |Product ID
12 bcdDevice 2 |Device release number (BCD)
14 iManufacturer 1 |Index of string descriptor for the manufacturer
15 iProduct 1 |Index of string descriptor for the product
16 iSerialNumber 1 Index of string descriptor containing the
serial number
17 bNumConfiguration 1 |[Number of possible configurations
The Device

bcdUSB. The USB specification number that the device and its
descriptors comply with. In BCD (binary-coded decimal) format. If
you think of the version as a decimal number, the upper byte
represents the integer, the next four bits are tenths, and the final four
bits are hundredths. So version 1.0 is OlIOOh; version 1.1 is OIIOh,
and version 2.0 is 0200h.

idVendor. Members of the USB Implementers Forum and others
who pay an administrative fee receive the rights to use a unique
Vendor ID. The device descriptor for every commercial product must
have a Vendor ID. The host may have an INF file that contains this
value, and if so, Windows uses the value to help decide what driver
to load for the device.

idProduct. The manufacturer assigns a Product ID to identify the
device. Both the device descriptor and the device's INF file on the
host may contain this value, ad if so, Windows uses the value to
help decide what driver to

103

Enumeration: How the Host Learns about Devices

load for the device. Each Product ID is specific to a Vendor ID, so
multiple vendors can use the same Product ID without conflict.

bcdDevice. The device's release number in BCD format. Assigned
by the manufacturer. Optional. This value can also be used in
deciding which driver to load.

iManufacturer. An index that points to a string describing the
manufacturer. Optional. Zero if unused.

iProduct. An index that points to a string describing the product.
Optional. Zero if unused.

iSerialNumber. An index that points to a string containing the
device's serial number. Optional. Zero if unused. Serial numbers are
useful if users may have more than one identical device on the bus
and the host needs to keep track of which is which, even after
rebooting. They also enable the host to determine whether a
peripheral is the same one used previously or a new installation of a
peripheral with the same Vendor and Product ID. If a device has a
serial number and a user plugs the device into a different port on a
PC, Windows won't need to reload the device driver.

The Configuration

bNumConfigurations. The number of configurations the device
supports.

bMaxPacketSizeO. The maximum packet size for Endpoint 0. The
host uses this information in the requests that follow. Low-speed
devices must use 8. Full-speed devices may use 8, 16, 32, or 64.
High-speed devices must use 64.

Classes

bDeviceClass. For devices that belong to a class, this field may
name the class. Values from 1 to FEh are reserved for the USB's
defined classes. Examples of classes are hubs, printers, and
communications devices. The value FFh means that the class is
specific to the vendor and defined by the vendor. Some devices (such
as HIDs) specify a class in the interface descriptor, and for these
devices, the bDeviceClass field in the device descriptor is 0. Not all
devices belong to a class.

104

Chapter 5

bDeviceSubclass. For devices that belong b a class, this field may
specify a subclass within the class. If DeviceClass is 0, the Subclass
must be 0. If DeviceClass is between 1 and FEh, the Subclass must
be a code defined in a USB class specification. A value of FFh means
that the subclass is specific to the vendor. A subclass may add
support for additional features and abilities shared by a group of
functions within a class.

bDeviceProtocol. This field may specify a protocol defined by the
selected class or subclass. For example, a 2.0 hub uses tis field to
indicate whether the hub is currently supporting high speed and if so,
if the hub supports one or multiple transaction translators. If
DeviceClass is between 1 and FEh, the protocol must be a code
defined by a USB class specification.

Device Qualifier Descriptor

Devices that support both full and high speeds must have a
device_qualifier descriptor. If the device switches speeds, some fields
in the device descriptor may change. The device qualifier descriptor
holds the values to use for these fields at the speed not currently in
use. The contents of fields in the device and device qualifier
descriptors swap, depending on which speed is selected.

The descriptor has 9 fields. Table 54 lists the fields in the order they
occur in the descriptor. The descriptor includes information about the
descriptor itself, the device, its configurations, and its classes. The
fields are the same as the ones in a device descriptor. The only
difference is that they describe the device at the speed that isn't
currently active.

The Vendor and Product IDs, device release number, and
manufacturer, product, and serial-number strings don't change when
the speed changes, so the device_qualifier descriptor doesn't include
these.

The host can use a Get Descriptor request to retrieve the
device_qualifier descriptor. The following descriptions group the
information by function.

The Descriptor
bLength. The length in bytes of the descriptor.
bDescriptorType. The constant DEVICE_QUALIFIER (06h).

105

Enumeration: How the Host Learns about Devices

Table 5-4: The device_qualifier descriptor has 9 fields in 10 bytes.

Offset Field Size |Description
(decimal) (bytes)
0 bLength 1 Descriptor size in bytes
1 bDescriptorType 1 The constant DEVICE_QUALIFIER (06h)
2 bcdUSB 2 USB specification release number (BCD)
4 bDeviceClass 1 Class code
5 bDeviceSubclass |1 Subclass code
6 bDeviceProtocol 1 Protocol Code
7 bMaxPacketSize(O)| 1 Maximum packet size for Endpoint O
8 bNumConfiguration |1 Number of possible configurations
9 Reserved 1 For future use
The Device

bcdUSB. The USB specification number that the device and its

descriptors comply with. Must be at least 0200h.

The Configuration

bNumConfigurations. The number of configurations the device

supports. bMaxPacketSizeO. The maximum packet size for

Endpoint 0.

Classes

bDeviceClass. For devices that belong to a class, this field may

name the class.

bDeviceSubclass. For devices that belong to a class, this field may

specify a subclass within the class.

bDeviceProtocol. This field may specify a protocol defined by the
selected class or subclass. For example, a 2.0 hub must support
both a low- and full-speed protocol and a high-speed protocol. The
device descriptor contains the code for the currently ective protocol,
and the device qualifier descriptor contains the code for the not-

active protocol.

Reserved. For future use.

106

Chapter 5

Configuration Descriptor

After retrieving the device descriptor, the host can retrieve the device's
configuration, interface, and endpoint descriptors.

Each device has at least one configuration descriptor that describes
the device's features and abilities. Often a single configuration is
enough, but a device with multiple uses or modes can support
multiple configurations. Only one configuration is active at a time.
Each configuration requires a descriptor. The configuration
descriptor contains information about the device's use of power and
the number of interfaces supported. Each configuration descriptor has
subordinate descriptors, including one or more interface descriptors
and optional endpoint descriptors.

The host selects a configuration with the Set_Configuration
request, and reads the current configuration number with a
Get_Configuration request.

The descriptor has eight fields. Table 55 lists the fields in the order
they occur in the descriptor. The fields contain information about the
descriptor itself, the configuration, and the device's use of power in
that configuration. For many configurations, some fields don't apply.
The following descriptions group the information by function.

The Descriptor

bLength. The length (in bytes) of the descriptor.
bDescriptorType. The constant CONFIGURATION
(02h).

wTotalLength. The number of data bytes that the device returns,

including the bytes for all of the configuration's interfaces and
endpoints.

The Configuration

bConfigurationValue. Identifies the configuration for
Get_Configuration and Set_Configuration requests. A
Set_Configuration request with a value of zero causes the device to
enter the Not Configured state.

iConfiguration. Index to a string that describes the
configuration. Optional.

107

Enumeration: How the Host Learns about Devices

Table 5-5: The configuration descriptor has 8 fields.

Offset Field Size |Description

(decimal) (bytes)

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 The constant Configuration (02h)

2 wTotalLength 2 Size of all data returned for this configuration
in bytes

4 bNuminterfaces 1 Number of interfaces the configuration

5 bConfiguration 1 Identifier for Set Configuration

Value and Get_Configuration requests

6 iConfiguration 1 Index of string descriptor for the configuration

7 bmAttributes 1 Self power/bus power and remote wakeup

8 MaxPower 1 Bus power required, expressed as (maximum
mil-liamperes/2)

bNuminterfaces. The number of interfaces the configuration
supports. The minimum is 1.

Power Use

bmAttributes. Bit 6=1 if the device is self-powered. Bit 5=1 if the
device supports the remote wakeup feature. This enables a
suspended USB device to tell its host that it wants to communicate.
A USB device must enter the Suspend state if there has been no bus
activity for 3 milliseconds. If an event at a suspended device requires
action from the host, a device that supports remote wakeup and with
this feature enabled can request the host to resume
communications.

The other bits are unused. Bits 0 through 4 must be 0. Bit 7 must
be 1. (In USB 1.0, bit 7 was set to 1 to indicate that the configuration
was bus powered. In USB 1.1 and higher, setting bit 6 to 0 is
enough to indicate that the configuration is bus powered.)

MaxPower. Specifies how much bus current a device requires.
MaxPower in miliamperes equals one half the number of
milliamperes required. If the device requires 200 milliamperes,
MaxPower=100. The maximum allowed current is 500
milliamperes. Storing half the number of miliamperes enables
one byte to store values up to the maximum. If the host determines

108

Chapter 5

that the requested current isn't available, it will refuse to configure
the device.

Other_Speed_Configuration Descriptor

The other descriptor unique to devices that support both full and
high speeds is the other_speed_configuration descriptor. The
structure of the descriptor is identical to that of the configuration
descriptor. The only difference is that it describes the configuration
when the device is operating at the speed not currently active. The
other_speed_configuration descriptor has subordinate descriptors
the same as the configuration descriptor does.

The descriptor has eight fields. Table 56 lists the fields in the order
they occur in the descriptor.

Interface Descriptor

The term interface may of course describe USB as a whole, but in
terms of a device and its descriptors, interface means a set of
endpoints used by a device feature or function. A configuration's
interface descriptor contains information about the endpoints the
interface supports.

Each configuration must support one interface, and for many devices,
one is enough. But a configuration can have multiple interfaces that
are active at the same time, as well as multiple, mutually exclusive
interfaces. Each interface has its own interface descriptor and a
subordinate endpoint descriptor for each endpoint supported by the
interface.

A device with a configuration that has multiple interfaces that are
active at the same time is a composite device. The host loads a
driver for each interface.

When there are multiple ways to use a device, instead of using
multiple configurations, a configuration may support alternate,
mutually exclusive interfaces. Changing interfaces is simpler than
changing configurations, which affects the entire device. The host
requests an alternate interface with a Set_Interface request, and
reads the current interface number with a

109

Enumeration: How the Host Learns about Devices

Table 5-6: The other_speed_configuration descriptor has the same 8 fields as
the configuration descriptor.

Offset Field Size |Description

(decimal) (bytes)

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 The constant
OTHER_SPEED_CONFIGURATION

2 wTotalLength 2 Size of all data returned for this configuration
in bytes

4 bNumlinterfaces 1 Number of interfaces the configuration

5 bConfiguration 1 Identifier for Set_Configuration

Value and Get_Configuration requests

6 iConfiguration 1 Index of string descriptor for the configuration

7 bmAttributes 1 Selfr power/bus power and remote wakeup

8 MaxPower 1 Bus power required, expressed as
(maximum milliamperes/2)

Get_Interface request. Each interface has its own interface
descriptor and subordinate descriptors.

An interface descriptor has nine fields. Table 57 lists the fields in the
order they occur in the descriptor. Many devices don't need all of the
fields, such as those that enable alternate settings and protocols. The
following descriptions group the information by function.

The Descriptor
bLength. The number of bytes in the descriptor.
bDescriptorType. The constant INTERFACE (04h).

The Interface

ilnterface. Index to a string that describes the interface.
binterfaceNumber. Identifies the interface. In a composite device, a
configuration has multiple interfaces that are active at the same time.
Each interface must have a descriptor with a unique value in this
field. The default is 0.

110

Chapter 5

Table 5-7: The interface descriptor has 9 fields.

Offset Field Size |Description

(decimal) (bytes)

0 bLength 1 Descriptor size in bytes

1 bDescriptorType (1 The constant Interface (04h)

2 binterfaceNumber |1 Number identifying this interface

3 bAlternateSetting |1 Value used to select an alternate setting
4 bNumEndpoints 1 Number of endpoints supported, except
5 blnterfaceClass 1 Class code

6 binterfaceSubclass |1 Subclass code

7 binterfaceProtocol |1 Protocol code

8 iinterface 1 Index of string descriptor for the interface

bAlternateSetting. When a configuration supports multiple,
mutually exclusive interfaces, each interface must have a descriptor
with the same value in binterfaceNumber but a unique value in

bAlternateSetting. The Get_Interface request retrieves

the

currently active setting. The Set_Interface request selects the

setting to use. The default is 0.

bNumEndpoints. The number of endpoints the interface supports in
addition to Endpoint 0. For a device that supports only Endpoint O,

NumEnd-points is 0.

binterfaceClass. Similar to DeviceClass in the device descriptor, but
for devices with a class specified by the interface. Values from Olh to
FEh are reserved for USB-defined classes. HID is class 03h. FFh

indicates a vendor-defined class. Zero is reserved.

binterfaceSubClass. Similar to bDeviceSubClass in the device
descriptor, but for devices with a class defined by the interface. For
interfaces that belong to a class, this field may specify a subclass
within the class. If binterfaceClass is 0, binterfaceSubclass must be 0.
If binterfaceClass is between 1 and FEh, InterfaceSubclass must be a
code defined by a USB specification. A value of FFh means that the

subclass is specific to the vendor.

binterfaceProtocol. Similar to bDeviceProtocol in the device
descriptor, but for devices whose class is defined by he interface.

May specify a proto-

111

Enumeration: How the Host Learns about Devices

col defined by the selected binterfaceClass or binterfaceSubClass. If
binter-faceClass is between 1 and FEh, binterfaceProtocol must be
a code defined by a USB specification.

Endpoint Descriptor

Each endpoint specified in an interface descriptor has an endpoint
descriptor. Endpoint O never has a descriptor because every device
must support Endpoint 0, the device descriptor contains the
maximum packet size, and the specification defines everything else
about the endpoint. Table 58 lists the endpoint descriptor's six fields
in the order they occur in the descriptor. The following descriptions
group the information by function.

The Descriptor

bLength. The number of bytes in the descriptor.
bDescriptorType. The constant ENDPOINT
(05h).

The Endpoint

bEndpointAddress. Includes the endpoint number and direction.
Bits O through 3 are the endpoint number. Low-speed devices can
have a maximum of 3 endpoints (usually numbered O through 2),
while full- and high-speed devices can have 16 (0 through 15). Bit
7 is the direction: Out=0, In=l, Bidirectional (for control
transfers)=ignored. Bits 4, 5, and 6 are unused and must be zero.

bmAttributes. Bits 1 and O specify the type of transfer the endpoint
supports. 00=Control, 01=Isochronous, 10=Bulk, 11 =Interrupt. For
Endpoint 0, Control is assumed.

In USB 1.1, bits 2 through 7 were reserved. USB 2.0 uses bits 2
through 5 for full- and high-speed isochronous endpoints. Bits 3 and
2 indicate a synchronization type: 00=no synchronization,
Ol=asynchronous, 10=adaptive, 1l=synchronous. Bits 5 and 4
indicate a usage type: 00=data endpoint, Ol=feedback endpoint,
10=implicit feedback data endpoint, Ill=reserved. For non-
isochronous endpoints, bits 2 through 5 must be 0. For all end-
points, bits 6 and 7 must be O.

112

Chapter 5

Table 5-8: The endpoint descriptor has 6 fields.

Offset Field Size |Description

(decimal) (bytes)

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 The constant Endpoint (05h)

2 bEndpointAddress |1 Endpoint number and direction

3 bmAttributes 1 Transfer type supported

4 wMaxPacketSize (2 Maximum packet size supported

5 binterval 1 Maximum latency /polling interval/NAK rate

wMaxPacketSize. The maximum number of data bytes the endpoint
can transfer in a transaction. The allowed values vary with the device
speed and type of transfer.

Bits 10 through 0 are the maximum packet size, from 0 to 1024 (0 to
1023 in USB 1.x). In USB 2.0, bits 12 and 11 indicate how many
additional transactions per microframe a high-speed endpoint
supports: 00=no additional transactions (1 transaction per
microframe), 01 = 1 additional (2 transactions per microframe), 10=2
additional (3 transactions per microframe), ll=reserved. In USB 1.,
these bits were reserved and set to zero. Bits 13 through 15 are
reserved and must be zero.

binterval. The maximum latency for polling interrupt endpoints, or
the interval for polling isochronous endpoints, or the maximum NAK
rate for high-speed bulk OUT or control endpoints. The allowed
range and how the value is used varies with the device speed, the
transfer type, and whether or not the device supports USB 2.0.

For low-speed interrupt endpoints, the maximum latency equals
binterval in milliseconds. The value may range from 10 to 255.

For all full-speed interrupt endpoints and for full-speed isochronous
end-points on 1 .x devices, the interval also equals binterval in
milliseconds. For interrupt endpoints, the value may range from 1 to
255. For isochronous endpoints in 1 .x devices, the value must be 1.
For isochronous endpoints in full-speed 2.0 devices, values from 1 to
16 are allowed, and the interval is

113

Enumeration: How the Host Learns about Devices

calculated as 2°™"@* This allows a range from 1 millisecond to 32.768
seconds.

For full-speed bulk and control transfers, the value is ignored.

For high-speed endpoints, the value is in units of 125 microseconds,
which is the width of a microframe. The value for interrupt and
isochronous end-points may range from 1 to 16, and the interval is
calculated as 2™ This allows a range from 125 microseconds to
4.096 seconds.

For high-speed bulk OUT and control endpoints, the value indicates
the endpoint's maximum NAK rate. This value is relevant when the
device has received data and returned ACK, and the host has more
data to send in the transfer. By returning ACK, the device is saying
that it expects to be able to accept the next transaction's data.
(Otherwise the device would return NYET.) If the next data packet
arrives and for some reason the device can't accept it, the endpoint
returns NAK. The binterval value says that the end-point will return
NAK no more than once in each period specified by binterval. The
value can range from 0 to 255 microframes. A value of zero means
the endpoint will never NAK. The host isn't required to use the max-
imum-NAK-rate information.

String Descriptor

A string descriptor contains descriptive text. The specification defines
string descriptors for the manufacturer, product, serial number,
configuration, and interface. A device may support additional string
descriptors as well. String descriptors are optional. Table 59 shows
the descriptor's fields and their purposes.

The Descriptor
bLength. The number of bytes in the descriptor.
bDescriptorType. The constant STRING (03h).

114

Chapter 5

Table 5-9: A string descriptor has 3 or more fields.

Offset) Size _
(dec:| mal) Fidd (bytes) Descri ptl on
0 bLength 1 |Descriptor sizein bytes
1 bDescriptorType 1 | Theconstant String (03h)
For string descriptor 0, an array of 1 or more Lan-
2 bSTRING or varies |guage Identifier codes. For other string descriptors,
WLANGID aUnicode string.
The String

Each string has an index. String O has the specia function of providing lan
guage 1Ds, while the other strings may contain any text.

WLANGID[O...n]. Used in string descriptor 0 only. String descriptor O con-
tains one or more 16-bit language ID codes that indicate the languages that
the strings are available in. The code for English is 0009h, and the subcode
for U.S. English is 0004h. These seem to be the only codes that are valid in
U.S. versons of Windows 98. This value must be valid for any of the other
strings to be valid. Devices that return no string descriptors must not return
an array of language IDs. The USB Implementers Forums website has a list
of defined USB language IDs.

bString. For Strings 1 and up, the String field contains a Unicode string.
Unicode uses 16 hits to represent each character. With a few exceptions,
ANSI character codes OOh through 7Fh correspond to Unicodes OOOOh
through 007Fh. For example, a product string for a product caled "Gizmo"
would contain five 16-bit Unicodes representing the characters in the prod-
uct name 0047 0069 007A 006D 006F. The dtrings are not null-termi-
nated.

Descriptors in 2.0-compliant Devices

If you're upgrading a 1 .x-complaint device to 2.0, what changes are required
in the descriptors? In a dua-speed device, can you detect a device's current

speed by reading its descriptors? This section answers these questions.

115

Enumeration: How the Host Learns about Devices

Making 1.x Descriptors 2.0-compliant

Table 510 ligs the descriptor fields whose contents may require changes to
enable a 1.x device to comply with the 2.0 specification. For al except some
devices that have isochronous endpoints, the one and only required change
isthis: in the device descriptor, the bcdUSB field must be 0200h.

A device's default interface settings must request no isochronous bandwidth,
as Chapter 4 explained. And because these interfaces are of no use for trans-
ferring isochronous data, a device that wants to do isochronous transfers
must support a least one dternate interface setting, which will require at
least one endpoint descriptor. Some 1.x devices meet this requirement

aready.

The 2.0 spec also adds two new descriptors and functions for bits in existing
fields, but the new descriptors are used only in dual-speed devices and the
existing descriptors are backwards compatible with 1 .x.

Full-speed isochronous endpoints have a few new, optiona abilities. The
endpoint descriptor can specify synchronization and usage types (bmAt-
tributes field), and the interval can be greater than 1 millisecond (binterval
fidd). In 1.x descriptors, these bits default to O (no synchronization) and 1
(one millisecond).

Detecting the Current Speed of a Dual-Speed Device

A high-speed device must respond to enumeration requests at full speed,
and may aso be completdy functiona at full speed. As Chapter 2 explained,
a high-speed capable device must use full speed if it hasa 1 .x host or if there
is a 1.x hub between the host and device. Applications and device drivers
normaly have no need to know which speed a dual-speed device is using
because al of the speed-related details are handled at a lower level. And
Windows in fact provides no straightforward way to learn a device's speed.
But if the host wants to know, there are a few techniques that can provide
this information for many devices.

If a device has a bulk endpoint, you can learn the current speed by examin-
ing the endpoint descriptor in the active configuration. The MaxPacketSize

116

Chapter 5

Table 5-10: The descriptors in a 1 .x-compliant device require very few changes
to comply with 2.0.

Descriptor Fidd Change
Device bcdDevice S to 0200N.
Endpoint bmATttributes Isochronous only: bits 3..2 are asynchronization type, bits
5..4 are a usage type.
binterval Isochronous only: theinterval is 2 milliseconds
instead of milliseconds.
wMaxPacketSize |lsochronous only: must be 0 in the default configuration.

field must be 512 in a high-speed device, and it can't be 512 in a full-speed
device. If there is no bulk endpoint, the MaxPacketSize of an interrupt or
isochronous endpoint provides speed information if the endpoint uses a
maximum packet size available only a high speed. For an interrupt end-
point, a MaxPacketSize greater than 64 indicates high speed, but a
high-speed interrupt endpoint can have a MaxPacketSize of 64 or less. For
isochronous endpoints, a MaxPacketSize of 1024 indicates high speed, but a
high-speed isochronous endpoint can have a MaxPacketSize of 1023 or less.

If you're writing the device firmware, you can provide speed information n
the optional configuration strings indexed by the configuration and
other_speed configuration descriptors. For example, the string indexed by
the configuration descriptor might contain the text "high speed,” and the
string indexed by the other_speed configuration descriptor might contain
the text "full speed.” Applications can then read the configuration string to
learn the current speed.

The USBView application in the Windows DDK shows how applications
can read endpoint and string descriptors.

117

Control Transfers: Structured Requests for Critical Data

6

Control Transfers:
Structured Requests for
Critical Data

Of the four transfer types, control transfers have the most complex struc-
ture. They're aso the only transfer type with functions defined by the speci-
fication. This chapter takes a more detailed look at control transfers. The
focus is on what you need to know to implement standard and custom
requests in device firmware, dong with some background about the struc-
ture of the requests.

Elements of a Control Transfer

As Chapter 3 explained, control transfers enable the host and a device to
exchange information about the devices configuration. They dso offer a

way that any device can use to transfer any type of information. Each con-

118

Chapter 6

trol transfer has a defined format consisting of a Setup stage, an optiona
Data stage, and a Status stage. Each stage consists of one or more transac-
tions that contain a token phase, a data phase, and a handshake phase. Each
phase transfers a token, dita, or handshake packet. Chapter 4 has diagrams
that show the packets that transfer in each stage.

As described in Chapter 3, low-speed transfers also use PRE packets,
high-speed transfers use the PING protocol, and some low- and full-speed
transfers use split transactions. Each packet also contains error-checking
bits. Application programmers, device-driver writers, and firmware develop-
ers don't have to worry about PRES, PINGs error-checking, or split transac-
tions because the hardware and low-leve drivers handle them.

The Setup Stage

The Setup stage consists of a Setup transaction, which has two purposes: to
identify the transfer as a control transfer and to transmit the request and
other information that the device will need to complete the request.

Devices must accept and acknowledge every Setup transaction. If a device is
in the middle of another control transfer, it must abandon that transfer and
respond to the new Setup transaction. Here are more details about each of
the packets in the Setup stage's transaction:

Token Packet

Purpose: identifies the receiver and identifies the transaction as a Setup
transaction.

Sent by: the host.
PID: SETUP

Additional Contents: the device and endpoint addresses.

Data Packet
Purpose: transmits the request and related information.

Sent by: the host. PID: DATAO

119

Control Transfers: Structured Requests for Critical Data

Additional Contents. eight bytes in five fidlds. bmRequestType, bRequest,
wVaue, windex, and wLength.

bmRequestType is a byte that specifies the direction of data flow, the type
of request, and the recipient.

Bit 7 is a Direction bit that names the direction of data flow for data in the
Data stage. Host to device (OUT) or no Data stage is O; device to host (IN)
is 1. Just remember that O looks like O for OUT and 1 lookslike | for IN.

Bits 6 and 5 are Request Type bits that specify whether the request is one of
the USB's eleven standard requests (00), a request defined for a specific USB
class (01), or a request defined by a vendor for use with a particular product
or products (10).

Bits 4 through O are Recipient bits that define whether the request is
directed to the device (00000) or to a specific interface (0001), endpoint
(00010), or other element (00011) in the device.

bRequest is a byte that specifies the request. When the Request Type hits in
bmRequestType are 00, bRequest contains the number of one of the USB's
standard requests. When the Request Type bits are 01, bRequest names a
request defined for the device's class. When the Request Type bits are 10,
bRequest names a request defined by the device's vendor.

wValue is two bytes that the host may use to pass information to the device.
Each request may define the meaning of these bytes in its own way. For
example, in a Set Address request, wV alue contains the device address.

windex is two bytes that the host may use to pass information to the device.
A typical use is to pass an index or offset such as an interface or endpoint
number, but each request may define the meaning of these bytes in any way.
When passing an endpoint index, bits 0-3 indicate the endpoint number,
and bit 7 is O for a Control or OUT endpoint or 1 for an IN endpoint.

When passing an interface index, bits 0-7 are the interface number. All
unused bits are 0.

wLength is two bytes containing the number of data bytes in the Data stage
that follows. For a host-to-device transfer, wLength is the exact number of
bytes the host will transfer. For a device-to-host transfer, wLength is a maxi-

120

Chapter 6

mum, and the device may return this number of bytes or fewer. If the
wLength field is O, there is no Data stage.

Handshake Packet
Purpose: transmits the devices acknowledgement.
Sent by: the device. PID: ACK.

Additional Contents: none. The handshake packet consists of the PID
done.

Comments: If the device detected an error in the received Setup or Data
packet, it returns no handshake. The devices hardware typicaly handles the
error checking and sending of the ACK, with no programming required.

The Data Stage

When a control transfer contains a Data stage, the stage consists of one or
more IN or OUT transactions. The endpoint's descriptor specifies the num-
ber of data bytes that each transaction can carry. (For Endpoint O, the device
descriptor specifies this.)

When the Data stage uses IN transactions, the device sends data to the host.
An example is Get_Descriptor, where the device sends a requested descrip-
tor to the host. When the Data stage uses OUT transactions, the host sends
data to the device. An example is Set_Report, where the host sends a report
to a HID-class device. If the wLength field in the Setup transaction is O,
there is no Data stage at al. For example, in the Set_Configuration request,
the host passes a configuration value to the periphera in the wValue field of
the Setup stage's data packet, so there's no need for the Data stage.

If dl of the data can't fit in one packet, the stage uses multiple transactions.
The number of transactions required to send al of the data for the transfer
equals the vaue in the Setup transaction's wLength field divided by wMax-
PacketSize vaue in the endpoint's descriptor, rounded up. For example, in a
Get_Descriptor request, if wLength is 18 and wMaxPacketSize is 8, the

121

Control Transfers: Structured Requests for Critical Data

transfer requires 3 Data transactions. The transactions in the Data stage
musgt al be in the same direction.

The host uses split transactions in the Data stage when the device is low or
full speed and the devices hub connects to a high-speed bus. The host uses
the PING protocol when the device is high speed, the Data stage uses OUT
transactions, and there is more than one data transaction.

Each IN or OUT transaction in the Data stage contains token, data, and
handshake packets. Here are more details about each of the packets in the
Data stage's transaction(s):

Token Packet

Purpose: identifies the receiver and identifies the transaction as an IN or
OUT transaction.

Sent by: the host.

PID: if the request requires the device to send data to the host, the PID is
IN. If the request requires the host to send data to the device, the PID is
OUT.

Additional Contents: the device and endpoint addresses.

Data Packet

Purpose: transfers all or a portion of the data specified in the wLength field
of the Setup transactions data packet.

Sent by: if the token packet's PID is IN, the device sends the data packet; if
the token packet's PID is OUT, the host sends the data packet.

PID: The first packet is DATAL Any additional packets in the Data stage
alternate DATAO/DATAL

Additional Contents: the data.

Handshake Packet
Purpose: the data packet's receiver returns status information.

122

Chapter 6

Sent by: the receiver of the Data stages data packet. If the token packets
PID is IN, the host sends the handshake packet. If the token packet's PID is
OUT, the device sends the handshake packet.

PID: Any device may return ACK (valid data was received), NAK (the end-
point is busy), or STALL (the request isn't supported or the endpoint is
halted). A high-speed device that is receiving multiple data packets may
return NYET (the current transaction's data was accepted but the endpoint
isn't yet ready for another data packet). The host can return only ACK.

Additional Contents: None. The handshake packet consists of the PID
aone.

Comments: If the receiver detected an error in the token or data packet, it
returns no handshake packet.

The Status Stage

The Status stage is where the device reports the success or failure of the
entire transfer. Its purpose is similar to that of a transactions handshake
packet, and in fact the information sometimes travels in the handshake
packet of the Status stage. But the Status stage reports the success or failure
of the entire transfer, rather than of a single transaction.

In some cases (such as after receiving the first packet of a device descriptor
during enumeration), the host may begin the Status stage before the Data
stage has completed, and the device must detect this, abandon the Data
stage, and complete the Status stage.

Here are more details about each of the packets in the Status stage's transac-
tion:
Token Packet

Purpose: identifies the receiver and indicates the direction of the Status
stage's data packet.

Sent by: the host.

PID: the opposite of the direction of the previous transactions data packet.
If the Data stages PID was OUT or if there was no Data stage, the Status

123

Control Transfers: Structured Requests for Critical Data

stage's PID is IN. If the Data stage's PID was IN, the Status stage's PID is
OUT.

Additional Contents: the device and endpoint addresses.

Data Packet

Purpose: enables the receiver of the Data stage's data to indicate the status
of the transfer.

Sent by: if the Status stage's token packet's PID is IN, the device sends the
data packet; if the Status stage's token packet's PID is OUT, the host sends
the data packet.

PID type: DATAL1

Additional Contents: The host sends a zero-length data packet consisting
only of the PID and error-checking bits, with no data bits. A device may
send a zero-length data packet (success), NAK (busy), or STALL (endpoint
halted).

Comments: For most requests, the zero-length data packet indicates that
the request has been carried out. An exception is Set Address, which isn't
carried out until the Status stage has completed.

Handshake Packet

Purpose: the sender of the Data stage's data indicates the status of the trans-
fer.

Sent by: the receiver of the Status stage's data packet. If the Status stage's
token packet's PID is IN, the host sends the handshake packet; if the token
packet's PID is OUT, the device sends the data packet.

PID type: the device's response may be ACK (success), NAK (busy), or
STALL (the request isn't supported or the endpoint is hated). The host's
response to the received data packet must be ACK.

Additional Contents: none. The handshake packet consists of the PID
aone.

124

Chapter 6

Comments. The Status stage's handshake packet is the fina transmission in
the transfer. If the receiver detected an error in the token or data packet, it
returns no handshake packet.

For any request that's expected to take many milliseconds to carry out, the
protocol should define an dternate way to determine when the request has
completed. This ensures that the host doesn't waste a lot of time looking for
an acknowledgement that will take a long time to appear. An example is the
Set_Port_Feature(PORT_RESET) request sent to a hub. The reset signal
lasts at least 10 milliseconds. Rather than forcing the host to wait this long
for the device to complete the reset, the hub acknowledges receiving the
request when it first places the port in the reset state. When the reset is com-
plete, the hub sets a hit that the host can retrieve at its leisure, usng a
Get_Port_Status request.

Handling Errors

Not every control-transfer request is carried out by the device. The device's
firmware may not support a request. Or the device may be unable to
respond because its firmware has crashed, or the endpoint is in the Halt con-
dition, or the device is no longer attached to the bus. The host may aso
decide for any reason to end atransfer early, before al of the data has been
sent.

An example of an unsupported request is one that uses a request code that
the devices firmware doesn't know how to respond to. Or the device may
support the request but other information in the Setup stage doesn't match
what the device expects or supports. When this occurs, a Request Error con-
dition exists and the device naotifies the host by sending a STALL code in a
handshake packet. Devices must respond to the Setup transaction with an
ACK, so the STALL mug transmit in the handshake packet of the next
Data stage or the Status stage.

If the host fails to get an expected response, or if it detects an error in
received data or a Hat condition at the endpoint, it abandons the transfer.
The host then tries to re-establish communications by sending the token
packet for a new Setup transaction. If a device receives a token packet for a

125

Control Transfers: Structured Requests for Critical Data

Setup transaction before it has completed a previous control transfer, it must
abandon the previous transfer and begin the new one. If the transfer is using
the Default Control Pipe and a new token packet doesn't cause the device to
recover, the host takes more drastic action, requesting the device's hub to
reset the device's port.

The host may also end a transfer early by initiating the Status stage before
completing al of the Data stages transactions. In this case, the device must
abandon the rest of the data and respond to the Status stage as if al of the
data had transferred.

The Requests

Table 61 summarizes the USB's 11 standard requests, followed by a descrip-
tion of each request. All devices must respond to these requests (though the
response may be just a STALL). The vaues range from 00 to OCh, with
some values unused.

Mogt of the requests are in pairs, with each Set request having a correspond-
ing Get or Clear request. The exceptions are Set_ Address, Synch_Frame,
and Get Status.

126

Chapter 6

Table 6-1: The USB specification defines eleven standard requests for Control

transfers.
Data
Data .
Length Data(in
Eequest Request (sgl;;ge Recipient (Vdue Index (bytes) Data
stage) (inData |stage)
: stage)
device, device,
OOh Get_Status |device |interface, |0 interface, (2 gaus
endpoint endpoint
device, device,
Olh Clear Feature|none |interface, |feature |interface, |0 none
endpoint endpoint
device, device,
03h Set_ Feature [none |interface, |feature |interface, [0 none
endpoint endpoint
. device
05h Set Address |none |device address |0 0 none
descriptor | device or .
Get . : descriptor .
06h i device |device |type& (language desoriptor
Descriptor index D length
descriptor | device or .
Set . descriptor .
07h Descri ptor host device f[ype& language | engthp destriptor
index ID
Get_ . .) configura:
08h Configuration |dvice |device |0 device |1 tion
Set_ . configura-| .
O%h Configuration none | device tion device 0 none
OAh Get_Interface|device |interface |0 interface |1 gglr?;
OBh Set_Interface [none |interface |interface |interface (O none
, . . frame
OCh Synch Fame |device |endpoint |0 endpoint |2 |

127

Control Transfers: Structured Requests for Critical Data

Set Address

Purpose: The host specifies an address to use in future communications
with the device.

Request Number: 05h
Sour ce of Data: none
Data Length: O

Contents of Value field: new device address. Allowed vaues are 1 through
127. Each device on the bus, including the root hub, has a unique address.

Contents of Index field: O

Contents of data packet in the Data stage: none
Supported States: Default, Address. Behavior on
error: not specified.

Comments: When a hub enables a port after power-up or attachment, the
port uses the default address of O until it completes a Set Address request
from the host.

This request is unlike most other requests because the device doesn't carry
out the request until it has completed the Status stage of the request by
sending a O-length data packet. The host sends the Status stage's token
packet to the default address, so the device must detect and respond to this
packet before changing its address.

After completion of this request, all communications use the new address.

A device using the default address of O is in the Default state. After com-
pleting Set Address request to set an address other than O, the device
enters the Address state.

A device must send the handshake packet within 50 milliseconds after
receiving the request, and it must complete the request within 2 millisec-

onds after completing the Status stage.

128

Chapter 6

Get_Descriptor
Purpose: The host requests a specific descriptor.
Request Number: 06h Source of Data: device

Data Length: the number of bytes to return. If the descriptor is longer
than Data Length, the device returns bytes up to Data Length. If the
descriptor is shorter than Data Length, the device returns the descriptor. If
the descriptor is shorter than Data Length and an even multiple of the end-
point's maximum packet size, the device follows the descriptor with a O
length data packet. The host detects the end of the data when it has
received the requested amount of data or a packet containing less than the
maximum packet size (including O bytes).

Contents of Value field: High byte: descriptor type. Low byte: descriptor
vaue.

Contents of Index field: for String descriptors, Language ID. Otherwise O.
Contents of data packet in the Data stage: the requested descriptor.
Supported states. Default, Address, Configured.

Behavior on error: If a device receives a request that it doesn't support, it
should return a STALL.

Comments. There are seven types of descriptors. All devices may have
device, configuration, interface, endpoint, and string descriptors. Two
other descriptors, device quaifier and other_speed configuration, are only
for devices that support both full and high speeds. Chapter 5 described the
purpose and contents of the descriptor types. Every USB device must have
a device descriptor and at least one configuration and one interface descrip-
tor.

A request for a configuration descriptor causes the device to return the con-
figuration descriptor, plus al interface descriptors for that configuration
and all endpoint descriptors for the interfaces.

129

Control Transfers: Structured Requests for Critical Data

Set_Descriptor
Purpose: The host adds a descriptor or updates an existing descriptor.
Request Number: OBh
Sour ce of Data: host
Data L ength: The number of bytes the host will transfer to the device.

Contents of Value field: high byte: descriptor type. (See Get_Descriptor)
Low byte: descriptor index.

Contents of Index field: For string descriptors, Language ID. Otherwise
0.

Contents of data packet in the Data stage: descriptor length.
Supported states. Address and Configured.

Behavior on error: If adevice receives a request that it doesn't support, it
should return a STALL.

Comments: This request makes it possible for the host to add descriptors
other than those stored in the device's firmware, or to change an existing
descriptor. Many devices don't support this request because it alows errant
software to place incorrect information in a descriptor.

130

Chapter 6

Set Configuration
Purpose: Instructs the device to use the selected configuration.
Request Number: 09h Source of Data: none Data Length: O

Contents of Value field: The lower byte specifies a configuration. If the
value matches a configuration supported by the device, the device selects
the requested configuration. A value of O indicates not configured. If the
vaue is O, the device enters the Address state and requires a new
Set_Configuration request to be configured.

Contents of Index field: O
Contents of data packet in the Data stage: none
Supported states: Address, Configured.

Behavior on error: If Vaueisn't equa to 0 or a configuration supported by
the device, the device returnsa STALL.

Comments. After completing a Set Configuration request specifying a
supported configuration, the device enters the Configured state. Many of
the standard requests require the device to be in the Configured state.

131

Control Transfers: Structured Requests for Critical Data

Get_Configuration

Purpose: The host requests the value of the current device configuration.
Request Number: 08h

Sour ce of Data: device

Data Length: 1

Contents of Valuefield: O

Contents of Index field: O

Contents of data packet in the Data stage: Configuration vaue
Supported states: Address (returns 0), Configured

Behavior on error: not specified.

Comments: If the device isn't configured, it returns O.

132

Chapter 6

Set Interface

Purpose: For devices with configurations that support multiple, mutualy
exclusive settings for an interface, the host requests the device to use a ge-
cific setting.

Request Number: OBh

Sour ce of Data: host

Data Length: O

Contents of Valuefield: aternate setting to select

Contents of Index field: interface number

Contents of data packet in the Data stage: none

Supported states. Configured

Behavior on error: If the device supports only a default interface, it may
return a STALL. If the requested interface or setting doesn't exist, the
devicereturnsa STALL.

Comments: See Get Interface

133

Control Transfers: Structured Requests for Critical Data

Getnterface

Purpose: For devices with configurations that support multiple, mutualy
exclusive settings for an interface, the host requests the current setting.

Request Number: OAh

Sour ce of Data: device

Data Length: 1

Contents of Valuefield: O

Contents of Index field: interface number

Contents of data packet in the Data stage: the current setting
Supported states: Configured

Behavior on error: If the interface doesn't exist, the device returns a
STALL.

Comments: The interface number in the Index field of this request refers
to the binterface field in an interface descriptor. This value distinguishes an
interface from other interfaces that may exist a the same time. The setting
in the Data field in this request refers to the bAlternatelnterface field in the
interface descriptor. This value identifies which of two or more mutualy
exclusive settings an interface is currently using. For each setting supported
by an interface, there is an interface descriptor and optiona endpoint
descriptors. Many devices support only one interface setting.

134

Chapter 6

Set Feature

Purpose: The host requests to enable a feature on a device, interface, or
endpoint.

Request Number: 03h

Sour ce of Data: none

Data Length: O

Contents of Value field: the feature to enable

Contents of Index field: For a device, 0. For an interface, the interface
number. For an endpoint, the endpoint number.

Contents of data packet in the Data stage: none

Supported states. Default: undefined. Address: OK for address 0, End-
point 0. Otherwise the device returns a STALL. Configured: OK.

Behavior on error: If the endpoint or interface specified doesn't exist, the
device responds with a STALL.

Comments: The USB specification defines two features.

DEVICE REMOTE WAKEUP, with a vaue of 1, applies to devices.
When the host sets the DEVICE_REMOTE_WAKEUP feature, a sus-
pended device can signa the host to resume communications.

ENDPOINT_HALT, with a value of O, applies to endpoints. Bulk and
interrupt endpoints must support the Halt condition. Two types of events
may cause a Halt condition: a communications problem such as the
device's not receiving a handshake packet or receiving more data than
expected, or the devices receiving a Set Feature request to hat the end-
point. A Clear_Feature request to hat the endpoint removes a Halt condi-
tion caused by a Set_Feature request.

The Get_Status request tells the host what features, if any, are enabled.

135

Control Transfers: Structured Requests for Critical Data

Clear_Feature

Purpose: The host requests to disable a feature on a device, interface, or
endpoint.

Request Number: Olh.
Sour ce of Data: none
Data Length: O

Contents of Valuefield: the feature to disable

Contents of Index field: For a device feature, 0. For an interface feature,
the interface number. For an endpoint feature, the endpoint number.

Contents of data packet in the Data stage: none

Supported states: Default: undefined. Address. OK for address 0, End-
point 0. Otherwise the device returns a STALL. Configured: OK.

Behavior on error: If the feature, device, or endpoint specified doesn't
exig, or if the feature can't be cleared, the device responds with a STALL.
Behavior is undefined when Data Length is greater than O.

Commentss The USB gspecification defines only two features.
DEVICE_REMOTE_WAKEUP, with a vaue of 1, applies to devices.
ENDPOINT_HALT, with a value of 0, applies to endpoints. See
Set Feature for more detalls.

136

Chapter 6

Get Status

Purpose: The host requests the status of the features of a device, interface,
or endpoint.

Request Number: OOh
Source of Data: device Data
Length: 2 Contents of
Valuefield: O

Contents of Index field: For a device, 0. For an interface, the interface
number. For an endpoint, the endpoint number.

Contents of data packet in the Data stage: the device, interface, or end-
point status

Supported states: Default: undefined. Address. OK for address O, end-
point 0. Otherwise the device returns a STALL. Configured: OK.

Behavior on error: The device returns a STALL if the interface or end-
point doesn't exist.

Comments: For device requests, only two bits are defined. Bit 0 is the Sdf-
Powered field: O=bus-powered, 1 =sdlf-powered. The host can't change this
value. Bit 1 is the Remote Wakeup field. The default on reset is O (dis-
abled). All other bits are reserved. For interface requests, al bits are
reserved. For endpoint requests, only bit O is defined. Bit 0=1 indicates a
Halt condition. See Set_Feature for more details on Remote Wakeup and
Halt.

137

Control Transfers: Structured Requests for Critical Data

Synch_Frame
Purpose: The device sets and reports an endpoint's synchronization frame.
Request Number: OCh
Sour ce of Data: host
Data Length: 2
Contents of Valuefield: O
Contents of Index field: endpoint number
Contents of data packet in the Data stage: frame number

Supported states: Default: undefined. Address: The device returns a
STALL. Configured: OK.

Behavior on error: If the endpoint doesn't support the request, it should
return a STALL.

Comments. In isochronous transfers, a device endpoint may request data
packets that vary in size, following a sequence. For example, an endpoint
may send a repeating sequence of 8, 8, 8, 64 bytes. The Synch Frame
request enables the host and endpoint to agree on which frame will begin
the sequence.

When an endpoint receives a Synch Frame equest, it returns the number
of the frame that will precede the beginning of a new sequence

This request is rarely used because there is rarely a need for the information
it provides.

138

Chapter 6

Class-Specific Requests

A class may define requests for devicesin its class. A class-specific request
may be required or optional. Some requests are unrelated to the standard
requests, while others build on the standard requests by defining class-spe-
cific fields in arequest.

An example of a request that's unrelated to the standard requests is the Get
Max LUN request supported by some mass-storage devices. The host uses
this request to find out the number of logica units the interface supports.

An example of a request that builds on an existing request is the
Get_Port_Status request that hubs must support. This request is structured
like the standard Get_Status request. But Get_Port_Status has different va-
ues in two fields. In bmRequestType, bits 6 and 5 are 01 to indicate that the
request is defined by a standard USB class, and hits 4 through O are 00011
to indicate that the request applies to a unit other than the device or an
interface or endpoint. (It applies to a port on the hub.) The index field holds
the port number.

Vendor-Specific Requests

A vendor may define custom requests for control transfers with specific
devices. In order to use a custom request in a control transfer, you need al of
the following:

» Vendor-defined fields as needed in the Setup and optional Data stages.
Bits 6 and 5 in the Setup stage's data packet are set to 10 to indicate a
vendor-defined request.

» Code in the device that detects the request number and knows how to
respond. If you have code for the standard requests, you can use it as a
model for custom requests.

» A custom device driver in the host that initiates the request. Windows

has no built-in driver that enables applications to send custom control
requests, so the only option is a custom driver with this ability.

139

Chip Choices

-

Chip Choices

When it's time to select a USB controller for a project, the good news is that
there are plenty of chips to choose from. The downside is that there are so
many that deciding which chip to use in a project can be overwhelming at
first.

As with any project involving embedded controllers, the decison depends
on what functions the chip has to perform, cost, availability, and ease of
development. Ease of development depends on the availability and quaity
of development tools, device-driver software for the host, and sample code,
plus your experience with the device's architecture and instruction set or lan+
guage compiler.

This chapter is a guide to selecting a USB controller. It includes a tutoria
about what you need to consider and descriptions of a sampling of chips
with a range of abilities. The chips covered include inexpensive ones with

simple architectures and basic USB support as well as more full-featured,
high-end chips.

140

Chapter 7

Elements of a USB Controller

The complexity of the USB protocol means that USB peripherals must have
intelligence. The peripheral controller has to know how to detect and
respond to events at a USB port, and it has to provide a way for the device to
store data to be sent and retrieve and use data that's been received.

Controller chips vary in how much firmware support they require for USB
communications. Some require little more than accessing a series of registers
to store and retrieve USB data. Others require the devices program code to
do more, including managing the sending of descriptors to the fost, setting
data-toggle values, and ensuring that the appropriate handshake packets are
sent.

Some controllers have a genera-purpose CPU on-chip, while others take a
more minimalist approach and interface to an externa CPU that handles
the non-USB tasks while communicating with the USB controller as
needed. All USB controllers have one or more USB ports as well as buffers,
registers, and other 1/0. A controller chip with a general-purpose CPU also
has program and data memory on-chip or an interface to these in externa
memory.

For high-volume applications that require fast performance, another option
is to design and manufacture an application-specific integrated circuit
(ASIC). VAutomation is one source for USB controllers and other compo-
nents that are available as synthesizable VHDL (very high speed integrated
circuit hardware description language) or Verilog Source code.

Not al controllers support all four transfer types, and different controllers
support different bus speeds. Most chips support fewer than the maximum
number of endpoints (1 control endpoint and 30 other endpoints).

The USB Port

A USB peripheral controller must of course have a USB port and supporting
circuits for communicating with the host. A USB transceiver provides the
hardware interface to the bus. The circuits that communicate with the trans-
ceiver form a unit with the generic name of serid interface engine (SIE).

141

Chip Choices

The SIE typicaly handles the sending and receiving of data in transactions.
It doesn't interpret or use the data, but just sends the data that has been
made available to it and stores any data received. A typical SIE does al of the
following:

» Detect incoming packets.

* Send packets.

» Detect and generate Start-of-Packet, End-of -Packet, Reset, and Resume
sgnding.

* Encode and decode data in the format required on the bus (NRZI with
bit stuffing).

» Check and generate CRC values.

» Decode and generate Packet IDs.

* Convert between USB's serid data and paralel datain registers or mem
ory.
Implementing these functions requires about 2500 gates.

Buffers for USB Data

A USB controller must also have buffers for storing data that was recently
received and data that's ready to be sent on the bus. Some chips, such as
Netchip's NET2888, use registers, while others, such as Cypress EZ-USB,
reserve a portion of data memory for the buffers.

Registers that hold transmitted or received data are often structured as
FIFOs (first in, first out buffers). Each read of a receive FIFO returns the
byte that has been in the FIFO the longest. Each write to a transmit FIFO
stores a byte that will transmit after al of the bytes aready in the FIFO have
transmitted. An interna pointer to the next location to be read or written to
increments automatically as the firmware reads or writes to the FIFO.

In some chips, like Cypress enCoRe series, the USB buffers are in ordinary
data memory and the firmware explicitly selects each location to read and
write to. There is no pointer that increments automaticaly when the firm-
ware reads or writes to the buffers. The bytes in the USB transmit buffer go
out in order from the lowest address to the highest, and the bytesin aUSB

142

Chapter 7

CPU

receive buffer are stored in the order they arrive, from lowest address to
highest. These buffers technicaly aren't FIFOs, but are sometimes called
that anyway.

To enable faster transfers, some chips have double buffers that can store two
full sets of data in each direction. While one block is transmitting, the firm:
ware can write the next block of data into the other buffer so it will be ready
to go as soon as the first block finishes transmitting. In the receive direction,
the extra buffer enables a new transactions data to arrive before the firmware
has finished processing data from the previous transaction. The hardware
automatically switches, or ping-pongs, between the two buffers.

A USB controller's central-processing unit (CPU) controls the chip's actions
by executing instructions in the firmware stored in the chip. Each CPU sup-
ports an instruction set that includes machine-language instructions for
moving data, performing math and logic operations, and program branch
ing. The instruction set also enables the CPU to communicate with the SIE.
The CPU may be based on a genera-purpose microcontroller such as the
8051, or it may be a design developed specificaly for use in USB applica
tions.

Chips that don't have a general-purpose CPU may support a command set
for USB-related communications, or they may just use a series of registers
for storing USB data and configuration information. These chips provide a
way to add USB capabilities to any microcontroller with an externa data
bus.

Program Memory

The program memory holds the code that the CPU executes. The program
code assists in USB communications and carries out whatever other tasks
the chip is responsible for. This memory may be in the CPU chip or a sepa-
rate chip.

The program storage may use any of a number of memory types. ROM,
EPROM, EEPROM, Flash EPROM, or RAM. All except RAM (unlessit's

143

Chip Choices

battery-backed) are nonvolatile; they retain the data stored in them after
powering down. The amount of program memory may range from a couple
of kilobytes on up. Chips that can access memory off-chip may support a
Megabyte or more of program memory.

Another name for the code stored in program memory is firmware, which
indicates that the memory is non-volatile and not as easily changed as pro-
gram code that can be loaded into RAM, edited, and re-saved on disk. In
this book, | use the term firmware to refer to a controllers program code,
with the understanding that the code may be stored in a variety of memory
types, some more volatile than others.

ROM (read-only memory) must be mask-programmed at the factory and
can't be erased. It's practical only for product runsin the thousands.

EPROM (erasable programmable ROM) is user-programmable. Many chips
have inexpensive programming hardware and software available. To erase an
EPROM, you insert the chip into an EPROM eraser, which exposes the cir-
cuits beneath the chip's quartz window to ultraviolet light. Erasing typicaly
takes 10 to 30 minutes. The chip is then ready to be reprogrammed. Data
sheets rarely specify the number of erase/reprogram cycles that the chip can
withstand, but it'stypicaly at least 100.

OTP (one-time programmable) PROMs are a cheaper, non-erasable dterna-
tive to erasable EPROMSs. Interndly, they're identical to EPROMSs, and you
program them exactly like EPROMs. The difference is that the chips lack
the quartz window for erasing. The erasable varieties are useful for product
development. Then to save cost, you can switch to OTP PROMs for the
final product run. Many CPUs have both EPROM and OTP PROM vari-
ants.

Flash EPROM is a more recent electrically-erasable memory technology that
doesn't need a quartz window and often doesn't need the special program-
ming voltage required by other EPROMs. Current Flash EPROM technol-
ogy enables around 100,000 erase/reprogram cycles.

EEPROM (electrically erasable PROM) aso doesn't need a window, nor
does it need the specia programming voltage required by other EPROMS.
EEPROMs tend to have longer access times than Flash EPROMSs.

144

Chapter 7

EEPROMSs are available both with the paralle interface used by EPROMs
and Flash EPROMs, and with a variety of synchronous seria interfaces,
including Microwire, 1°C, and SPI. Serial EEPROMSs are useful for storing
small amounts of data that changes only occasiondly, such as configuration
data, including Vendor and Product IDS. Current EEPROM technology
enables around 10 million erase/reprogram cycles.

RAM (random-access memory) can be erased and rewritten endlesdy, but
the stored data disappears when the chip powers down. It's possible to use
RAM for program storage by loading the code from a PC on each power-up
or by using battery backup. Cypress Semiconductors EZ-USB uses RAM
for program storage, aong with specia hardware and driver code that loads
code into the chip on power up or atachment. Any CPU with external pro-
gram memory could use battery-backed RAM for program storage. Host-
loadable RAM has no practica limit on the number of erase/rewrite cycles.
For battery-backed RAM, the limit is the battery life. Access times for RAM
are fast.

Data Memory

Data memory provides temporary storage during program execution. The
contents of data memory may include data received from the USB port,
data to be sent to the USB port, values to be used in calculations, or any-
thing else the chip needs to remember or keep track of. Data memory is usl-
aly RAM. Typica amounts of internal data memory are 128 to 1024 bytes.

Registers

Registers are another option for temporary storage. Registers are memory
locations the CPU accesses using different instructions than it uses to access
other data memory. Most registers have defined functions. Most CPUs can
access registers more quickly than other data memory.

USB controller chips typically have status and control registers that hold
information about what endpoints are enabled, the number of bytes
received, the number of bytes ready to transmit, Suspend-state status, error-
checking information, and other information about how the chip will

145

Chip Choices

be used and the current status of transmitted or received data. For example,
setting a bit in a configuration register may enable an endpoint. The num-
ber of registers and the specifics of their contents vary with the chip family.

Other 1/O

Just about every controller will dso have an interface to the world outside of
itself, other than the USB port. This often includes aseries of genera-pur-
pose input and output (I/O) pins that can connect to other circuits. A chip
may aso have built-in support for other seria interfaces, such as an asyn-
chronous interface for RS-232, or synchronous interfaces such as 1°C,
Microwire, and SPI.

Some chips have special-purpose interfaces. For example, Philips USA1321
contains a digita-to-analog converter (DAC) for use in USB speakers and
other audio devices. The chip converts received USB data to anadlog signas
at sampling frequencies of up to 55 kilohertz. FTDI's FTBU232AM isa

USB UART that makes it as easy as possible to upgrade RS-232 designs to
USB.

Other Features

A chip may aso have any number of other features such as hardware timers
or counters. Just about any feature that you mght find in a genera-purpose
microcontroller is likely to be availablein a USB controller.

Simplifying the Development Process

Besides the abilities and features of the chip itsalf, ease of development can
make a huge difference in how long it takes to get a project up and running.
The smplest and quickest USB project is one that uses a controller chip
with dl of the following:

* A chip architecture and programming language that you're familiar with.

» Detailed, well-organized hardware documentation.

146

Chapter 7

e Well-documented, bug-free sample firmware code for an application
similar to yours.

* A development system that enables easy downloading and debugging of
firmware.

e Device-driver availability, either using drivers included with Windows or
awell-documented driver provided by the chip vendor or another source
and usable as-is or with minima modifications.

These are not trivial considerations. The right choice will save you many
hours and much aggravation.

Architecture Choices

In selecting a controller chip, you can use a chip designed from the ground
up as a standalone USB controller, a chip that's compatible with an existing
chip family, or a chip that requires an interface to a generic microcontroller
Which to use depends on your own background and experience as well as
the project specifics. Manufacturers frequently release new chips anc
improved versions of existing chips, so it's dways a good idea to check the
manufacturers websites for the latest offerings.

Chips Designed for USB from the Ground Up

Some controllers are designed specificaly for USB applications. Instead of
adding USB capability to an existing architecture, these designs are opti-
mized for USB from the start. Two sources for this type of chip are Cypress
Semiconductor and ScanLogic. Table 71 compares the features of a selec-
tion of their chips.

Cypress M8 family has a variety of inexpensive chips that share an instruc-
tion set optimized for USB. The enCoRe series has low-speed chips, each
with a USB port and 8 to 16 lines of general-purpose 1/0. Other M8-series
chips have more 1/0 and support full-speed transfers.

ScanLogic's SL11R contains a BIOS ROM that supports USB's four transfer
types. The ROM aso has boot-up code that enables executing user firmware
either from external parallel memory or by loading code from seria
EEPROM to RAM. The chip has 32 general-purpose 1/0 lines.

147

Chip Choices

Table 7-1: Cypress and ScanLogic have microcontrollers that are designed for
USB from the ground up.

Feature CY7Oa37XX CY7Ce4113 SL11R
(enCoRe)
Manufacturer Cypress Cypress ScanLogic
Speed Low Full Full
Number of Endpoints |3 5 4
RAM (bytes) 96 256 3K
Program Memory OTPPROM OTPPROM BIOSROM + seviad
Type EEPROM or externa
parallel memory
Program Memory 6K-8K 8K 2K internal or
Size (bytes) 26K externa
General Purpose /O |10-16 32 32
Pins
Other 1/O capability | SH, I'C, parallel data bus,
USB or PS/2 option hardware-assisted UART, serial
parallel interface, DAC | EEPROM
Power Supply Voltage [4.0-55 40525 3.3+10%
Number of Pins 1824 48 100

Chips Based on Popular Families

Some USB controllers are compatible with existing chip families. These
have two advantages. One is that many developers are dready familiar with
the architecture and instruction set, and familiarity gives a big head dart to
any project. Certainly if you're designing a USB-capable version of an exist-
ing product that uses an 8051 variant, sticking with the 8051 makes sense.
But even if you're not aready familiar with the architecture, selecting a pop-
ular family means that programming and debugging tools are available, and
sample code and other advice is likely to be available from other users on the
Internet.

If your microcontroller of choice is the 8051, you're in luck. Cypress, Infin-
eon, and Standard Microsystems have 8051-compatible, USB-capable chips.
(But not Intel. Although Intel originated the 8051 family and was the first
to release 8051-compatible USB controllers with the 8x930 and 8x931,

148

Chapter 7

Table 7-2: Many manufacturers produce USB controllers that are compatible
with existing microcontroller families.

Company Compatibility Example Chip
AMD Intel 80C186 AM136
Atmd Atmd AYR AT76CT711
Cypress Intel 8051, Dallas Semi AN2121 (EZ-USB series)
DS80C320
Infineon Intd 8051 C41U
Microchip Technology Microchip PIC 16C7x5
Mitsubishi Mitsubishi 740 7640, 7532/36
Motorola Motorola 68BHCO05 638HCBB3I4
Motorola 68HC08 68HCO3 B8
Motorola Power PC MPC850 (host or device)
Standard Microsystems (SMSC)| Intd 8051 USB97C100
STMicroelectronics STMicroelectronics ST7 ST7261

Intel discontinued these in 2000.) Cypress FX2 series in its 8051-compati-
ble EZ-USB family supports high speed.
Chips compatible with other families are available as well, including Atmel's

AVR, Microchips PIC, and Motorola's 68HC05/8. Table 72 lists these and
others.

Chips that Interface to an External Microcontroller

Some USB controllers handle only the USB communications and must be
controlled by an external microcontroller. These enable you to add a USB
port to just about any microcontroller circuit. The downside is that you
need two chips, while other USB controllers have both the CPU and the
USB controller on a single chip. Also, you may or may not be able to find
example circuits and code for the CPU you want to use. Table 7-3 compares
a selection of these chips.

The chips have externd, local data buses that typically use a synchronous
seria or pardle interface to connect to the CPU. An interrupt pin can Sig-
nal the CPU when the controller has recelved USB data or needs new data

149

Chip Choices

Table 7-3: A Selection of USB Controllers that Interface to a Generic

Microcontroller.
Chp USS$208 USBN9S3 NET2883 PDIUSBD11L |PDIUSBD12
Manufacturer |Lucent National NetChip Philips Philips
Semiconduc-
tor
Bus Speed Full Full Full Full Full
Number of 1 control +14 | 1 control + 6 [1control +5 {1 control + 6 |1 control + 4
Endpoint others others others others others
addresses
DodeBuff- [yes no no no es
ered? 4 4
Microproces- [Non- Multiplexed or|Non- 1°’C Multiplexed or
sor Interface |multiplexed | non- multiplexed non-
parald multiplexed |paralléel multiplexed
paralle, pardld
Microwire
Power Sup- |3.3 33o0r5 3.3 3.3 3.3
ply Valtege
Numberof (44/48 28 48 16 28
Pins
Comments |Programma- |Programma- |Occupies 32 |Programmade|Programma-
ble FIFO size |ble clock out- |bytes of clock output |ble-clock out-
put address space put, status-
LED outputs

to send. With some chips, the local-bus interface is dlower than USB's maxi-
mum transfer rate, so the chip is suitable only for intermittent data.

Netchip's NET2888 uses a parallel data bus with 8 data lines and 5 address
lines. It can read and write data a 10 Megabytes per second, or faster in
DMA mode. National Semiconductor's USBN9603 has more options. It
has a data bus that can transfer multiplexed paralel data, non-multiplexed
parallel data, or Microwire synchronous serial data. Microwire requires just
four lines and @an interface to just about any microcontroller with four spare
1/O pins.

150

Chapter 7

Philips Semiconductors offers both the PDIUSBD11 with an FC interface
and the PCIUSBD12 with a parallel interface. Lucent's USS820C has a par-
ald interface and supports the maximum number of endpoint addresses.

Chip Documentation

The ultimate authority on a chip's abilities is its data sheet, and for chips
with CPUs, the documentation for the instruction set. The data sheet docu
ments the hardware, including the functions of the registers and voltages
and timing for al pins.

The documentation for the chip's instruction set defines the assembly-code
syntax for each of the instructions that the CPU understands. If you're pro-
gramming in assembly code, these are the instructions you use in writing the
firmware. If you're using a higher-level language such as C, you may not
need to use the assembly-code ingtructions a al, though compilers typicaly
dlow in-line assembly code.

To supplement the basic documentation, many vendors provide a user man-
ual with more detailed information about how to use the chip.

Sample Firmware

The best way to get a head start on writing firmware is to begin with sample
code that's similar to what you want to achieve. Having an example to refer
to is much, much easier than trying to put something together from scratch.
Chip and tool vendors vary widely in the amount and qudlity of sample
code provided, 0 it's worth looking into what's available before you commit
to achip.

In some cases you can find code samples from other sources, especidly via
the Internet, from other users who are willing to share what they've done.

Driver Choices

The other side of programming a USB device is the driver and application
software at the host. Here again, samples are useful.

151

Chip Choices

If your device fits into one of the classes supported by Windows, you don't
have to worry about writing or finding a device driver. For example, applica-
tions can access a HID-class device using standard API functions that com-
municate with Windows HID drivers. A chip vendor may offer a sample
application, as Nationa Semiconductor does in its sample HID application
for the "9603.

Some vendors provide a generic driver that you can use to exchange data
with the device. Cypress EZ-USB is an example. The chip has a unique
architecture that enables the PC to load the chip's firmware on attachment.
To use this feature, the chip requires a specia driver. Cypress generic driver
can load firmware into the chip and can aso exchange data using each of the
four transfer types.

Chapter 10 has more about device drivers.

Debugging Tools

Ease of debugging aso makes a big difference in how easy it is to get a
project up and running. Products that can help include development boards
and software offered by the chip vendors and other sources.

A protocol andyzer is adso very useful during debugging. Protocol anayzers
aren't specific to a particular chip. Chapter 17 has more about these and
related tools.

Development Boards from Chip Vendors

Chip manufacturers offer development boards and basic debugging software
to make it easer for developers to use their chips. A development board
enables you to load a program from a PC to the chip's program memory, or
to circuits that emulate the chip's hardware.

The debugging software provided with the board is typicaly a monitor pro-
gram that enables you to control program execution and watch the results.
Standard festures include the ability to step through a program line by line,
set breakpoints, and view the contents of the chip's registers and memory.
Y ou can run the monitor program and atest application at the same time.

152

Chapter 7

Figure 7-1: The 12C/IO board from DeVaSys contains an EZ-USB and a variety
of options for 1/0.

You can look inside the emulated chip and see exactly what happens when
your gpplication communicates with it.

If you have a genera-purpose development system for your favorite micro-
controller, you can use it for USB developing as well. For example, develop-
ment tools for Microchip's I6C5x series are also usable with the USB-
capable 167Cx5 chips.

Boards from Other Sources

In general, the evaluation kits offered by the manufacturers are well worth
the cost. But if you're on a strict budget, there are inexpensive printed-cir-
cuit boards that can serve as an aternative. You can also use these boards as
the base for one-of-a-kind or smdl-scale projects, saving you the trouble of
designing and making a board to hold the controller chip.

The EZ-USB is a natural choice for this type of board because its firmware
is downloadable from the host so you don't have to worry about program-
ming hardware. The 12C/10 board from DeVaSys Embedded Systems (Fig-

153

Chip Choices

ure 7-1) contains an AN2131 EZ-USB chip, a connector with 20 bits of
1/O, an I°C interface for synchronous serial communications, and an asyn-
chronous serial interface. The on-board 24L.C128 is an FC EEPROM that
can store 16 kilobytes of data, including Vendor and Product IDs and firm+
ware. The board can load its firmware from EEPROM or from the host on
attachment or power-up.

DeVaSys provides the board's schematic and a free custom device driver that
enables gpplications to open communications and read and write to ports,
including the FC port. If you pefer, you can load your own firmware into
the device and use your own driver or a driver provided by Windows. An
early version of the 12CIO won an award in Circuit Cellar magazine's annual
design contest.

Another option for developing is to interface a basic controller like the
PDIUSBD11 to a PC's paralld port for debugging code that will eventualy
reside in a microcontroller. DeVaSys also has a board that takes this
approach.

The parald port has 8 lines that are bidirectional on al but the oldest PCs,
plus four outputs and five inputs. PC applications can access the port's bits
using port reads and writes. PC software can communicate with the
PDIUSBDII's 1°C interface by using pardle-port lines as clock and data
lines for sending and receiving data.

With this approach, you can write PC gpplications that perform the func-
tions of the firmware that will eventualy control the chip, including sending
descriptors during enumeration and whatever other functions the device is
responsible for. This approach is most useful if the device firmware will be
written in C, because the PC software can also use C and will be somewhat
portable. Every controller has chip-specific operations, however, and will
require some modifying for the final product.

With dl of the available controller chips and the many options for accessing
them from PCs, it's likely that many more inexpensive boards will become
availablein time.

154

Chapter 7

Project Needs

Along with looking for a chip that will be easy to work with, you can further
narrow the choice of controllers by specifying your project's needs and |ook-
ing for chips that meet the needs. These are some of the areas to consider:

How fast does the data need to transfer? A device's rate of data transfer
depends on several things: whether the device supports low, full, or high
speed, the transfer type being used, and how busy the bus is. As a periphera
designer, you don't control how busy users buses will be, but you can design
your product to work in the worst case expected.

If a product requires no more than low-speed interrupt and control trans-
fers, a low-speed chip may save money not only in chip cogt, but adso in the
circuit-board design and cables. HID-class devices can use low-speed chips.
But remember that low-speed devices can transfer only eight data bytes per
transaction, and the specification limits the transfer rate of an endpoint to
much less than the bus rate of 1.5 Megabits/second. Even if low speed is fea-
shble, dont rule out full speed automaticaly. You may find a full-speed chip
that can do the job at the same or even alower price.

Devices that support high speed should also support full speed, at least until
2.0 hosts become common.

How many and what type of endpoints do you need? Each endpoint
address is configured to support a transfer type and direction. A device that
does only control transfers needs just the default endpoint. Interrupt, bulk,
or isochronous transfers require additional endpoint addresses. Not al chips
support all transfer types.

Do you want the device to be software upgradable? For program mem
ory, many USB devices use windowed EPROM, OTP PROM, or other
memory that isn't easily erased and re-written. To change the program, you
need to insert a new chip or remove, erase, re-program, and replace the chip.
Cypress EZ-USB has an easer way, with the ability to load firmware from
the host into RAM on each power up or attachment. Another option is to
store the program code in a microcontroller with eectricaly reprogramma-
ble memory. ScanLogic's SL11N has the ability to store code received from

155

Chip Choices

the host in serid EEPROM. The contents of the EEPROM then load into
RAM on power up. The Device Class Specification for Device Firmware
Upgrade, available from the USB Implementers Forums website, describes a
mechanism for loading firmware from a host to a device.

Do you need a flexible cable? One reason why mice are amost certain to
be low-speed devices is that the less stringent requirements for a low-speed
cable mean that the cable can be thinner and more flexible. However, 2.0-
compliant low-speed cables have the same requirements as full and high
speed except that the braided outer shield and twisted pair are recom-
mended, but not required.

Do you need a long cable? Low-speed cables are limited to three meters,
while full-speed cables can be five meters.

What other hardware features and abilities do you need? These include
everything from general-purpose or specidized 1/0O, the size of program and
data memory, on-chip timers, and so on. As with any embedded computer
project, the requirements depend on the application.

A Look at Some Chips

The following descriptions of popular USB controller chips will give an idea
of what's available. They include only a sampling, and new chips are keing
released al the time, so any new project warrants checking the latest offer-
ings.

Cypress enCoRe

The chips in Cypress Semiconductors enCoRe series (yes, that annoying
capitaization is how Cypress has trademarked it) are inexpensive and smple
in design. They're intended for applications that transfer small blocks of
information a low speed. Examples of uses include standard peripheras
such as mice and joysticks, as well as speciaized devices such as data-acquis-
tion units and controllers.

156

Chapter 7

CPU Architecture

Unlike most other USB chips, the enCoRe series isn't based on an existing
chip family. Using these chips means having to learn a new instruction set.
However, the instruction set is small and the instructions are smilar to those
used by other microcontrollers, Learning the syntax is fairly painless if you
have experience with assembly-code programming. A C compiler is aso
avalable.

The chips support 37 instructions that cover the basics of moving data, per-
forming mathematical operations, and program branching. Because the
instruction set is short, learning it isn't difficult. However, it dso means that
you won't find fancy instructions that do a lot of the work for you. For
example, there are no ingructions for multiplying or dividing; dl cdcula-
tions must be done by adding, subtracting, and bit-shifting. (The C com-
piler has math and other functions.)

The chips in the series share a common architecture, but they vary in the
amount of program memory, number of I/O pins, and packaging. The
'63743 has 256 bytes of RAM, 8 kilobytes of OTP EPROM for program
memory, 16 1/O pins, and is available in both surface-mount and
through-hole packaging. The through-hole packages are useful for prototyp-
ing on hand-assembled boards because they don't require soldering a tiny
surface-mount chip.

The chips contain interna oscillators that eliminate the need to add externa
crystals or resonators. The USB port can be configured for PS/2 (synchro-
nous serid) communications, which enables a pointing device to support
both interfaces.

USB Controller

The smplicity of the enCoRe's design is a benefit but also a limitation.
Although the chips comply fully with the USB specification, they don't sup-
port the full range of USB capabilities. They're limited to low-speed trans-
fers, which means that they can't use bulk or isochronous transfers. The
'63743 has three endpoints, the required Endpoint O for control transfers,
plus endpoints 1 and 2 for interrupt transfers. The chip can support one

157

Chip Choices

interrupt IN endpoint and one interrupt OUT endpoint, or two in the
same direction. Some other low-speed chips, especialy earlier releases, don't
support interrupt OUT endpoints, which were added in USB 1.1. Each
endpoint has an 8byte buffer in RAM.

For project development, Cypress offers a development kit that includes a
printec-circuit board with an emulated chip and a monitor program for
loading and testing code.

The only memory available for the chipsis OTP PROM. Thisisn't too
much of a drawback because the development kit works well for testing. You
can test the chips in the product itself when the programming is nearly com-
plete. To program the PROMs, youll need a device programmer. Cypress
offers an inexpensive programmer from Hi-Lo.

The USB communications require a fair amount of firmware support, but
Cypress provides example code for common applications.

If you like the chips but need more I/O or full speed, Cypress CY7C64013
and CY7C64113 are dternatives.

Cypress EZ-USB

Cypress EZ-USB family is notable for two reasons. it's 8051-compatible,
and the chips support a different and flexible approach to storing firmware.
Rather than storing the firmware on-chip, an EZ-USB can store its firmware
on the host, which loads it into the chip on each power-up or attachment.

Having the firmware stored on the host has pluses and minuses. The obvi-
ous advantage—and it's a big one—is easy updates to firmware. To update
the firmware, you store the new version on the host and the driver sends it
to the device on the next power up or attachment. There's no need to
replace the chip or use a specia programmer.

The downsides are increased driver complexity, the need to have the firm-
ware available on the hogt, and longer enumeration time. Cypress helps with
the driver by providing the complete source and executable code for a driver
that handles the downloading of firmware. You can use the supplied driver
as-is, or use the source code as the base for a custom driver.

158

Chapter 7

The EZ-USB also supports storing its firmware in an external serial
EEPROM or in paralel EPROM or other non-volatile memory.

The EZ-USB family originated with Anchor Chips, which Cypress acquired
in 1999. Y ou may see the name Anchor in older documentation.

CPU Architecture

The EZ-USB's architecture is similar to Dallas Semiconductors DS80C320,
which is an 8051 whose core has been redesigned for enhanced perfor-
mance. The chip uses four clock cycles per instruction cycle, compared to
the 8051's twelve. Each instruction takes between one and five instruction
cycles. The CPU is clocked at 24 Megahertz. On average, an EZ-USB is2.5
times as fast as an 8051 with the same clock speed.

The instruction set is compatible with the 8051's. All of the 8kilobytes of
combined code and data memory is RAM; there is no non-volatile memory
on-chip. However, the chips do support non-volatile storage in the C serid
interface that can read and write to seridl EEPROM, or in external paralle
memory.

The EZ-USB family includes three series. the basic EZ-USB (AN21XX)
and the FX (CY7C646XX) and FX2 (CY7C68013) series. Within each
series are chips that vary in features such as the number of 1/0 pins or avail-
ability of an externa data bus. Table 74 summarizes the features of each
series. The FX series alds faster 1/0 and a genera programmable interface
that supports configurable, automated handshaking. The FX2 series aso
supports high speed.

Keil has a C compiler for the EZ-USB, or you can use assembly code. The
compiler has a limited but free evduation verson. If you have the full ver-

sion of the compiler, you can base your code on Cypress Frameworks firm:
ware, which handles much of the work of USB communications.

USB Controller

Most EZ-USBs support the maximum number of endpoints. one control
endpoint, plus 30 additional endpoint addresses and all four transfer types.
For simpler designs, chips with fewer capabilities are available. The

159

Chip Choices

Table 7-4: Cypress Semiconductor's EZ-USB family is compatible with the 8051

microcontroller.

Feature AN2Ixx CYTCoA6XX CY7C63013
(EZ-UB) (EZ-USBFX) (EZ-USBFX2)

Speed Full Full Full/High

Number of endpoints (13, 16,31 31 11

Compatibility 80C320, 8051 80C320, 8051 80C320, 8051

RAM (bytes) 256 + 4-8K combined| 256 + 4-8K combined | 256 + 8K combined

data and program
memory

data and program
memory

data and program
memory

Program memory
type

RAM, serid
EEPROM, external
paralle

RAM, serid
EEPROM, external
parale

RAM, sarid
EEPROM, externd
parald

Internal program
memory (bytes)

4-8K combined data
and program memory

4-8K combined data
and program memory

8K combined data and
program memory

External memory bus
(bytes)

64K

64K

one or two 64K

General-purpose 1/0 16-24 16-40 16-40

pins

Other 110 2UARTs I'C 2UARTSs I'C 2UARTs I'C
Power Supply Voltage|3-3.6 336 336
Number of Pins 44, 48, 80 52, 80, 128 56, 100, 128

EZ-USB's many options for storing firmware make its architecture more
complicated compared to other chips. The options are useful kecause they
make the chip very flexible, so I'll describe them in some detail.

When an EZ-USB wants to use firmware stored in the hogt, it enumerates
twice. When an EZ-USB attaches to the bus, the host attempts to enumer-
ae it, as it would for any device. But how can it enumerate a device with no
stored firmware? The answer is that the chip contains an EZ-USB core that
knows how to respond to enumeration requests. This core controls commu-
nications when the device first attaches to the bus. The EZ-USB core is
independent from the 8051 core that normally takes control when the chip
has completed the enumeration process. The EZ-USB core communicates
with the host while holding the normal 8051 circuits in the reset state.

160

Chapter 7

The EZ-USB core aso responds to vendor-specific requests that enable the
chip to receive, store, and run firmware received from the host. For basic
testing, the core circuits can aso enable the device to transfer data using all
four transfer types, without any firmware programming.

The ReNum register bit determines whether the EZ-USB or 8051 core
responds to requests at Endpoint 0. On power-up, ReNum is zero and the
EZ-USB core controls Endpoint 0. When ReNum is set to one, the 8051
core controls Endpoint O.

The source of an EZ-USB's firmware depends on two things: the contents of
theinitial bytesin an external EEPROM and the state of the chip's EA
input. On power-up and before enumeration, the EZ-USB core attempts to
read bytes from a seriadl EEPROM on the chip's FC interface. The result,
along with the state of the chip's EA input, tell the core what to do next: use
the default mode, load firmware from the host, load firmware from
EEPROM, or boot from code memory on the external parallel data bus.

Default Mode. The default mode is the most basic mode of operation. It
doesn't use the serid EEPROM or other externa memory. The EZ-USB
core uses this mode if EA is alogic low and the core detects no EEPROM,
or if thefirst byte read from EEPROM is not BOh or B2h.

When the host enumerates the device, the EZ-USB core responds to
requests. During this time, the 8051 core is held in the reset state. This reset
sate is controlled by a register bit in the chip. The host can write directly to
this bit to place the chip in and out of reset. This reset affects the 8051 cir-
cuits and is unrelated to USB's Reset signaling.

The descriptors retrieved by the host identify the device as a Default USB
Device. The host matches the retrieved Vendor and Product IDs with values
in a Cypress-provided INF file that ingtructs the host to load Cypress Genr
eral Purpose Driver to communicate with the chip. The ReNum bit remains
at zero.

This default mode is intended for use in debugging. You can use it to get the
USB interface up and transferring data. In addition to supporting transfers
over Endpoint 0, the Default USB Device can aso use the other three trans-

161

Chip Choices

fer types on other endpoints. All of this is possible without having to write
any firmware or device drivers.

Identify the Device from EEPROM Bytes. The core can aso read identi-
fying bytes from the EEPROM on power-up, and then provide this infor-
mation to the host during enumeration. If the first value read from the
EEPROM is BOh, the core reads EEPROM bytes containing the chip's Ven
dor and Product IDs and Version Number. When the host enumerates the
device the firgt time, it uses these bytes to find a matching INF file that
identifies a driver for the device. The driver contains the firmware to down
load before re-enumerating. Cypress provides ingructions for building a
driver with this ability.

The driver uses the vendor-specific Firmware Load request to download the
firmware to the device. The firmware contains a new set of descriptors and
the code the device needs to carry out its purpose. For example, a HID-class
device will have report descriptors and code for transferring HID report
data.

On completing the download, the driver causes the chip to exit the reset
state and run the firmware. The firmware eectricaly smulates removal
from, then reattachment to the bus by writing to a register that controls the
chip's DISCON# pin. The pin ether pulls up or floats (provides no connec-
tion to) one end of a resistor whose opposite end connects to D+. The pin
indicates device attachment when pulled up and smulated device remova
when floating. The firmware also sets ReNum to 1 to cause the 8051 core,
instead of the EZ-USB core, to respond to Endpoint O requests.

When the host detects the simulated re-attachment, it enumerates the
device again, this time retrieving the newly stored descriptors and using the
information in them to select a device driver to load. Cypress has trade-
marked the term ReNumeration to describe this process.

Load Firmware from EEPROM. A third mode of operation provides a way
for the chip to store its own firmware. If the first byte read from the
EEPROM is B2H, the core loads the EEPROM's entire contents into RAM
on power-up. The EEPROM must contain the Vendor ID, Product 1D, and
Version Number bytes as well as all descriptors required for enumeration

162

Chapter 7

and whatever other code and data the device requires to carry out its pur-
pose. When the chip exits the reset state, it has everything it needs for USB
communications. The core sets the ReNum bit to 1 on completing the load
ing of the code. When the host enumerates the device, it reads the stored
descriptors and |oads the appropriate driver. There is no re-enumeration.

Run Code from External Parallel Memory. If no EEPROM is detected, or
if the first byte isnt BOh or B6h, and if EA is a logic high, the chip boots
from code memory on the external paradlel data bus. This memory can be
EPROM, EEPROM, FLASH EPROM, or battery-backed RAM. The
memory contains the descriptors and other firmware. ReNum is set to 1.
The host enumerates the device and loads a driver, and there is no re-enu-
meration.

Microchip PIC 16C7x5

Microchip's PIC microcontrollers have many devotees because of their low
cost, wide availability, many variants, speed, low power consumption, and
ample ingtruction set. The 16C745 and 16C765 are PICs with low-speed
USB ports.

Architecture

The chips are enhanced members of Microchip's 16C5x series. Code written
for the 16C5x is portable to the 16C7x5. The chips support 35 instructions.

In addition to the USB interface, there are 19 1/O pins, plus the '65 has an
8-bit paralld dave port for connecting to a microcontroller with an external
data bus. Up to 8 of the I/O pins can function as analog-to-digital converter
inputs. A USART supports asynchronous and synchronous seriad communi-
cations. The chips have three timers.

A crysta or ceramic resonator can clock the chip. Program memory is
EPROM or OTP PROM. The chips are available in through-hole and sur-
face-mount packages.

163

Chip Choices

USB Controller

The chips support Endpoint O plus Endpoints 1 and 2 in any combination
of IN and OUT. To manage communications, there are 7 status and control
registers, plus each endpoint has a control register and a 4-byte buffer
descriptor. The microcontroller and the bus share access to the buffer
descriptors, which contain information such as the data-toggle state and the
number of bytes received or to be transferred. The chip supports firmware
smulation of attaching to and removal from the bus.

Like the enCoRes, these chips require a fair amount of firmware support.
Microchip provides assembly and C code for enumeration and other stan
dard USB tasks. For HIDs, there is example mouse code that you can adapt
for other HID applications.

NetChip NET2888

NetChip's NET2888 doesn't contain a genera-purpose CPU or memory. It
has only a USB controller and an interface to a generic data bus, which you
can connect to any CPU that has a complimentary bus.

Architecture

The NET2888 has no program or data memory other than its USB buffers.
The local bus has five address bits (AO - A4) and eight data bits (DO-D7) to
enable reading and writing bytes to 32 addresses.

Transferring data over the loca bus uses a ChipSedlect line to select the chip
and separate IOR and IOW signals to control reads and writes. Most micro-
controllers that support external data buses can use this interface with little
or no added logic.

The chip also supports direct memory access (DMA) transfers, for the fast-
est possible transfer of blocks of data. The CPU that the NET2888 connects
to must also support DMA. In a DMA transfer, the chip takes control of the
local bus. Once the DMA transfer is requested, the transfer of a block of
data to or from memory occurs without requiring the external CPU to ini-
tiate individua read and write operations.

164

Chapter 7

The chip reserves a block of memory to hold the data that will transfer. A
DMA address counter holds the address of the block, and a DMA byte
counter holds the number of bytes left to transfer. In a host-to-device trans-
fer, on receiving USB data, the device copies the data into the reserved
memory. In a device-to-host transfer, the device copies data into the trans-
mit buffer whenever space is available.

The chip responds to the standard control requests without requiring any
firmware support other than storing the appropriate information (such as
Vendor and Product IDs) in registers.

USB Controller
The NET2888 supports five endpoints and al four transfer types:.

Endpoint Number Transfer Type(s) Supported

0 control

1 bulk OUT
interrupt IN

2 bulk or isochronous OUT
bulk or isochronous IN

3

4

The 32 bytes that the CPU can access using the address and data buses cor-
respond to registers in the chip. For Endpoints 1 and 2, the peripherd'’s
CPU can send and receive USB data using two 8byte mailbox registers.
Each mailbox's data uses a single address on the loca bus, with a second
address containing an index that indicates the byte in the mailbox to be read
or written to. For Endpoints 3 and 4, the periphera's CPU can send and
receive USB data using two 64-byte buffers. Each buffer uses a single
address, with a count register that indicates the number of data bytes in the
buffer.

The NET2888 automatically stores data received from the host. To detect
data received from the host at Endpoint 1, the periphera's CPU can poll the
chip's recelve-mailbox-valid bit or respond to an interrupt that occurs when
the bit is set.

165

Chip Choices

To send data from Endpoint 2 to the host, the peripheras CPU writes the
data to the transmit mailbox and sets the chip's transmit-mailbox-valid bit.
The NET2888 then handles the details of sending the USB data.

Other registers hold various status and handshaking vaues and configura
tion information.

The peripheral's CPU is responsible for writing some configuration infor-
mation to the NET2888's registers. But because the endpoints are config-
ured in hardware, there's less to do than for other chips.

National Semiconductor USBN9603

National Semiconductor's USBN9603 is another chip hat requires an inter-
face to a microcontroller. It can interface to any microcontroller with a par-
allel data bus, a Microwire interface, or even just four spare I/O pins
controlled entirdly in firmware

Architecture

The '9603 has a serid interface engine for handling USB transmissions, a set
of USB endpoint buffers, and a series of status and control registers. A CPU
can access the endpoint buffers and status and control registers at addresses
OOh through 3Fh viaan external, local bus.

The chip offers hree options for accessing the local data bus. non-multi-
plexed paralel, multiplexed pardld, and Microwire synchronous serid.

Multiplexed paralel transfers read or write a byte of data in one bus cycle.
The address is latched with ALE, and the data with RD or WR. Most
microcontrollers with external data buses can use these signals with little or
no additiond logic.

For non-multiplexed parale transfers, the '9603 transfers both data and
addresses on DO-D7, but in separate bus cycles. One bus cycle sends the
address to the '9603, and another transfers data to or from the chip. To save
on bus accesses, the chip supports a burst mode where the CPU writes a
starting address to the controller chip, and then transmits or receives multi-

166

Chapter 7

ple bytes that go to consecutive addresses. The externa CPU must also sup-
port this mode. The parallel interface also supports DMA transfers.

Not al microcontrollers have an external parale data bus, and for those
that don't, the '9603 offers a solution in its Microwire interface. Microwire
is a synchronous seria interface that uses four lines: the two data lines SIN
(serid in) and SOUT (serid out), CS (chip select), and SYNC (the clock
line). Command/address and data bytes shift in and out, bit by bit, usng
trangitions on the SYNC line as a timing reference. The external CPU con-
trols SYNC. There is no minimum SYNC frequency, and the signa doesn't
have to have a constant frequency; the CPU can toggle line as needed. The
interface just has to be fast enough to keep up with the USB traffic. If the
USB port transfers only small, occasional blocks of data, you can program a
Microwire interface in firmware without having to worry about critica tim-
ing. Some microcontrollers, such as Nationa Semiconductor's COP888,
have Microwire interfaces built in.

USB Controller

The '9603 supports seven endpoint addresses: Endpoint O for control trans-
fers, three IN endpoints, and three OUT endpoints. EndpointO's buffer is 8
bytes, the others are 64 bytes. An endpoint may also send or receive packets
larger than the buffer size, if the firmware reads data from the buffer as it
arrives to prevent the buffer from overflowing, or writes data to the buffer as
it transmits to prevent the buffer from emptying before dl of the data has
transmitted.

Philips Semiconductors PDIUSBD11/12

Philips Semiconductors offers additiond choices for minimal USB control-
lersin its PDIUSBD11 and PDIUSBD12.

Architecture

The chips are similar except for their externa data buses. The '12 has a par-
dlel data bus, while the 11 has an I°C bus. Like Microwire, I°C is a synchro-
nous serial bus. It requires just two signa wires. serid clock (SCK) and a
bidirectiona seria-dataline (SDA). In atypical transfer, the CPU sends a

167

Chip Choices

command that specifies the function of the data to follow, followed by trans-
mitted or received data. The bus can transfer data at up to 1 Megabit per
second, and some of the bits are commands. So athough the USB interface
is full speed, the locd bus limits the amount of USB data that the chip can
send and receive in a period of time. There is no minimum speed for SCK.
Some microcontrollers have built-in 1°C interfaces.

Like National Semiconductor's USBN9603, Philips PDIUSBD12 supports
multiplexed, non-multiplexed, and DMA paralel transfers. The interface
can transfer data at up to 2 Megabytes per second.

Instead of using status and control registers, the chips respond to commands
for performing functions such as selecting an endpoint or reading or writing
to a buffer.

USB Controller

Both chips are full speed. The 12 supports a control endpoint and four
additional endpoint addresses. One endpoint's buffer holds up to 128 bytes,
with double buffering for a tota of 256 bytes. The '11 supports a control
endpoint and six additiona endpoint addresses with 8-byte buffers.

On both chips, the USB connection is under firmware control. The chip
appears detached from the host until the periphera’'s CPU sends a com-
mand to simulate attachment to the bus. This ensures that the chip has time
to initidize on power-up before being enumerated by the host. A status out-
put on the '12 can connect to an LED that lights when a USB connection
has been established and blinks on data transfers.

Intel StrongARM

An example of a high-end controller with USB capability is Intel's Stron-
gARM series. The StrongARM is a 32-bit CPU designed for use in portable,
wireless, multimedia devices. USB communications isnt the primary pur-
pose of the StrongARM, but it has a full-speed periphera interface with
three endpoints that support control, bulk OUT, and bulk IN transfers.

168

Inside a USB Controller: the Cypress enCoRe

8

Inside a USB Controller:
the Cypress enCoRe

Now that you know something about the USB protocols and the controller
chips available for USB peripherds, it's time to take a closer look a a con-
troller chip and how to use it. The chip I've chosen for the examples in the
book is the CY7C63743 in Cypress Semiconductor's enCoRe series.

This chapter explains how | chose the chip b use for my examples, then
describes the chip and its abilities in detail. Because describing the hardware
often involves showing code that accessing the hardware, 1've also included
information about the chip's assembler and C compiler. The focus as dways
is on what you'll need to know to put the chip to use. No matter which chip
your project uses, this chapter will give you an idea of how USB controllers
carry out their responsibilities.

169

Chapter 8

Selecting a Chip

If youre going to design a USB peripheral, you eventually need to decide
which controller chip the peripherad will contain. The same principle holds
true for the examples in this book. In order to show application examples, |
need to choose a chip to base the examples on. So the first order of business
is selecting the chip.

Requirements

A magjor purpose of this book is to show how to design and program a USB
peripheral. | wanted to use a chip that would be suitable for smple monitor-
ing and control projects. The focus is on getting a basic design up and run-
ning quickly, rather than on supporting a complex design and every
capability of USB. With this in mind, | decided to look for these features in
achip:

» Easy tolearn. A smple design is good.

» Contains a microcontroller, rather than requiring an interface to an

external microcontroller. This keeps the design smpler and avoids the
issue of which microcontroller to interface to.

» Supportsinterrupt transfers. One of the easiest ways to communicate
with aUSB device is usng Windows HID drivers. The drivers use inter
rupt and control transfers for transferring data in both directions.

* Inexpensive.

* Avalable.

» Has an easy-to-use development system. The development system should
enable transferring of code from a PC to the controller, viewing the code
and chip registers, and debugging using functions such as single-stepping
and breakpoints.

* Reprogrammable. A chip whose program memory is easily repro-
grammed makes devel opment ssmpler and cheaper.

» Available sample code. This provides a quick start in developing firmware
and application software.

170

Inside a USB Controller: the Cypress enCoRe

The Choice

There are many excellent products available, and the truth is that no chip
meets every requirement perfectly. Every controller I've seen supports inter-
rupt transfers, so that part is easy. Cypress products rose to the top of the list
because Cypress has done a very good job of supporting developers with
example code and documentation. Cypress EZ-USB is a powerful chip and
requires no PROM programming, but its complexity means that it's likely to
be programmed in C, requiring an expensive C compiler.

In the end, | decided on Cypress enCoRe series. The chips aren't repro-
grammable, except by swapping the PROM, but the development system
enables testing code before storing it in PROM. The development system
costs a little more than I'd like, but the chips themselves are inexpensive.
The chips are low speed, which limits their performance, but makes printed-
circuit-board design less criticd. The USB communications require a fair
amount of firmware support, but you can begin with example code that
includes the essentials and change only the portions that are specific to your
gpplication. The instruction set is smple enough that you can use te free
assembler.

The specific chip I'll use is the CY7C63743. It can do USB communica
tions and generic 1/0. There are no external buses; the chip stands alone as a
complete controller for managing USB communications and other process-
ing.

If you're using a different chip, following my examples will give you a head
gart on figuring out what you'll need to do. Even if you need a full-speed
interface or a custom driver, the examples will introduce many topics that
arerelevant to al USB devices.

The Assembler

Before getting into the details about the chip, it's helpful to know a little
about how to program it. The enCoRe's CPU supports 37 instructions.
Everything that the firmware does must use these instructions. Cypress pro-
vides a free assembler for converting the assembly code you write into object

171

Chapter 8

files for programming into the chip's EPROM. If you prefer to program in
C, Cypress dso offers a C compiler.

If you have experience with microcontroller assembly-language program:
ming, progranming for the enCoRe will be familiar. If you're used to pro-
gramming in Basic, C, or another high-level language, the limited
operations available in assembly code may come as a shock. There are no
for or while loops, no fancy variable types, and no object-oriented any-
thing. But for a chip like the enCoRe, which is intended for fairly uncom-
plicated control and monitoring tasks, usng assembly code is feasible. For
short programs, the code is manageable and executes quickly. And there are
no compilersto buy.

This book isnt a tutorid on assembly-language programming, but ['ll
present some basic information for beginners, as well as specific details
about the enCoRe for those who have programming experience and want to
see how the Cypress chip compares.

Assembly Programming Basics

An assembly-language program contains a series of ingructions, each corre-
sponding to a machine code that the chip supports. For example, the
instruction iord, which reads an I/0 location, corresponds to the code
29n. Instead of having to remember 29h, you can write iord, and the
assembler will trandate for you. The iord ingtruction also requires an oper-
and that specifies the location to read. For example, iord Olh reads the
port at address Olh.

An assembly-language program may also contain directives and comments.
A directive is an ingtruction for the assembler, rather than for the CPU.
Directives enable you to assign locations in program memory, define vari-
ables, and in genera ingtruct the assembler to perform operations besides
specifying what machine-code instructions to execute. A semicolon (;) or
double dash (/) introduces a comment, which the assembler ignores.

The assembler provided by Cypress, cyasm.exe, is a command-line program
that you can run in a DOS window. Cypress provides a User's Guide that
documents the instructions, directives, and how to use the assembler.

172

Inside a USB Controller: the Cypress enCoRe

The assembler supports two similar ingtruction sets, for the A- and B-series
CPUs. The enCore chips are B-series. Cypress older chips, such as the
'63001, are A-series and support al but afew of the same instructions.

Assembler Codes

The User's Guide has complete documentation for the assembly codes and
directives, and | won't repeat the details here. Tabde 81 is a summary of the
codes, and Table 8-2 is a summary of the directives. The chip's machine
codes trandate to 37 ingtructions, with some supporting multiple sources or
destinations.

The ingructions do basic arithmetic and logic functions, program branch-
ing and control, and copying of data to and from registers, ports, and RAM.
Two flag bits, the carry flag and zero flag, provide additiona information,
such as whether an add instruction resulted in an overflow or whether the
result of an instruction is zero.

The chip supports three addressng modes that determine how an instruc-
tion uses its operand. Not all instructions support all three addressing
modes.

In immediate addressing, the instruction uses the operand's vaue directly.
This ingruction uses immediate addressing to add 60h to the vaue in the
accumulator.

Add A, 60h

In direct addressing, the instruction treats the operand as an address and
uses the value stored at that address. This instruction uses direct addressing
to add the value stored at address 60h in RAM to the contents of the accu
mulator:

Add A, [60h]
In indexed addressing, the instruction uses the data stored at an address
obtained by adding a value to the contents of the X register. Indexed
addressing is useful for copying blocks of data. The X register holds the
starting address of data to be copied. The code adds an index value to the
contents of the X register to obtain the address of a byte to copy. By incre-

173

Chapter 8

Table 8-1: The Cyasm assembler supports 37 assembly-language
instructions for the enCoRe. (Sheet 1 of 2)

Instruction Type Instruction Description

Arithmetic and logic functions |ADD Add without carry
ADC Add with carry
AND Bitwise AND
ASL Arithmetic shift left
ASR Arithmetic shift right
CMP Non-destructive compare
CPL Complement accumulator
DEC Decrement
INC Increment
OR Bitwise OR
RLC Rotate left through carry
RRC Rotate right through carry
UB subtract without borrow
BB Subtract with borrow
XOR Bitwise XOR

Program branching and control | CALL Call function
HALT Halt execution
RETI Return from interrupt
JACC Jump accumulator
JC Jump if carry
IMP Jump
JINC Jump if no carry
INZ Jump if not zero
Jz Jump if zero
RET Return
XPAGE Memory page

174

Inside a USB Controller: the Cypress enCoRe

Table 8-1: The Cyasm assembler supports 37 assembly-language
instructions for the enCoRe. (Sheet 2 of 2)

Instruction Type Instruction Description
Moving data INDEX Tableread
IORD Read I/O
IOWR Write /O
IOWX Indexed 1/0O write
MOV Move
POP POP data stack into accumulator
PUSH PUSH accumulator into data stack
SWAP Swap
Other DI Disable interrupts
B Enable interrupts
NOP No operation

menting the index value after each copy, the code can step through a block
of data.

Using the Assembler

The assembler uses a command-line interface that you can run from a DOS
window. This command:
cyasm test.asm assembles
the file test.asm, The assembler
creates threefiles:

test.rom is the assembled code in a format for use with the Development Kit.
You can use this file to load the code from a PC to the development board's
RAM.

Hereisaportion of a.romfile as it appears when loaded into a text editor:

80 99 80 10 80 15 81 24
80 8C 8099 80 85 80 10
2D 1A 20 1E 20 2D 2A 21

1A 37 16 00 AO 20 27 37

175

Chapter 8

Table 8-2: The Cyasm assembler supports 13 directives.

Directive Description

CPU Product specification

DB Define byte

DS Define ASCII string

DSU Define UNICODE string

DW Define word (2 bytes)

DWL Define word with little endian ordering

EQU Equate label to variable value

FLLROM Define value for unused program
memory

INCLUDE Include source file

MACRO Macro definition

ORG Origin

XPAGEON XPAGE enable

XPAGEOFF | XPAGE disable

The file contains lines consisting of eight ASCIlI hex bytes with a space
between each and a carriage return/line feed at the end.

In ASCII hex format, each byte is represented by two ASCII codes, with
each code representing a hexadecimal character. For example, the byte 80h is
represented by the ASCII codes 38h for 8, and 30h for 0. Using ASCII hex
format enables you to easily view te byte values (80 in the example) in a
text editor. When the code is stored in the development boards RAM, the
RAM contains the binary bytes represented by the ASCIlI Hex bytes. For
example, 80h trandates to 10000000 in binary.

test.hex is the assembled code in Intel Hex format. Many EPROM program:
mers, including the Hi-Lo programmer available from Cypress, support this
format. The Development Kit can use this format as well, instead of the
.rom format. Intel Hex format uses ASCII hex characters and adds dheck-
sums for error-checking and addressing information to enable the file to
specify where each line of bytes should be stored.

Here is the same datain one line of a*.hex file (the line wraps on the page):

176

Inside a USB Controller: the Cypress enCoRe

:200000008099801080158124808C8099808580102D 1A 201E202D

2A211A371600A0202737A1
test.Ist is the listing file generated by the assembler. It shows each line of the
assembly code and comments, aong with the program code generated from
it and the address where each byte will be stored. The ligting file is useful
when you're using the monitor program. For example, if you want to stop
program execution at a breakpoint, you can use the liging file to find the
address that corresponds to the line of code where you want to break.

Here is an excerpt from a *.Ist file, showing an interrupt-service routine for
Endpoint 1:

03BC endpointl:

Q3BC 2D [a5] push A

0D3BD

03ED : change data toggle

02BD 19 80 [04] 1 1mA Y A, BOh

03BF 27 21 [07] xor [epl_data_teggle]l, A
D3C1

Q03Cl 192 00 [04] i jlaaty L,NC_EVENT PENDING
03C3 31 2D [05] Mo [event machine], A
Q3C5

03Cs ; Bet responee

Q3Cs 1A 29 [08&] mow B, iepl_g:all]
03C7 1e FF [D4] omp A, FFh

03Cs B3 CF [05] inz endpointl_done
03CB 1% 03 [D4] Mo A, STALL_IN_OUT
03CD 2A 14 [D5] iowr epl_ mode

03CF

D2CF endpointl done:

03CF 2B [04] pop A

Q3D0 73 [o8] reti

The leftmost column is the address in program memory. The address doesn't
change when a line contains only a comment or label. The next two col-
umns are the bytes stored at each address. For example, at location 03CD,
2Ah isthe code for iowr, and 14h identifies the register to write to. The
next column is the number of clock cycles the ingtruction uses (5). The
rightmost columns contain the assembly code and comments.

177

Chapter 8

Programming in C

Another option for developing code for these Cypress chips is the C com-
piler and development environment. These tools were developed by Byte-
Craft, a provider of C compilers for many embedded-controller families.

Advantages to C
Compared to assembly-language programming, C has severa advantages.

» Standardization. If you're an experienced C programmer, you know the
syntax and can get a quick start. You may be able to use C code written
for another chip with minima changes.

» More structures. Instead of being confined to simple jumps, your code
can use structures like if . . .else and case statements and for and
do . . .while loops.

» More operators. The compiler supports many more math and relationa
operators than the assembler. Y ou can add, subtract, multiply, divide, and
do avariety of comparisons.

 Libraries and examples. The included libraries will save you much time
in performing common functions. There are libraries for afirmware
UART, 1°C and Microwire interfaces, delay timing, LCD and keypad
interfacing, and more math functions. The examples include complete
code for a keyboard and mouse/trackball.

» Optimization. The compiler optimizes the code for compactness and
Speed.

The downside is that you have to buy the compiler, while the assembler is
free. But it's likely that the time saved with even a single project will justify
the expense.

Using the Compiler

You can run the compiler from DOS or use the included Windows-based
BCLIDE development environment (Figure 8-1). BCLIDE enables you to

178

Inside a USB Controller: the Cypress enCoRe

waeiil o it} th
unsigned int get bawd |void)
U

ANt m=py_iten=f;
while(l)
I

clrsce ()
Lor (unmigned int i=0; j<11 EE S o]
|
Pats (*ynEVE["y ;
1] meny_item == j)
1
LT (ANST_TERM)
I p‘ut5|blu:__
puta (baud mest_steingsfij
if | Beno item == §)
|

LE(ANST Tewm)
puts (white
mlagy X
| PUTS | T by
. patehi®] "
UART BRI _PORT.UART RD PIN = L;
swltehigeteh ()b .
|
cage '3t
case it
if{ mend item < Li

Figure 8-1: Byte Craft's C compiler includes a dex t environm
‘ piler includes a development environment th
enables you to set project options and edit and compile code. “

create a project, add files, define file paths, and set compiler and editor
options. You can edit source-code files and compile and link the file or files
to create executable code. The compiler am create afile in Intel hex or rom

Chip Architecture

Chapter 7 introduced the enCoRe series. The chips are inexpensive and sm-
plein design. They're intended for use in applications that transfer small
of information a moderate speeds. Uses include standard peripherals

179

Chapter 8

such as mice and other pointing devices, as well as specialized devices such as
data-acquisition units and controllers.

For example, a data acquisition unit might send periodic sensor readings to a
PC. The controller chip's I/O pins could connect to analog-to-digital con-
verters that convert sensor readings to digital signas. A host PC could use
the USB link to request the latest readings periodically. Or the PC might
send signals to control relays, motors, or other devices that the chip's 1/0
pins control.

Instead of just repesating what's in the chip's data sheet, I'll focus on what's
important to know before you start working with the chip. I'll dso explain
anything that | found difficult or confusing to understand from the data
sheet done. When it'stime to use the chip, check the data sheet for details.

Features and Limits

One compelling reason for choosing the '63743 for a project is inexpensive
chips. Typica prices for the chip are a few dollars each in small quantities.
And the chip contains an interna oscillator that eliminates the need to pro-
vide an external timing reference.

The chip is available in both through-hole (DIP) and surface-mount
(SOIC) packages. If you have experience with assembly-language program-
ming (or are willing to learn), the assembly-code instructions aren't too hard
to master. The chip has 8 Kilobytes of program memory. With optimiza-
tion, the code required to support USB communications can fit in 1 Kilo-
byte, leaving 7 Kilobytes for other functions.

The essential tool for developing is the Developers Kit, which includes a
development board, assembler, and debugging application. Youll probably
also want the CY 3649 Hi-Lo PROM Programmer with the adapter base
and matrix card for the enCoRes, al available from Cypress.

The '63743 isn't suitable for every project. The chip is low speed, which
means that you can't use bulk or isochronous transfers and the fastest maxi-
mum latency for interrupt transfers is 8 bytes per 10 milliseconds. Unlike
some early controllers, the '63743 does support Interrupt OUT transfers. If

180

Inside a USB Controller: the Cypress enCoRe

[WTERMAL ATAL WAKE -UF RAM 12-81T CABTURE :
0SCILLATOR [E105C ILLATOR TIHER 256 BYTES T IMER Timers [¥F!
- 3 £
| Py’ £ £\ X \
' = _ @] I
% i |
EPROM | r. *‘-‘F LT-:_T A Y \a?h
BE /A% E— T & o wJ .y 1
CCRE £ 'y T\' lI.-""|\.:
—— ; |
| i _L? % 7 7 J |
BROWN OUT I W/ ‘\‘,r V.
AESET . — — R e w4 WA e i
INTERRUPT TH:] FORT 1 FORT @
CONTROLLER [| ENGINE GF1O GFIo [
| WATCH L
DoG — 4 A
[TIMER 1 r
= ; : ¥
LOW 1Ay USE &
YRESET - R ATOR IRANSCE | VER
=
‘ ; |
] L
V ¥V I{v W
fe, D= Pl @=-P1.7 BO.@-PO.7

Figure 8-2: The chips in Cypress' enCoRe series have the essentials for USB

VYREG

communications and general port 1/O.

you can get by with less memory or 1/O, the series has chips with 6K of pro-
gram memory and twelve /O pins.

Inside the Chip

Figure 82 shows the chip's architecture. The CPU is an 8-bit RISC
(reduced instruction set computer). It can access pogran memory, RAM,
genera-purpose 1/0 ports, and of course, a USB port. The USB port is
actudly an auto-switching port that supports both USB and the PS/2 inter-
face for mice and other pointing devices. This feature is handy for designing
devices that @n plug into either port type. A variety of interrupt and reset
sources can interrupt the CPU.

The frequency of the interna 6-Megahertz oscillator is accurate to within
1.5%, as required for low-speed USB. If an application requires a more pre-

cise clock source, the chip can instead use an external oscillator.

181

Chapter 8

Figure 83 shows the pinouts of the '63743 and the '63723, which has four
fewer 1/0 pins.

Memory

The on-chip memory of the '63743 consists of 8 kilobytes (OOOOh to
1FFFh) of OTP PROM for program storage and 256 bytes of RAM (OOh to
FFh) for temporary data storage. There are also 34 byte-wide 1/O registers,
each with a defined purpose.

The organization of the program memory is similar to that of other micro-
controllers. Program execution begins at OOh. Addresses OOh and Olh con-
tain a jump to the address where the main program code begins. Addresses
02h through 17h are interrupt vectors that hold the addresses to jump to
when one of the chip's eleven interrupts occurs. Here is an example inter-
rupt-vector table in firmware:

ORG CCh jnp

reset jnp ; devi ce reset

bus reset jnp ; USB reset interrupt

error jnp ; 128-microsecond i nterrupt

Ins_tiner jnp ; 1.024-nillisecond interrupt

endpoi nt O ; BEndpoint O interrupt
PO q-I! I s 40 pre. 4
Po. | [] 2 230Pe.s
=l po. 2] 3 220 po.8
~ 180 ve.4 P ul ! 210 pe.7
170 re.s FlL.eS 28 P
Ir~|_1 P pl.2006 190 P1 3
5 re.7 PL.aC]7 180 F1.5
401 1.6 8 17 [p1
I Des5CLEK vss [9 16 [D+ /SCLK
12 [D-/SDATA vepL] 1@ 15 [0 b- /SDATA
11 vee VREG] 1 | 14 7 vee
HTA | @[XTALCUT XTALIN/PZ .1 Fi | 2 130 %TALOUT
CY7C63722/23 CY7CG3742/43

Figure 8-3: The enCoRe series includes chips with 12 and 16 1/O pins.

182

Inside a USB Controller: the Cypress enCoRe

jnp endpointl ; Endpoint 1 interrupt

jnp endpoint2 ; Endpoint 2 interrupt

jnmp spi ; SPI interrupt

jnp capture_a ; Capture timer A interrupt
jnp capture_ b ; Capture timer B interrupt
jmp goio ; GPIO interrupt

jmp wakeawp ;. Wake-up interrupt

Each interrupt vector jumps to the location specified by a label. Unused
interrupts should never occur, but the firmware should include jumps even
for these interrupts. A typica interrupt-service routine (ISR) for an unused
interrupt would just return the firmware to the caling location with regis-
ters unchanged.

The interrupt vectors are stored in order of priority, with the highest priority
a 0002h. Program memory from 0018h to 1FDFh is available for storing
the rest of the code.

The 256 bytes of RAM must hold two data stacks and 8 bytes each of buffer
data for Endpoints 0, 1, and 2 (if al are used), as well as any other tempo-
rary data (Figure 8-4). The endpoint buffers use addresses E8h through
FFh.

The stacks are last in, first out (LIFO) structures for short-term storage of
addresses and register contents. The RAM has two pointers for accessing the
two stacks. The Program Stack Pointer (PSP) begins at OOh on reset and
grows up, while the Data Stack Pointer (DSP) may be set by firmware to
E8h or lower and grows down. The firmware needs to be sure that the stacks
don't grow so large that they bump into each other in the middle. To reserve
genera-purpose RAM for other uses, such as storage for variables, set the
DSP to an address lower than E8h. This frees the locations from that
address through E7h for other uses without having to worry that one of the
stacks will overwrite them.

The Program Stack Pointer

The Program Stack Pointer (PSP) holds the address the code will jump to on
returning from a cal to a subroutine or interrupt-service routine. For inter-
rupts, the PSP a so stores the states of the zero and carry flags. The firmware

183

Chapter 8

EEH — — =
ENDFOINT @

FaH — -— - —
EMDPCINT 1

FaH
ENDPOINT 2

EdH

USER YARIABLES
AFTER RESET, FIRMWARE MUST
SET THE DATA STACK POINTER
TO A YALUE LESS THAN E&8H
[TO EMABLE USING ALL

3 USB ENDPOINTS) —
THE DATA STACK GROWS DOWN
AT,
THE PROGRAM STACK POINTER THE PROGRAM STACK GROWS UP
IS @@H OM RESET. — y —_— — —

Figure 8-4: The enCoRe's RAM contains the USB endpoint buffers, the
program and data stacks, and whatever variables the firmware requires.

doesn't have to do anything to manage the PSP. It's al done automatically by

the hardware and the CALL, RET, and RETI instructions.

On reset, the PSP points to OOh. The PSP can handle multiple, nested sub-
routines and interrupts. Each routine returns to the instruction after the last

instruction that executed before the call.

For example, if the PSP is pointing to OOh when an ingtruction in program
memory calls a subroutine, the CALL instruction will cause the PSP to save
the address of the following instruction in addresses OOh and Olh. The
CALL aso increments the PSP by two bytes (to 02h in the example) so it's
ready © store another location if needed. The RET instruction that returns
from the routine places the value pointed to by the PSP in the program
counter and decrements the PSP by two. Program execution then continues

where it left off before the routine was called.

184

Inside a USB Controller: the Cypress enCoRe

. The same thing happens in interrupt-service routines, except that the values
of the zero and carry flags are also saved and restored.

The Data Stack Pointer

The Data Stack Pointer (DSP) holds data stored by PUSH instructions. For
example, PUSH A stores the contents of the accumulator on the data stack.
The DSP decrements one byte before storing a byte. A POP ingtruction
removes the most recently stored byte and increments the DSP

The default value of DSP on reset is not where it should remain. Unless the
chip isn't usng USB at dl, the firmware must set the DSP to a new value
before doing any PUSH ingtructions. On reset, the DSP is OOh. From here,
the first PUSH instruction would cause the DSP to decrement to the top of
RAM (FFh), which is byte 7 in Endpoint O's buffer. For this reason, before
pushing any bytes, the firmware should set the DSP pointer to E8h or
lower:

Store the DSP' s new begi nni ng address
; in the accunul ator.
mov A, 7Ch
Swap the contents of the accunmulator with the DSP.
swap A dsp
Use a lower value if you want to reserve more bytes for firmware use, or a
higher value the firmware needs fewer bytes.

USB Communications

The firmware monitors and controls the serid interface engine (SIE) by
accessing registers. There are nine registers whose functions relate directly to
USB communications. an address register, three endpoint mode registers,
three endpoint counter registers, a status and control register, and an inter-
rupt-enable register.

Device Address

The USB Device Address Register holds the 7-bit address assigned by the
host during enumeration. The firmware must detect the Set_Address

185

Chapter 8

request, send a handshake in response to the request, and store the received
address in this register. Bit 7 must be set to 1 to enable the seria interface
engine to respond to USB traffic.

Modes

The USB Endpoint 0 Mode Register contains information about the last
received data packet at Endpoint 0. Both the SIE and firmware can change
the register's contents.

Three PID hits indicate the type of the transactions token packet: Setup,
IN, or OUT During the data phase of a Setup transaction, the SIE sets the
Setup bit to 1. To prevent incoming data from being overwritten, the chip
doesn't dlow firmware to write to any USB buffer while the Setup bit is 1.
Firmware can't change this bit until al of the transaction's data bytes have
been received.

The ACK bit is set when a transaction completes with ACK.

Four Mode bits determine how the SIE will respond to Setup, IN, and
OUT transactions. Depending on the type of transaction, the firmware can
request the SIE to return ACK, NAK, Stal, a O-byte data packet, or nothing
a al. In some cases, the SIE changes the mode after a transaction's ACK.
For example, when the mode is Ack OUT, after returning an ACK in
response to receiving OUT data, the SIE sets the mode to Nak OUT. This
gives the firmware time to retrieve the data that was ACKed. After retrieving
the data, the firmware can change the mode kits back to Ack OUT to enable
accepting new data at the endpoint.

For me, understanding the use of these mode bits was the most confusing
part in using these chips. Cypress provides four pages of documentation
about how the chip responds in every circumstance. | found it useful to
group the modes according to what type of endpoint would use them, and
in what situations. Table 83 shows the modes used by Endpoint 0. Each of
these modes accepts Setup transactions, as control endpoints must.

The complements to Endpoint O's mode register are the USB Endpoint 1
Mode Register and USB Endpoint 2 Mode Register . These have the same

186

Inside a USB Controller: the Cypress enCoRe

Table 8-3: Modes used by Endpoint 0 in the USB Endpoint 0 Mode Register.
Endpoint 0 must accept Setup transactions.

Mode Encod- | Response to Mode |Typical Use
ing Transaction after
ACK

Setup |IN ouT

Nek IfOut 0001 |accept [NAK [NAK [same |No transferisin progress;
waiting for a Setup transaction.

Status Out Only|0010 |accept |Stal [check |same |Control Read transfer, status
stage. Return ACK on recelving

a O-byte data packet with the
correct data toggle.

Sl IfOut 0011 |accept |Stdl [Stal |[same |Notransfer isin progress;
waiting for a Setup transaction.

lgnorelWOut {0100 |accept |ignore [ignore [same [No transfer isin progress,

waiting for a Setup transaction.

SausIn Only 0110 |accept [O-byte |Stal |same |Control Writetransfer, status
data stage. For an IN transaction,

return a O-byte data packet.
Nak Out - 1010 |accept |O-byte [NAK |[same |Control Writetransfer, status
Sausin data stage. For an IN transaction,

return a 0-byte data packet.
Adck Out - 1011 |accept [NAK |[ACK [Nak |Control Writetransaction, data
Nk In In/Out |stage.
N&k In- 1110 |accept |NAK [check [same |Control Read transfer, data or
SausOut status stage. For an IN

transaction, return NAK. For an
OUT transaction, return ACK on
receiving a O-byte data packet
with the correct data toggle.

AdlIn- 111 |accept |data | check Nak In|Control Read transfer, data or
SausOut - Statug| status stage. For an IN

Out transaction, return data. For an
OUT transaction, return ACK on
receiving a O-byte data packet
with the correct data toggle.

mode and ACK hits as Endpoint 0's mode register. They don't have the PID
bits because these endpoints support either IN or OUT transactions only.
These registers also each have a Stall bit.

187

Chapter 8

Endpoints 1 and 2 use different mode settings than Endpoint O because
they never respond b Setup packets, while Endpoint O must do so. Table
8-4 shows the modes used by Endpoints 1 and 2. The table aso shows how
firmware can use the Stall bit to cause the SIE to return Stall in Ack In and
Ack Out modes.

Endpoint Status and Control

Each of the three endpoints also hasa USB Endpoint Counter Register

that contains information about the data packet that is next to transmit, is
being transmitted, or has just transmitted. Each contains a four-bit count, a
data-toggle bit, and a data-valid bit.

The four Byte Count bits hold the number of data bytes in a transaction.
For IN transactions, the vaue indicates how many bytes will be sent from
the endpoint's buffer in the next transaction, not including the CRC bytes.
Valid vaues are 0 through 8. For Setup and OUT transactions, the value
indicates how many data bytes were received in the last transaction, plus the
two CRC bytes. Vdid vaues are 2 through 10. Setup and OUT counts are
locked until the firmware reads the register.

For Setup and OUT transactions, the DataValid bitis1if the received
CRC value was correct.

The Data 0/1 Toggle bit indicates the data packet's data toggle state. For IN
transactions, firmware sets the value. For Setup and OUT transactions, the
SIE sets the bit to match the received data-toggle state.

USB Status and Control

The USB Status and Control register has two bits used in USB communi-
cations, four bits that USB or PS2 communications may use, and one bit
for PS/2 communications only.

The SIE sets the USB Bus Activity bit to 1 on detecting any USB activity or
in other words, a non-idle bus. The firmware can use this bit dong with the
1-millisecond interrupt-service routine to decide whether the chip should

188

Inside a USB Controller: the Cypress enCoRe

Table 8-4: Modes used by Endpoints 1 and 2 in their USB Endpoint Mode
Registers. Endpoints 1 and 2 don't accept Setup transactions.

Mode Encod- | Response to Mode |Typical Use
ing Transaction after
Setup |[IN ouT ACK
Disable 0000 |ignore |ignore [ignore |- The endpoint is disabled.
NakOut 1000 ignore [ignore |NAK |- An OUT endpoint isn't ready to
receive data.
Ack Out 101 ignore |ignore [ACK [Nak An OUT endpoint isready to
(Stl=0) Out receive data.
Ack Out ignore |ignore |stall An OUT endpoint is halted.
(Sal=l)
Nak In 1m ignore [NAK |ignore |- An IN endpoint has no data to
send.
Ack In (Stall=0) | 1101 ignore |data |ignore [Nak In|AnIN endpoint has datato send.
Ack In(Stall=l) ignore |stall ignore |- An N endpoint is halted.

enter the Suspend state. If the bit remains O for more than three millisec-
onds, the chip must enter the Suspend state.

The VREG Enable bit can enable 3.3V a the chip's VREG output. This
output isintended for pulling up the USB's pull-up resistor to D- on the
bus. Because VREG is under firmware control, code can remove and restore
the output voltage to smulate device removal and attachment. VREG's out-
put impedance is about 200 ohms, so the resistors value should be 1.3K to
meet the 1.5K specification.

The USB Reset - PS2 Activity Interrupt Mode bit selects whether to inter-
rupt on a USB reset or on PS/2 activity.

Three Control bits enable firmware to set the USB or PS/2 lines to specific
gtates, including USB's J, K, and SEO dtates. If the host has previousy
enabled a devices Remote-Wakeup ability with a Set_Feature request, the
firmware can use the Force-K state to send a Resume signd to tell the host
that the device wants to communicate. Chapter 19 has more on resume sig-
nding.

189

Chapter 8

The PS/2 Pullup Enable bit can enable internal pull-up resistors on the
SCLK and SDATA lines used in PS/2 communications.

The Port 2 Data Register holds the states of four read-only bit values at an
auxiliary input port (Port 2). Two bits are the gates of D+ and D when
using USB, or the states of SCLK and SDATA when using PS/2. The other
two bits can sometimes serve as general-purpose inputs. If the pull-up on
USB's D uses an external voltage source or if the device doesn't support
USB, the VREG output can be disabled and the pin can serve as a gereral-
purpose input whose dtate is read a P2.0. When the internd clock is
enabled, there is no timing reference at XTALIN, and this pin can serve as a
general-purpose input whose state is read at Bit P2.1.

The find USB-related register is the USB Endpoint Interrupt Enable Reg
ister, which enables interrupts for Endpoints 0, 1, and 2.1 cover this register
in more detail below, under Interrupt Processing.

Other I/O

In addition to the USB port, the enCoRe has built-in support for three
other 1/0O interfaces. Firmware can use the general-purpose ports for any
purpose. Some of the genera-purpose bits can function as an SPI synchro-
nous seriad interface. And the USB interface is switchable between USB
and a PS/2 interface.

General-purpose I/O

For interfacing to circuits besides the USB port, the chip has 16 versatile
I/0 pins on two 8-bit ports. Each can function as an input or output.
Inputs can have pull-ups or not, and CMOS or TTL thresholds. Outputs
can ke CMOS with selectable driver strength or open drain. Each input can
trigger an interrupt. A data register and two mode registers for each port
control the configuration of each pin.

190

Inside a USB Controller: the Cypress enCoRe

SP1 BYPASS.
[P&.5-P&.7 OMLY)

== L

|_5JDATA OUT o
| REGI STER

| NTERMAL [

DATA BUS PORT WRITE —

CHOS/TTL
THRESHCLD|
SELECT|
PORT REA
INTERRUPT POLARLTY BIT s
| : NTERRUPT | . — e e
e — i LOGIC 3 T0 INTERRUPT CONTROLLER
INTERRUPT EMABLE BIT |
Q1 15 ON FOR RESISTIVE OQUTPUT [LOW SOURCE CURREMNT)

01 IS5 ON FOR STROMG SOURCE CURRENT
02 15 ON FOR LOW, MEDIUM, OR HIGH SINK CURRENT,

Figure 8-5: Two GPIO register bits for each pin determine whether the pin is an
input or output and the amount of source and sink current an output is capable
of.

The Circuits Inside

Figure 85 shows the circuits insde each port pin. Table 85 shows the
effects of combinations of settings.

To configure a bit as an input, the firmware writes 0 to the matching bits in
the Mode 0 and Mode 1 registers. For TTL input thresholds, write 1 to the
Data bit; for CMOS, write 0. A TTL low input must be 0.8V or less, and a
TTL high input must be 2.0V or greater. CMOS input thresholds are cen+
tered a around half the power-supply voltage. For low-to-high trangtions,
the thresholds are 40% and 60% of the supply voltage. For high-to-low
trangtions, the thresholds are dightly lower. This adds hysteresis to keep
inputs from oscillating on noisy or dowly changing inputs.

191

Chapter 8

Table 8-5: Two Mode bits and a Data bit determine the configuration and state of
each general-purpose /O bit.

Register Output Output Drive Strength Input Threshold

Data |Mode I|ModeO | t&te

0 0 0 undefined | high impedance CcMOSs

1 0 0 undefined | high impedance TTL

0 0 1 0 medium (8 mA) sink currentf CMOS

1 0 1 1 strong (2mA) source CMOS
current

0 1 0 0 low (2 mA) sink current CMOS
(open drain on)

1 1 0 1 resistive (14K pull-up, CMOS
low source current)

0 1 1 0 high (50 mA) sink current |CMOS

1 1 1 1 strong (2 mA) source current| CMOS

The other modes control the strength of the source and sink currents for
outputs. Any output pin can sink up to 50 milliamperes, but only one pin
can do so a atime. The combined sink current for all pins shouldn't exceed
70 milliamperes. For source current, the combined maximum is 30 milliam-
peres. Use current-limiting resistors to limit the output current.

Interrupts

A trangtion on a GPIO pin can cause an interrupt. Additional register bits
configure the pin's interrupt capability. Writing 1 to a pin's bit in the GPIO
Interrupt Enable Register enables a trangition on the pin to trigger a GPIO
interrupt. The GPIO bit in the Global Interrupt Enable Register must be
set to 1 aswdl. A pin's bit in the GPIO Interrupt Polarity Register deter-
mines whether arising (1) or faling (0) edge triggers the interrupt.

All of the GPIO pins share an interrupt, so the firmware may need to deter-
mine which pin caused the interrupt. It can do so by reading the port. The
interrupt latency, or time it takes for the CPU to enter the interrupt-service
routine, is under 3 microseconds, S0 an interrupt signal should be greater
than 3 microseconds wide if the interrupt-service routine needs to detect
which pin caused the interrupt.

192

Inside a USB Controller: the Cypress enCoRe

SPI Port

The enCoRe includes hardware support for an SPI (Serial Periphera Inter-
face) port. SPI is a synchronous seriad interface suitable for short-range com-
munications, often on the same circuit board, though cables of ten feet or so
shouldn't be a problem in most environments. Compared to USB, SPI
doesn't require nearly as much support in hardware or code, so it's used by
many simple and inexpensive chips.

Chips with SPI interfaces include serid EEPROMs and anaog-to-digitd
converters. The enCoRe's Development System includes a couple of SPI
peripherals that can connect to the chip. Motorola introduced SPI, so the
68HC11 and other Motorola microcontrollers have SPI interfaces. A
periphera that needs more processing power than the enCoRe could use an
enCoRe to manage USB communications and use the SPI interface to pass
information between the enCoRe and another microcontroller.

An SPI bus has one master and one or more slaves. As with USB's host, the
master initiates all SPI traffic. The enCoRe's SPI can function as a master or
dave. The number of wires varies with the gpplication. In addition to a
common ground, an SPI interface has MISO (master in, dave out), MOS

(master out, dave in), and SCK (serid clock) lines. When there is more than

one dave connected, each must also have an *SS (dave sdect) line. If thereis
just one dave, *SS can often be tied low at the dave to select it permanently.

On a master, MOS|, SCK, and any *SS pins are outputs and MISO is an
input. On adave, MISO is an output and MOSI, SCK, and *SS are inputs.

On the enCoRe, the SPI nterface uses GPIO pins. Four pins have assigned
functions: MOSI is P0.5, MISO is P0.6, and SCK is P0.7. On adave, *SS is
P0.4. On a master, the * SS outputs can be any spare GPIO pins.

The hardware handles the clocking and sending and receiving of the SPI
data bits. A communication consists of the master writing one or more bytes
to a dave, followed by an optiond reply. For example, to write a byte to
serial EEPROM, the master sends a write instruction, followed by an
address and data. The dave sends nothing. To read a byte from EEPROM,

193

Chapter 8

the master sends a read ingtruction followed by an address, and the dave
sends the datain reply.

Writing to the SPI Data Register fills a transmit buffer, which causes the
data to load into a shift register for transmitting. Received SPI data is |oaded
into a receive buffer, where the firmware can retrieve it by reading the SPI
Data Register.

The enCoRes interface is flexible enough to communicate with just about
any SPI chip. An SPI Control Register enables the firmware to select mas-
ter or dave mode, a clock frequency from 62.5 Kbity/sec, to 2 Mbits/sec.,
and a clock polarity and phase. The clock polarity and phase sdlect the
clock's idle state (0 or 1) and whether data is written and read on rising or
faling clock edges. Some SPI chips support only master or dave or a single
clock phase and polarity.

Two additiona bits in the SPI Control Register indicate when the transmit
buffer is full and when an 8hit transfer is complete. Completing a transfer
also triggers an SPI interrupt so the firmware can get ready for another
transfer.

The PS/2 Interface

Although this book is about USB, | shouldn't entirely neglect the enCoRes
PS/2 option. The term PS/2 can refer to the mouse, keyboard, or paralle-
port interface IBM included years ago in its model PS2 computer. In this
case, we're talking about the mouse interface, which became a favored
aternative to the serid (RS-232) and bus interfaces that were the options
until USB came aong.

A PS/2 mouse uses a g/nchronous seria interface that has a single data line
and a clock line. The interface also has +5V and ground lines. The device
provides the clock for communications in both directions. The device sends
mouse data synchronized to the clock pulses. The data format uses 11 bits. a
Start bit of 0, eight data bits sent least significant bit first, an odd parity bit,
and a Stop bit of 1. The host reads the data on the clock's faling edge. As
with a USB mouse, the data contains information about button presses and
the amount and direction of mouse movement.

194

Inside a USB Controller: the Cypress enCoRe

A long low on the data line tells the device that the host wants to send a
command and generates a PS/2 interrupt in the device.

Having an interface that supports both USB and PS/2 makes it easy to
design a pointing device that can use either. The device will need firmware
to support both. For PS/2, the firmware is responsible for writing each clock
pulse and data bit by setting Control bits in the USB Status and Control

Register. Of course, a design can aso use only USB, only PS/2, or even nek-
ther.

Other Chip Capabilities

The enCoRe has many other capabilities worthy of mention. Timer func-
tions enable performing periodic tasks and measuring intervals. Many event
types can trigger interrupts. And severa registers enable monitoring and
controlling the CPU and managing power.

Timer Functions

The chips have hardware support for a variety of timing functions, includ-
ing generating interrupts for periodic tasks and measuring intervals.

Performing Periodic Tasks

For tasks to be done periodicaly, there are three options: the Xmillisecond,
128-microsecond, and Wake-up timer interrupts. The Wake-up interrupt
provides less precise, but longer, timing intervals than the other two timers.
If the chip is in the Suspend date, this interrupt will wake it. But firmware
can aso use this interrupt to perform periodic tasks when the chip isn't sus-
pended.

The timing interva of the Wake-up interrupt is the chip's tWAKE period
multiplied by the vaue indicated by three Wake-up Timer Adjust bits in the
Clock Configuration Register. The available vaues are the eight powers of
2 from 1 through 128. The tWAKE vdue varies with the supply voltage and
temperature, and can range from 1 to 5 milliseconds. So for example, if
tWAKE is 128, the interva may be anywhere from 128 to 640 milliseconds.

195

Chapter 8

To sdect an interval more precisdly, the firmware can enable the Wake-up
tinier, use the chip's free-running timer to measure the interval, and select
the Wake-up Timer Adjust value that most closely matches the desired inter-
va.

With any of these timers, to time a longer intervd, the firmware can main-
tain a counter in the interrupt-service routine. The routine increments the
counter on each interrupt until the desired number of intervals has elapsed.

Measuring Intervals

The enCoRe has a free-running timer that provides a way to measure inter-
vas and timer capture registers that enable measuring the time between
events at 1/0 pins.

The 12-bit free-running timer increments once per microsecond, The timer
rolls over on a count of FFFh, enabling firmware to measure periods up to
4.096 milliseconds (or longer by cascading counts). The count is stored in
two registers. The firmware can read just one register at a time, yet it will
want to know the states of all 12 bits at the same time. To make this poss-
ble, reading the Timer L SB (least significant byte) Register aso loadsthe
timers upper four bits into a temporary register. Reading the Tinier M SB
(most significant byte) Register reads the temporary register. So sequential
reads of these two registers gives the count at the time of the first read.

The chip can aso measure intervals between events at the GPIO pins Port
0.0 (Capture A) and Port 0.1 (Capture B). Six registers configure the timers
and hold the results, which can correspond to the times of rising and faling
edges at each pin.

The Capture Timers Configuration Register has three functions. Four bits
enable interrupts on the rising and faling edges of Capture A and B. One
bit selects whether to save the time of the first edge or the most recent edge.
Three bits sdlect a prescale value that determines which 8 of the free-run-
ning timer's 12 bits are saved on an interrupt. Using lower bits gives better
precison but shorter range, while higher bits give longer range but less pre-
cison.

196

Inside a USB Controller: the Cypress enCoRe

The Capture Timers Status Register indicates whether a risng or faling
edge has occurred on Capture A or B. The four Capture Timer Data Regis-
ters hold the timer counts for rising and faling edges a the two port pins.
The difference between the counts stored at two events equals the time in
microseconds between them.

Interrupt Processing

The firmware uses two registers to control which interrupts are enabled, plus
two additional registers to enable individud GPIO interrupts. The USB
Endpoint Interrupt Enable Register has three bits that enable interrupts
for Endpoints O, 1, and 2. The Global Interrupt Enable Register enables
the other interrupt sources. Wake up, General-purpose 1/0O, Capture Timer
A, Capture Timer B, SPI, 1.024-millisecond timer, 128-microsecond timer,
and USB Reset or PS2 Activity. Writing 1 to an interrupts bit enables the
interrupt, while writing 0 masks, or disables, the interrupt.

Interrupt Service Routines

When an interrupt occurs, the chip's hardware disables all interrupts, clears
the Globa Interrupt Enable bit and jumps to the interrupts assigned inter-
rupt-vector location in program memory. This location typicaly contains a
jump to an interrupt-service routine. The interrupt-service routine is
responsible for carrying out whatever needs to be done in response to the
interrupts event and for ensuring that al registers are in the expected states
on exiting the routine.

On entering an interrupt-service routine, the hardware automatically stores
the Program Counter's value and the states of the Carry and Zero flags. On
exiting the routine, these values are automaticaly restored. So the interrupt-
service routine can do what it wants with these values, and other code won't
be affected. The firmware is responsible for saving and restoring any other
values that need to be preserved. A typica example saves and restores the
contents of the accumulator (A) and index register (X). Here is an example
interrupt-service routine that uses push and pop to preserve the contents
of these registers while aso dlowing the interrupt-service routine to use the
registers.

197

Chapter 8

DoNbot hi ng_| SR

; Save the contents of the accumul at or

push A

; Push the contents of the index register

push X

; Add code to service the interrupt here

; Pop val ues that were preserved

;inthe reverse order they were saved (last first)
pop X pop A reti

GPIO Interrupts

For the general-purpose 1/0 (GPIO) interrupts, a Port Interrupt Enable
Register for each port alows the firmware to enable or disable the interrupt
for each 1/0 pin. A transtion on a port pin will result in an interrupt only if
severd things are true:

* The GPIO hit in the Globa Interrupt Enable register is set to 1.
» Thepin'shitin its port's Port Interrupt Enable register is 1.

» The polarity of the trangition on the port pin matches the polarity set in
the pin's bit in the corresponding Port Interrupt Polarity Register.

 If any previous GPIO interrupt has occurred, that pin's state must have
returned to the inactive, or non-trigger state, or the pin's bit in the Port
Interrupt Enable register must have been set to 0 (and may optionally
then be set back to 1). For alow-to-high interrupt trigger, the non-trigger
state is low; for a high-to-low trigger, the non-trigger state is high.

USB Endpoint Interrupts

The USB endpoint interrupts trigger on sending or receiving the last packet
in a transaction. In a Setup transaction, an interrupt occurs when the device
returns ACK or receives a flawed data packet. In an IN transaction, an inter-
rupt occurs on receiving the host's ACK or if the device returns a NAK or
Stal. In an OUT transaction, an interrupt occurs when the device returns
ACK, NAK, or Stall or receives aflawed data packet.

198

Inside a USB Controller: the Cypress enCoRe

Timer Interrupts

The timer interrupts occur a intervas of 1.024 milliseconds and 128
microseconds. The firmware can use these interrupts for any purpose. One
use for the Xmillisecond interrupt is to measure the amount of time with no
USB activity to determine whether or not to enter the Suspend state.

Deciding whether to enter the Suspend state requires firmware support. The
code must maintain a count of the number of milliseconds that the bus has
been idle and cause the chip to enter the Suspend state when the count
equals or exceeds 3. The count can be stored in any spare location in RAM.

To find out if the bus has been idle, the firmware reads the bus-activity bit in
the USB Status and Control register. If the bit is O, there has been no bus
activity and the firmware should increment the suspend counter. If the bit is
1, there has been activity, and the firmware should dear the suspend counter
and the bus activity bit by writing O to each:

Ims_timer:
; Sanple 1-mllisecond timer routine
; that checks bus activity and enters the Suspend

state if there has been no bus activity for over
; 3 nilliseconds.

push A

| ns_suspend_ti ner:

; To check for bus activity,

; read the bus-activity bit

; inthe USB Satus register.

iord usb_status

and A, BUS ACTIMTY

;1 f it's not O, there has been bus activity.
jnz bus_activity

;1 f it's O, there has been no bus activity

;since the last 1-mllisecond interrupt.

;I ncrement the suspend counter to keep track of
;the anount of tine with no bus activity.

inc [suspend_count]

nmov A, [suspend_count]

;Has it been over 3 nilliseconds?

199

Chapter 8

cmp A, 04h

;1 f yes, enter the SQuspend state.

jz usb_suspend

;1 f no, we're finished checking for bus activity.
jmp ns_timer_done

usb_suspend:

, Before entering the Suspend state,
; enabl e the Reset interrupt.

nov A (USB_RESET_IND

iow global _int

; Set the Suspend bit in the control register
; and re-enable interrupts.

iord control

or A, SUSPEND

ei

iow control

;On exiting Suspend, programexecution begins here.
nop

; Look for bus activity.

; |f there has been none, return to the Suspend state,
iord usb_status

and A, BUS_ACTIVITY

jz ushb_suspend

; Exit the Suspend state.

; Enable the 1-mlliscond and Reset interrupts.
nmov A (1VMB_INT | USB RESET_I NT)

iow global _int

bus_activity:
; Bus activity was detected.

; Reset the Suspend counter to O.
nmov A, QCh;
nmov [suspend_count], A

; Qear the bus-activity bit.
iord usb_status
and A, ~BUS ACTIVITY

200

Inside a USB Controller: the Cypress enCoRe

i ow usb_status

ns_tiner_done:

yExit the 1-mllisecond tiner ISR

pop A

reti
The Wake-up interrupt occurs at intervas set by firmware. If the chip isin
the Suspend state, the Wake-up interrupt will wake it. The Wake-up inter-
rupt is enabled whenever the Wake-up Interrupt Enable bit in the Globad
Interrupt Enable Register is 1, even if hardware or firmware has disabled
interrupts.

Interrupt Status

The Processor Status and Control Register has two bits that relate to
interrupts.

The Interrupt Enable Sense bit shows whether interrupts are enabled (1) or
disabled (0). Firmware can control its state with the instructions DI (disable
interrupts), El (enable interrupts), and RETI (return from interrupt-service
routine and re-enable interrupts. The hardware disables interrupts on enter-
ing an interrupt-service routine and re-enables them on exiting.

When interrupts are disabled, the IRQ Pending bit in the Processor Status
and Control register indicates when an interrupt has occurred but has been
ignored because interrupts are disabled. The bit remains set until the inter-
rupt(s) are enabled and serviced.

CPU Status, Control, and Clocking

The Processor Status and Control Register contains seven bits that relate
to the chip's overall operation. Two bits can stop the CPU, two bits relate to
resets, and three bits relate to interrupts. In addition the Clock Configura-
tion Register has bits that relate to resets and CPU clocking.

201

Chapter 8

Halting the CPU

To stop the CPU, the HALT instruction sets the Run bit in the Processor
Status and Control Register to 0. The CPU stops executing instructions
until areset occurs. The CPU resumes at address O.

Writing 1 to the Suspend bit in the Processor Status and Control Register
puts the chip in the Suspend state. The chip stops executing instructions
until there is USB activity or a pending, enabled interrupt occurs. The CPU
resumes at the ingtruction following the instruction that set the Suspend bit.

Resets

The CPU supports three types of reset: Low Voltage, Brown Out, and
Watch Dog. Each is triggered by a different event. A fourth type of reset is
the bus reset that a USB host may request to restart USB communications.

On a Low-Voltage or Brown-Out reset, the chip is placed in a known date:
the PSP and DSP are set to O, the USB address is set to O, interrupts are dis-
abled, and registers return to their default states. The GPIO, USB, and
VREG pins are high impedance. USB communications are disabled. A chip
using an externa clock switches to the interna clock. After a short delay,
program execution begins at 0. After reset, the firmware is responsible for
writing the desired default values to registers and variables. After engbling
USB communications, the chip has to wait to be enumerated by the host
before it can do other USB communications.

A useful feature is the ability to shut the chip down automaticaly if the sup-
ply voltage is low and start it up again when voltage is restored. The
Low-Voltage and Brown-Out resets perform this function.

A Low-Voltage Reset occurs when the supply voltage is below the low-volt-
age-reset voltage of 3.5 to 4.0V. This reset also acts as a power-on reset that
occurs when power is first gpplied to the chip. The interna oscillator runs,
but the chip is held in reset until the supply voltage reaches the reset thresh
old and 24 to 60 milliseconds has dapsed. The delay gives the supply volt-
age time to stabilize.

After power up, a Low-Voltage Reset occurs any time the supply voltage falls
below the threshold, unless firmware has set the Low Voltage Reset Disable

202

Inside a USB Controller: the Cypress enCoRe

bit in the Clock Configuration Register, or unless the device is in the Sus-
pend state.

When the Low-Voltage Reset isn't enabled, the Brown-Out Reset takes over.
This reset does nothing until the supply voltage is below about 2.5V. The
Brown-Out Reset is aso active when the chip is in the Suspend state. This
enables a suspended chip to have a lower supply voltage and still preserve the
states of registers and memory. If the voltage fals below 25V and a
Brown-Out reset occurs, the chip remains in reset until the supply reaches
the low-voltage reset threshold.

The Watch-Dog Reset prevents the firmware from hanging by requiring the
firmware to reset a watch-dog timer periodicaly. If the timer isn't rest,
something has gone wrong and the firmware restarts. To prevent a
Watch-Dog Reset, firmware must write any value to the Watch Dog
Restart Register at least once every 10 milliseconds. If it fails to do so, the
watch-dog timer overflows and triggers a reset. This reset behaves like the
Low-Voltage and Brown-Out resets, except that the chip will continue to
use an enabled external clock and the reset delay isjust 2 to 4 milliseconds.

The interrupt-service routine for the 1-millisecond timer might seem a nat-
ural place to write to the Watch Dog Restart Register, but it's possible for
firmware to stal or get stuck in a loop while sill being able to service this
interrupt. So it's best to reset the watch dog in the firmware's main task loop
and aso in any other routines that may take longer than 10 milliseconds.

Firmware can't disable the Watch Dog interrupt. The Processor Status and
Control Register has a bit that indicates if a Watch Dog reset has occurred,
and a bit that indicates if a Low Voltage or Brown-out reset has occurred.

A USB Bus reset occurs when the host sends a reset by bringing both USB
signd lines low for at least 10 milliseconds. This doesn't reset the CPU. It
just calls the USB Bus Reset interrupt-service routine. The bus-reset routine
must cause the chip to stop USB communications and wait to be enumer-
ated. And if this is necessary, the firmware is likely to want to start fresh
from OOh as it does on the other resets. Here is example bus-reset code that
doesthis:.

bus reset:

203

Chapter 8

; O sabl e USB communi cations, then reset the firmare.
; Return Sall to INand QJT token packets. nmov a,
STALL IN QUT iow epO node

; BEnabl e USB address 0.

nov a, ADDRESS ENABLE

i ow usb_address

; Dsable Endpoints 1 and 2.
nov a, Dl SABLE

iow epl node

iow ep2 node

; Set the programstack pointer to O.
nmov A, QOOh

nov psp, a

; Execute reset code.

jnp reset

Selecting and Controlling the Clock

A very convenient feature of the enCoRe is its on-chip oscillator. There's no
need to connect an externa crystal or resonator unless the device needs a
more precise frequency for other functions. An externa clock can be a crys-
tal oscillator or ceramic resonator, plus any required capacitors at the XTA-
LIN and XTALOUT pins.

The Clock Configuration Register has four bits that relate to clocking the
CPU. The chip aways uses the internal clock on power up and on returning
from a Low-Voltage or Brown-Out reset. Firmware can then set the External
Oscillator Enable bit to 1 to switch the CPU to an externa clock. If this bit
is0, the XTALIN pin is agenera-purpose input (P2.1).

When using the internal clock, the Interna Clock Output Disable bit deter-
mines whether XTALOUT isalogic high or a 6-Megahertz clock.

When using an external clock, the Externa Clock Resume Delay bit selects
one of two delay times when switching to the externa clock or waking from
the Suspend state with the external clock enabled. As a rule, ceramic resona-
tors can use the 128-microsecond delay, while crystals will need the 4 milli-
second delay.

204

Inside a USB Controller: the Cypress enCoRe

When firmware has set the Precison USB Clocking Enable bit to 1, the
clock frequency meets USB's 1.5% tolerance requirements.

Power Management
The chip requires a power supply of 4.0 to 5.5V DC.

To save power and to comply with the USB specification, the chip can enter
a Suspend state that powers down everything except what's needed to detect
USB activity and whatever externa interrupts are enabled. The on-chip
oscillator stops, so there is no clock to cause program instructions to exe-
cute. The chip just waits for an event that will end the Suspend state.

The events that will end the Suspend state are non-idle activity at the USB
receiver, the triggering of an enabled interrupt a an 1/O pin, an SPI dave
interrupt, or a Wake-Up interrupt.

The chip enters the Suspend state by writing 1 to the Suspend bit in the
Processor Status and Control Register. Program execution stops. When an
event brings the chip out of the Suspend state, program execution begins at
the instruction following the iowr instruction that suspended the chip.

The firmware can put the chip into the Suspend state at any time, but it
must do so if there has been no USB activity (including |ow-speed
keep-alive sgnals) for three milliseconds. And as Chapter 19 explains, a
device suspended for this reason must consume very little bus power, as little
as 500 microamperes in some cases.

There are some things the firmware can do to ensure the lowest possible
power consumption. The firmware should set unused bits on ports O and 1
to pull-up mode. On 18-lead packages, thisincludes P1.2 though P1.7,
which are not brought out to externa pins. The GPIO interrupt bits in the
Port 0 and 1 Interrupt Enable Registers should al be 0, even if the GPIO hit
in the Globa Interrupt Enable Register is 0.

205

Writing Firmware: the Cypress enCoRe

O

Writing Firmware: the
Cypress enCoRe

Whatever controller chip you select for a project, it won't be much use until
you write the code that enables it to communicate with the host and the
other circuits in your peripherd. In this chapter, | again use the Cypress
enCoRe saries an example, this time to show what's involved in writing and
debugging USB firmware, including a review of development tools. Even if
you're using a different chip, this chapter will give you an idea of what the
process involves.

Hardware and Firmware Responsibilities

In a USB transfer, the CY7C63743's seria interface engine handles many of
the tasks, but the firmware ill has plenty to do. Here is a look at the

respongbilities of each.

206

Chapter 9

What the Hardware Does

These are the tasks the hardware does on its own:

Detects new incoming packets.
Translates received information from the encoded format used on the
USB's data lines.

Determines whether a transaction is directed to the chip's USB address
and if not, ignores the transaction.

For transactions with Endpoint 0, determines the transaction type
(Setup, IN, or OUT) and sets a hit in the endpoint's USB Mode register
to indicate which typeit is.

For received data, the hardware also does the following:

Stores vaid received data in the endpoint's buffer or toggles a register bit
to indicate an error in received data.

Sets the count in the Endpoint Counter Register to match the number of
received bytes.

Stores the data-toggle state of valid received data.

Calculates CRC values, compares them to the received CRC values, and
takes action on detecting an error.

Sends the appropriate handshake to the host.

Triggers an interrupt so the firmware can prepare for the next transac
tion.

For data to be transmitted, the hardware also does the following:

Trandates data to be transmitted from the bytes in the USB buffer to the
format used on the USB's data lines.

Sends the number of bytes specified in the Endpoint Counter Register
onto the USB lines in response to the host's IN token packet.

Calculates and sends CRC hits with the data.
Sends a data-toggle code with the data.
On receiving a handshake from the hogt, triggers an interrupt.

207

Writing Firmware: the Cypress enCoRe

What the Firmware Does

The firmware's job in USB communications is to supplement the hardwares
capabilities and ensure that the device exchanges data as needed in both
directions. The following code is adapted from Cypress example firmware.

Endpoint O Interrupts

An interrupt a Endpoint O indicates activity that the firmware should check
into. On recelving an Endpoint O interrupt, the firmware pushes the accu-
mulator and index registers. The firmware checks the ACK bhit in the End-
point 0 Mode Register and exits if the transaction didn't complete with an
ACK. Otherwise, the firmware checks the same register to find ait whether
a Setup, IN, or OUT token packet was received, then jumps to a routine to
handleiit:

endpoi nt O:
push X push
A

; Read the epO_nwode register to enable witing to

; the endpoint's buffer.

i ord epO node

; If EPOACK isn't set, the transaction didn't
; conplete with an Ack, so exit the routine.
and A, EPO ACK

jz epQ.done

; Bit 5, 6, or 7in epOnode is set to indicate
; whether the transaction type is Setup, In, or Qut.
; Find out which it is and junp to handle it.

i ord epO node

asl A

jc epO _set up_recei ved
asl A

jc epO.n_received

asl A

jc epO out_received

epO done: pop
A popX

208

Chapter 9

reti

If it's a Setup transaction, the firmware determines which request it is and
jumps to aroutine to handle it:

epO set up_recei ved:

; Clear the Setup bit to enable ;
witing to Endpoint O' s buffer, nov
A, NAK I N QUT iow epO node

; Extract the 5-bit bnRequest Type in

; Endpoint O's byte O.

nov A, [bnRequest Type]

; Bits 2, 3, and 4 are unused here, so set to O.
and A E3h

push A

; Shift right 3 places to nove bits 5, 6, 7

; into bits 2, 3, and 4' s pl aces.

asr A

asr A

asr A

; Save the result.

mov [int_temp], A

; ORthe result wth the original value

; torestore bits 0, 1

pop A

or A, [int_temp]

; Qear bits 5, 6, & 7 (unused).
and A, 1Fh

; Shift left to multiply by two because the

; the index table's junps are two bytes each.
asl A

; Use a junp table to get the address to junp to
; to handl e the request indicated i n briRequest Type.
j acc bnRequest Type_j unpt abl e

Sending Data to the Host

When a request requires Endpoint O to send data to the host in the Data
stage, the firmware stores two values and calls an
initialize_control_read routine to get ready for the expected IN

209

Writing Firmware: the Cypress enCoRe

transaction(s). The value maximum_data_count is the amount of data
available to send.

initiaize control_read:

epO transtype indicates the transaction type.
: The firmmare uses this value to decide howto
; respond to token packets.
[
; |f the firmware has junped here,
; it's acontrol Read transacti on:

mov A, TRANS_CONTROL_READ
mov [epO _transtype], A

; Set the data toggle to 1
mov A, DATA TOGGLE
mov [epO_data toggle], A

; Find the | esser of the requested data (in wLengt hhi
; and wLengt hl 0) and the naxi nrum data avail abl e

; (in maxi numdata count).

; Store this value in nmaxi num data_count.

; |f wkengthhi > O,
; maxi numdata count is the snaller val ue.

nmov A, [wLengt hhi]

cmp A Oth
jnz initialize_control _read_done

; If wLengthhi = 0 and wLengthl o > maxi num dat a_count
; maximumdata count is the snaller val ue.

nmov A, [wLengt hl 0]

cnp A [naxi numdata count]

jnc initialize_control _read_done

; Qherwse, wengthlois the snmaller val ue.

nmov A, [wLengt hl 0]
nmov [nmaxi numdata count], A

initialize control _read done:
jmp control _read _data_stage

The firmware then loads data into Endpoint O's buffer and configuresthe
endpoint to return the data when the host sends an IN token packet.

210

Chapter 9

control read data stage:

; Load Endpoint O' s buffer wth data to send.
; Initialize the index register.

nmov X, OCh

; If all of the data has been sent, we' re done.
nmov A, [maxi num data_count]

cmp A, Qth

jz dnabuffer_| oad_done

dnabuf f er | oad:

; Load a byte nuniber into the buffer.
mov A, X

; If the buffer is full, we' re done.
cmp A 08h

jz dnmabuffer_| oad_done

; The data to send begins at

; (data start + control read table).
mov A, [data start]

i ndex control _read_table

; Use the Xregister to step through
; Endpoint O' s buffer.

mv [X + epO _dnabuff0], A

inc X

; data start points to the byte to send.
inc [data start]

; maxi mumdata count is the nunber of bytes

; remaining to send.

dec [naxi numdata count]

; If no bytes remain, we're done.
jz dnmabuffer_| oad_done

; Qherwse, loop to |oad nore data.
jnmp dnabuffer_| oad

dnabuf f er | oad_done:

; Uhlock the counter register.

i ord epQO count

; Place the nunber of bytes |oaded and

; the data toggle value in the counter register
mov A, X

or A, [epO_data toggle]

i ow epO count

211

Writing Firmware: the Cypress enCoRe

Configure Endpoint O to return data on the next IN;

t oken packet or to check for a O-byte data packet ; in
an QJT transaction, nov A, ACK IN STATUS QUT iow
epO node

; Toggl e the data toggl e.
mov A, DATA TOGGLE
xor [epO_data toggle], A

pop A
Pp X
reti

If there are more data packets, the device loads these into the endpoint
buffer in the same way. When the host is finished requesting data, it sends a
O-byte data packet in the Status stage. The devices endpoint responds with
ACK and the firmware jumps to outine that sets the endpoint's mode and

the transaction type:

control _read status_stage:
; Configure Endpoint O to return a 0-byte data packet

; in case there is another | N packet.
mov A, STATUS I N ONLY
i ow epO node

; No transaction is in progress.
mov A, TRANS_NONE

mov [epO_transtype], A

pp A
pp X
reti

Receiving Data from the Host

When a request requires the host to send data to Endpoint O in the Data
stage, the firmware calls an initialize control_write routine to
prepare to receive data in the expected OUT transaction(s). The variables
wLengthlo and wLengthhi hold the amount of data the host says it
will send.

initialize control wite:

212

Chapter 9

epOtranstype indicates the transaction type.
; The firmware uses this value to decide howto
; respond to token packets.

; If the firmmare has junped here,

; the transaction type is control Wite:

mov A, TRANS_CONTRCOL_W\RI TE
mov [epO_transtype], A

; Initialize the data toggle to 1.
mov A, DATA TOGGLE
mov [epO_data toggle], A

; Send ACK in response to QJT packet s,

;which will contain the Control Wite data.
;Send NAK in response to | N packets (not expected).
mov A, ACK_OUT_NAK_I Ne

i ow epO node

; Return fromBEndpoint O'' s ISR
pop Apop Xret i

When the host sends datain an OUT transaction, the device stores the data
in the endpoint's buffer and triggers an interrupt to handle it. The firmware
uses the token packet and epO_transtype vaue to jump to the appropri-
ateroutine:

control _wite data stage:

, If the data-valid bit isn't set,

; We're done wth the data stage.

iord epO count

and A, DATA VALID

jz control _wite_data_stage_done

; Conpare the received data toggle
; Wth the expected val ue.

i ord epQ count

and A, DATA TOGE.E
xor A, [epO_data toggle]

; If it's incorrect,

; We're done wth the data stage.

213

Writing Firmware: the Cypress enCoRe

jnz control_wite_data_stage _done

, Qopy the recei ved bytes to data nenory.
; This exanpl e copi es two bytes,

nov A, [epO _dmabuff0] nov

[data byte 0], A nmov A

[epO_dnabuf f1] nov

[data _byte I], A

; Toggl e the data-toggl e bit.
mov A, DATA TOGGLE
xor [epO._data toggle], A

; 1f all of the data has been received,

; configure Endpoint O to send a 0-byte data packet
;in response to an I N packet (the transfer's status
; stage) or to Stall an Qut packet (not expected).

nov A STATUS IN QLY
i ow epO node

control _wite_data_stage_done:

; Return fromBndpoint O' s ISR

pop A

popX

reti
After the endpoint has responded to the O-byte IN transaction in the Status
dage, an interrupt triggers and the firmware re-configures the endpoint and

sets epO_transtype:

control _wite status_stage:

; Junp here if the device has received an I N token ;
packet with epO_transtype = TRANS CONTROL_WR TE. ;
The devi ce has sent a O-byte IN data packet to ;
conpl ete the transfer because epO node was set to ,
Satus In Only at the end of the data stage.

; Configure Endpoint O to return ACK on receiving ; a

O-byte data packet and to return Sall on INs. mov A,
STATUS_QUT_QON\LY iow epO node

214

Chapter 9

No transfer is in progress.
nov A, TRANS_NONE
mov [epO_transtype], A

Return fromEndpoint O' s ISR
pop A pop X reti

Handling Interrupt Transfers

The code for handling interrupt transfers a Endpoints 1 and 2 isn't as com-
plicated, because these transfers don't have multiple stages to manage. On an
IN endpoint, the interrupt triggers after the endpoint has sent data or a
NAK in a transaction. Here is code that enables Endpoint 1 to respond to
IN interrupts:

endpoi nt 1:

push A

; Get ready for the next transaction.
; Toggle the data toggle.

mov A, 80h

xor [epl_data_toggle], A

; Set the event_machine variable to indicate that
; no transaction is in progress, nov A
NO_EVENT_PENDI NG nov [event _machi ne], A

; If the endpoint has been set to Stall,
; set the node to Stall INs and OUTs.
mov A, [ep_sdl]

amp A, Fh

jnz endpointl_done

nmov A, STALL_I N _OUT

i owr epl _node

endpoi ntl _done:

pop A
reti

215

Writing Firmware: the Cypress enCoRe

In a similar way, the interrupt-service routine for an OUT endpoint
retrieves the received data (as in a Control Write transaction) and gets ready
for the next transaction.

Other Responsibilities

The examples above show the essence of USB communications with the
CY7C63743. There are other details, of course. For example, during cntrol
transfers the firmware must check periodicaly to find out if another Setup
token has arrived, and if so, abandon the current transfer and start the new
one. The firmware must aso remember to clear the watch-dog timer in any
loop that might otherwise alow the timer to run without a reset for 10 mil-
liseconds. | also haven't covered the specifics of how to respond to each con-
trol request. Again, Cypress provides example code for the essential
functions and my website (www.Lvr.com) has firmware examples that build
on Cypress examples.

Hardware Development Tools

For project developing for the enCoRe, Cypress offers a Development Kit
for debugging code and third-party PROM programmers for storing code in
the chips PROMs.

The Development Kit

The CY3654 Development Kit enables you to test your code and circuits
and find problems quickly.

The system includes a set of circuit boards (Figure 9-1) and a debugging
program that together enable you to load your assembled or compiled code
from a PC to the boards RAM. The RAM emulates the controllers PROM.
You can run and debug code while using your PC to monitor and control
program execution. Downloading to RAM makes it easy to modify the
code. Manufacturers of other USB chips have smilar development systems
for their chips.

216

Chapter 9

To use the Development Kit, you need a PC running Windows 98 or later
with available USB and RS-232 ports.

The Platform Board

The Development Kit's main Platform board doesn't contain an enCoRe
chip. Instead it has circuits that emulate the functions of the chip while
alowing you to monitor and control program execution.

Figure 91 shows a typica setup. The Platform board contains the circuits
that emulate the microcontroller. It has connectors for a Personality Board
and an RS-232 connection to a PC. The Platform board aso has a USB

connector for possible future use as an dternative to the RS-232 connection.

Figure 9-1: In the CY3654 Development System, a Personality Board attaches
on top of the main Development Board. An RS-232 port enables communicating
with the monitor program. A cable and Target Adapter connect the Personality
Board to an Application Board (right), which has a USB port.

217

Writing Firmware: the Cypress enCoRe

The Persondity Board configures the emulator for a specific chip. A series of
smilar chips may share the same Personality Board. For example, dl of the
enCoRes use the P05 board, while the CY7C634/5/6xx chips use the P02
board.

A cable assembly connects the Personality Board to a Target Probe Adapter
that in turn connects to the Application Board.

The Application Board contains the USB connector and a prototyping area.
The board supports several example applications, with components for some
ingtaled. You can use your own application board in place of the one pro-
vided.

The development kit connects to a PC via both USB and RS-232 interfaces.
These may, but don't have to, connect to the same PC. The USB interface of
course carries the USB communications between a PC and the device's USB
port. The debugger uses the RS-232 interface to send object code and to
send and receive debugging information such as breskpoints and register
contents. The board uses an externa power supply, which isincluded.

The Application Board has several features for experimenting:

» Solder pads for the GPIO pins.

* A header for acable to alogic anayzer or other circuits that connect to
the GPIO pins.

* A temperature converter that uses an SPI interface (Dallas Semiconduc
tor DS1722).

* An EEPROM that uses an SPI interface (Xicor X25020).

» Solder pads for four surface-mount LEDs, with two installed.

» Solder pads for three surface-mount push-button switches, with one
instaled.

» Solder pads for adding Linx Technologies TXM and RXM RF interface
modules.

* Prototyping area.

218

Chapter 9

Setting Up the Development Board

Setting up the Development Board for use requires attaching five compo-
nents in series. There are a few places where you can plug something in
wrong, so I'll go over the steps:

1 Plug the Persondity Board into the Development Board. The Personality
Board rests on top of the Development Board. The bottom of the Personal

ity Board has two headers that plug into connectors on the Development
Board. The connectors are keyed so you can't plug them in backwards.

2. Plug one end of the cable assembly into the Personality Board. One end

of the cable assembly has a circuit board with two 40-pin sockets (J and

J2). These mate with the two 40-pin headers on the Personality Board.
These connectors are not keyed, so be sure to plug the cable in correctly. The
sockets and pins are labeled (J and J2). The cable should point away from

the Development Board, not acrossiit.

3. The Personality Board has one jumper. Leave J38 open to use bus power to
power the Application Board's circuits. Jumper J8 to power the Application
Board from the Development Boards supply, with alimit of 100 milliam-
peres.

4. Plug the other end of the cable assembly into a Target Adapter. J3 and J4
on the cable assembly are two 40-pin sockets that mate with pins on one of

the provided Target Adapters. The Application Board uses the 24P DIP
Adapter. These connectors are keyed.

5 Plug the Target Adapter's pins into the DIP socket on the Application
Board. This connection is not keyed. The cable should point away from the
Application Board, not lie acrossiit.

6. Connect an RS-232 cable from the Development Board to your PCs
seria port.

7. Connect aUSB cable from the Application Board's USB connector to a
USB port on your PC. Don't use the USB connector on the larger Develop
ment Board.

8. Plug the power supply into an AC outlet and the Development Board's
connector.

219

Writing Firmware: the Cypress enCoRe

pREEEEERRE LSO Er | B R W
o DDk

A0 Im [O5] jep comwt ErBel VerbsE

mg 73 [ox) Eud_remet iE EeEEL Lniterrups
Do04 040 La [0 ey ; lifum intercops

a0 96 fOs; imn_ Elmes ; L,OFdms interrupe

o o -am i bl el) smdpaine U Lwescrupe
&3 6o (AE) [P andpalng 1 Lnterrigpe

r emlpeink B hikeerugt

EEZ§EEESERELS

=
B

BEEEEEE

G|
5 i |
A
| ey
Er
e
™

B

W

R

L

R

In
ST
L]
A |
[
P

| E

EEIEERRET
RRARERAES
EEESEE Ty N

sraieRsas

| t'.-‘-l-i-lﬁﬂ-
BEEEEEEEE
ZTamEmATA

b oo o o o -

Figure 9-2: Cypress' CYDB monitor and debugger enables you to control
program execution and view the status of memory and registers.

The Debugger

The companion to the development board is the CYDB debugger, or moni-
tor program. In addition to enabling you to load and run your firmware, the
debugger has features that can help enormoudy in tracking down program
bugs.

Figure 9-2 shows the user screen, which you can customize to show the
information you want. The View menu dlows you to select which windows

220

Chapter 9

display, including program and data memory, CPU and 1/O regigters, and
breakpoints.

The Development Kit comes with a manua that guides you through setting
up the system and getting started with the debugger.

Here's an example of how to use the Development Kit to run your firmware:

1. Write your source file in assembly code and use the Cyasm assembler to
create an object file. The object file can be a .rom or .hex file, and contains
your firmware's machine-code ingtructions in an ASCIl Hex format. For
your device to enumerate, it will dso need an INF file on the hogt, as
described in Chapter 11. If your firmware identifies the device as HID class,
you can use the HID INF file that's provided with Windows.

3. Plug in the Development Board's power supply and connect the RS-232
and USB cables to the host PC.

4. Run the debugger.

5. Configure the debugger for your development hardware. From the Con
figure menu, select Target to display the Configure Target/Emulator win

dow. Figure 9-3 shows the window as it appears after the configuration
process is complete. Click the Connect button. In the window that appears,
select a COM port and click OK. When the debugger has finished the con
figuration communications, the text under the Current Emulator Configu

ration label changes from Not Connected to Connected, and the Connect
button's caption changes to Update. Click OK to close the window.

6. Download and run your code. To download code to the emulator, click

the DL button or select Run, Download from the menu. In the window that
appears, select a.hex or .romfile and alisting file and click OK. The debug
ger loads the selected file into the emulator's memory and displays the
selected listing file.

To run the firmware, click the R button or sdlect Run, Run from the menu.
If dl is wdl, the firmware will run and Windows will enumerate the device.
The R button will be grayed out and the Stop button will appear as a solid
red circle.

221

Writing Firmware: the Cypress enCoRe

Figure 9-3: In the CYDB debugger, use the Configure Target/Emulator window to
establish communications with the development board.

To stop the code, click he Stop button or click Run, Stop in the menu. To
restart at the instruction where the firmware stopped, click Run. To restart
from the beginning of program memory, click Reset.

Debugging Tips

The debugger enables you to precisely monitor and what the device's firm-
ware is doing.

You can execute a portion of your application, then examine the states of al
of the device's registers and RAM, or even change their contents on the fly.
You can set a breskpoint to find out when and if a section of code executes.
You can single-step through the code to find out exactly what the code does
and where it branches. The Platform board's hardware and firmware disable
the Watch Dog timer during single-stepping.

222

Chapter 9

For example, if you suspect that a routine in your firmware never executes,
you can use the monitor program to set a breakpoint in the routine. If the
monitor sops program execution at the breakpoint, you know that the rou-
tine is executing. If you suspect the routine isn't doing what you intended,
you can dngle-step through it and watch the contents of any registers and
memory locations of interest in each step. The CPU Registers window
shows the current value of the program counter (PC) and the listing file's
display shows your code. To update the display of the emulated chip's regis-
ters and memory, click View > Refresh.

You can use your own application aong with the development tools to test
the firmware in its intended use. For example, you can run an application
that enables users to click buttons to send and receive HID reports. You can
keep the debugger open at the same time as you run your own application.
This way, you can watch what's going on insde the emulated chip as your
application runs.

One thing that's missing in the debugger is the ability to search a ligting file
for specific text. This makes it hard to find a specific line of code to set a
breskpoint. So | keep a copy of the listing file loaded into a word processor
and use that for searching. When | find the line of code I'm looking for, |
note the line number and switch back to the debugger to set the breakpoint.

PROM Programming

When your code looks OK on the emulator and you're ready to try it out in
a chip's PROM, youll need a PROM programmer. Several vendors have
programmers that are capable of this. An inexpensive one is the CY 3649
Hi-Lo PROM Programmer, available from Cypress.

Programming chips in the enCoRe series requires two additiona compo-
nents, the CY 3083-DP48 Adapter Base, which adapts the programmer for a
specific package type, and the CY3083-08 Matrix Card, which routes the
signas for a specific pinout. Both are available from Cypress.

Figure 9-4 shows the programmer, and Figure 95 shows the programmer
application's display. The programmer is the same one provided with some

223

Writing Firmware: the Cypress enCoRe

Figure 9-4: Cypress offers an inexpensive programmer and adapters for the
enCoRe series and other chips. The photo shows an Adapter Base inserted into
the programmer's ZIP socket. The Adapter Base holds a matrix card and a chipto
be programmed.

of the now discontinued Starter Kits for the CY7C63000 series. If the pro-
grammer is labeled "Programmer for Starter,” it's usable with the enCoRes if
you update the software and get the Adapter Base and Matrix Card. If the
programmer is labeled "Programmer for CY630...," it won't work with the
enCoRes.

The programmer connects to the PC via an RS-232 serid port. (The unit
was probably adapted from an existing design that predates USB.) As with
other EPROM programmers, you place the chip to be programmed in a
zero-insertion-force (ZIF) socket and flip the lever to lock in the chip.

These are the steps to program a chip:

1. Insert the Matrix Card into the Adapter Base and place the Adapter Base
into the programmer's ZIF socket and lock it into place

224

Chapter 9

pankenock | program |
Vedty | | Ao |
socury |
T ——
Flle Formats: File 3tatus
e m— v o
MOTOROLA & Revard | | '

Unuged Byies
= Do G

g (e

File anvk: [00GOTFFF |

Outl start: [nonnna

e —

Mir. @ TYFRFSS
FHJ(' CYTORA743 'EH- 1,:'“ |.H.P]
Al YO DALY A0
HOHE
¥ Rase addr @ GOMT (3FR)
Baudrate © 9600
Blharl ... E e
Nenlee dOODD OTFDF

Butfor: ddannd GNFDF
Euifer Chedesuim BCEA |

Buller Jize(hyleskiE

Figure 9-5: The software for Cypress Semiconductor's EPROM programmer

enables you to program a file in any of several formats into Cypress chips,

verify, and protect the code from copying by blowing the security fuse.

2. Place a chip to be programmed into the Adapter Base's ZIF socket and

lock it into place.

3. In the Setup window, select a COM port and bit rate. A message will
inform you when the software has located the programmer.

4. From the Device menu, select the device to be programmed.
5 From the File menu, select Load File to Buffer. Select a.hex file created by

the Cyasm assembler. The programmer software is 16-bit, so long file and
folder names will be truncated. In the window that appears, select file for

mat = Intel Hex, File Start = 0000, File End = 1FFF, Buffer Start = 0000,
and Unused Bytes = Don't Care.

6. Click Auto, then OK. Thiswill cause the programmer to do four things

in sequence. The programmer will verify that the chip is erased (contains all

225

Writing Firmware: the Cypress enCoRe

FFs). It will program the buffer's file into the PROM, beginning at OOOO. It
will verify that the chip's contents match the buffer.

The Security button blows the chip's security fuse to prevent anyone from
reading the code stored in the chip. Anyone who tries to read the code in the
device will see only FFs. Once the security fuse is blown, the device can no
longer be programmed.

You can dso do an individual blank check, program, verify, and security pro-
tection of the code. An edit menu enables you to edit individua bytes in
buffer, search, move blocks of bytes, and fill areas with avalue.

| found the programming software to be a little quirky. At higher bit rates,
the programmer sometimes failed to read or program the device. After
switching to 9600 bps, a device that failled a a higher bit rate passed the
blank test but refused to be programmed until | re-erased. At slower rates, |
had no problems. Because the amount to be programmed is smal, the pro-
gramming completes quickly enough even at a dower bit rate.

226

How the Host Communicates

1

How the Host
Communicates

A USB peripherd is of no use if its host PC doesn't know how to communi-
cate with it. Under Windows, any communication with a USB periphera
must pass through a device driver that knows how to communicate both
with the system's USB drivers and with the applications that access the
device.

This chapter explains how Windows applications communicate with USB
devices and explores the options for device drivers.

Device Driver Basics

A device driver is a software component that enables applications to access a
hardware device. The hardware device may be a printer, modem, keyboard,
video display, data-acquisition unit, or just about anything controlled by cir-
cuits that the CPU can access. The device may be inside the computer's

227

Chapter 10

enclosure (an internal disk drive, for example) or it may use a cable to con-
nect to the computer (as with a keyboard or mouse). The device may be a
standard periphera type or a unique design for a specid purpose. It may be
a one-of-a-kind, custom device. Some device drivers are class drivers that
handle communications with a variety of devices that have similar functions.

Insulating Applications from the Details

A device driver insulates applications from having to know details about the
physica connections, signals, and protocols required to communicate with a
device. Applications are the programs that users run, including everything
from popular word processors and databases to special-purpose applications
that support custom hardware.

A device driver can enable application code to access a peripheral when the
application knows only the periphera's name (such as HP LaserJet) or the
devices function (joystick). The application doesn't have to know the phys-
cal address of the port the peripheral attaches to (such as 378h), and it
doesn't have to explicitly monitor and control the handshaking signds that
the peripheral requires (Busy, Strobe, and so on). Applications don't even
have to know whether a device uses USB or another interface. The applica
tion code can be the same for al interfaces, with the hardware-specific
details handled at alower level.

A device driver accomplishes its misson by trandating between application-
level and hardware-specific code. The application-level code uses functions
supported by the operating system to communicate with device drivers.
The hardware-specific code handles the protocols necessary to access the
peripherd’s circuits, including detecting the dtates of satus signds and
toggling control signals at appropriate times.

Windows includes application programmer's interface (API) functions that
enable applications to communicate with device drivers. Applications writ-
ten in Visua Basic, C/C++, and Delphi can cal API functions. Three func-
tions that device drivers may support for reading and writing to USB devices
are ReadFile, WriteFile, and DeviceloControl.

228

How the Host Communicates

Although API functions smplify the process of communicating with hard-
ware, they tend to have specific and rigid requirements for the values they
pass and return. It's not unusua for a mistake in an API call to result in an
application or even a system crash.

To make programming smpler and safer, Visual Basic has its own controls
for common tasks. For example, applications can use the Printer Object to
send data to printers and the MSComm control to communicate with
devices that connect to RS-232 serid ports. The controls provide an easier
and more failsafe programming interface for setting parameters and
exchanging data. The underlying code within the control may use APl func-
tions to communicate with device drivers, but the control insulates applica

tion programmers from dealing with the sometimes arcane details of the API
cals.

Visua Basic doesn't have a generic control for USB communications, how-
ever. How an application communicates with a USB device varies with the
driver assigned to the device. For example, a Visua-Basic application can
use the Printer object to communicate with a USB printer.

Some device drivers are monolithic drivers that handle everything from
communicating with applications to reading and writing to the ports or
memory addresses that connect to the device's hardware.

Other drivers, including Windows drivers for USB devices, use a layered
driver model where each driver in a series performs a portion of the commu-
nication. The top layer contains a function driver that manages communica
tions between applications and the lower-level bus drivers. The bottom layer
contains a bus driver that manages communications between the function
driver and the hardware. One or more filter drivers may supplement the
function and bus drivers.

The layered driver model is more complicated as a whole, but it actualy
smplifies the job of writing drivers. Devices can share code for tasks they
have in common. Plus, the drivers that handle communications with the
system's USB hardware are built into Windows, so driver writers don't have
to provide them. Writing a device driver for aUSB device is typicaly much

229

Chapter 10

easier than writing a driver that has to handle the details of accessing the
hardware.

Options for USB Devices

There are several approaches to obtaining a driver for a device. Sometimes
you can use a driver that's included with Windows or provided by a chip
vendor or other source. For other devices, you may need to write a custom
driver. A variety of toolkits are available to smplify and speed up the task d
driver writing. Sometimes more than one way will work, and the choice
depends on a combination of what's easier, cheaper, and offers better perfor-
mance.

Standard Device Types

Many peripheras fit into standard classes such as disk drives, printers,
modems, keyboards, and mice. All of these are available with a choice of
interfaces, including USB. For example, a keyboard may use the origind leg
acy keyboard interface or USB. A disk drive may use any of a number of
interfaces, including ATAPI, SCSI, printer-port, IEEE-1394, and USB.

Windows includes class drivers for many standard device types. When
devices in a class may have different interfaces, supplemental drivers can
support the various interface options. And if a device has features or capabil-
ities beyond what the class driver supports, a device-specific filter driver can
support these as needed.

Custom Devices

Some peripherals are custom devices intended for use only with specific
applications. Examples include data-acquistion units, motor controllers,
and test instruments. Windows has no knowledge of these devices, so it has
no built-in drivers for them. Devices like these may use custom drivers, or
they may be designed so they comply with the requirements for a supported
class. For example, a data-acquisition device may be able to use the HID
drivers.

230

How the Host Communicates

How Applications Communicate with Devices

To understand what the device driver has to do, you need to understand
where the driver fits in the communications path of a dita transfer. Even if
you don't need to write a driver for your device, understanding the drivers
role will help in understanding the gpplication-level code that you do write.

What Is a Device Driver?

In the most genera sense, a device driver is any code that handles communi-
cation details for a hardware device that interfaces to a CPU. Even a short
subroutine in an application can be considered a device driver. Under Win-
dows, the code for most drivers, including USB drivers, differs from applica
tion code because the operating system allows the driver code a greater level
of privilege than it alows to applications.

User and Kernel Modes

Under Windows, code runs in one of two modes: user or kernel. Each
alows a different level of privilege in accessng nemory and other system
resources. Applications must run in user mode. Most drivers, including al
USB drivers, run in kernel mode, though a USB device may also have a sup-
plementary user-mode driver.

In user mode, Windows limits access to memory and other system resources.
Windows won't allow an application to access an area of memory that the
operating system has designated as protected. This enables a PC to run mul-
tiple applications a the same time, with none of the applications interfering
with each other. In theory, even if an application crashes, other applications
are unaffected. Of course in redlity it doesn't always work that way, but that's
the theory. On Pentiums and other x86 processors, user mode corresponds
to the CPU's Ring 3 mode.

In kernel mode, the code has unrestricted access to system resources, includ-
ing the ability to execute memory-management ingtructions and control
access to 1/0 ports. On Pentiums and other x86 processors, kerne mode
corresponds to the CPU's Ring O mode.

231

Chapter 10

e ————— e SRS S —_ g

APPLICATIONS

£
WIN32 APl CALLS USER
B e T e 1 [T = X MODE
[
WINZ2 SUBSYSTEM
|
: 7N T
1/0 REQUEST PACKETS =ty ’
FUNCTIOM DRIVERS
[/0 REQUES FRETS KERNEL
) “\._; LW "E e E':ll P."‘"'LF.LT.J' MODE

BUS DRIVERS

| HARDWARE-SFPECIFIC [NTERFACE

ot

HARDWARE
[

|

Figure 10-1: USB uses a layered driver model under Windows, with separate
drivers for devices and the buses they connect to.

Under Windows 98 and Me, applications can access 1/0 ports directly,
unless a low-level driver has reserved the port, preventing access. Under
Windows NT and 2000, only kerne-mode drivers can access I/O ports.

Figure 10-1 shows the mgor components of user and kernel modes in a
USB communication.

Applications and drivers each use their own language to communicate with
the operating system. Applications use Win32 APl functions. Drivers com-
municate with each other using structures called /O request packets (IRPS).

232

How the Host Communicates

Windows defines a set of IRPs that drivers can use. Each IRP requests a sin-
gle input or output action. A function driver for a USB device uses IRPs to
pass communications to and from the bus drivers that handle USB commu-
nications. The bus drivers are included with Windows and require no pro-
gramming by applications programmers or device-driver writers.

The Win32 Driver Model

USB device drivers for Windows must conform to the Win32 Driver Modd
defined by Microsoft for use under Windows 98 and later, including Win-
dows 2000 and Me. These drivers are known as WDM drivers and have the
extenson .sys. (Other file types may aso use the .sys extension.)

Like other low-level drivers, a WDM driver has abilities not available to
applications because the driver communicates with the operating system a a
lower, more privileged level. A WDM driver can permit or deny an applica
tion access to a device. For example, a joystick driver can alow any applica
tion to use a joystick, or it can allow one application to reserve the joystick
for its exclusve use. Other abilities that Windows reserves for WDM and
other low-level drivers include DMA transfers and responding to hardware
interrupts.

Driver Models for Different Windows Flavors

The Win32 Driver Model provides a common driver model for use by any
device under Windows 98 and later. Earlier versons of Windows used dif-
ferent models for device drivers. Windows 95 used VxDs (virtua device
drivers). Windows NT 4 used a type of driver called kernel-mode drivers.
Developers who wanted to support both Windows 95 and Windows NT
had to provide a driver for each. But a single WDM driver can work under
both Windows 98 and Windows 2000.

The USB bus drivers included with Windows are WDM drivers. Although
Windows 98 continues to support VxDs, USB devices must have WDM
function drivers because their function drivers must communicate with the
WDM bus drivers.

233

Chapter 10

The Win32 Driver Modd isnt completedly new, but was built on existing
components. A WDM driver is basically an NT kerne-mode driver with the
addition of Windows 95s Plug-and-Play and power-management features.
The fina editions of Windows 95 (versons OSR 2.1 and higher) had some
support for WDM drivers. These editions weren't available to retail custom-
ers, but were available only to vendors who instaled the software on the
computers they sold. Beginning with Windows 98, the WDM support was
much expanded and improved.

How can two different operating systems, which previoudy required very
different drivers, now use the same drivers? Windows 98 includes the driver
ntkern.vxd, which tricks WDM drivers into thinking they're communicating
with an NT-like operating system. All WDM drivers running on Windows
98 require this driver, which is included with Windows 98.

Programming Languages

Application programmers have a choice in programming languages, includ-
ing Visuad Basic, Delphi, and Visuad C++. But to write a driver for a USB
device, you need a tool that is capable of compiling a WDM driver, and this
means using Visuad C++. The exception is driver toolkits that provide a
generic driver and ether require no programming a al or permit you to use
other C compilers or Delphi to customize a generic driver with a user-mode
component.

Layered Drivers

In the layered driver model used in USB communications, each layer han
dles a piece of the communication process. Dividing communications into
layers is efficient because it enables different devices that have tasks in com-
mon to use the same driver for those tasks. For example, all kinds of devices
may use USB, so it makes sense to have one set of drivers to handle the
USB-specific communications that are common to al. Including these driv-
ers with Windows means that device vendors don't have to provide them.
The dternative would be to have each device driver communicate directly
with the USB hardware, with much duplication of effort.

234

How the Host Communicates

USB Driver Layers

The portion of Windows that manages communications with devices is the
I/0O subsystem. The subsystem has severa layers, with each layer containing
one or more drivers that handle a set of related tasks. Requests pass in
sequence from one layer to the next. Within the 1/0O subsystem, the I/O
manager is in charge of communications. One eement within the 1/O sub-
system is the USB subsystem, which includes the drivers that handle USB-
specific communications for all devices.

The set of protocols used by the drivers is called a stack. (This is different
from the CPU stack introduced in Chapter 8.) You can think of the layers as
being stacked one above the next, with communications passing in sequence

up and down the stack. Applications are at the top of the stack, and the USB
hardware is at the bottom of the stack.

The Function Driver

A function driver enables applications to talk to a USB device using API
functions. The API functions are part of Windows' Win32 subsystem,
which is aso in charge of user functions such as running applications, marr
aging user input via the keyboard and mouse, and displaying output on the
screen. To communicate with a USB device, an application doesn't have to
know anything about the USB protocol, or even if the device uses USB at
al.

The function driver aso knows how to communicate with the lower-level

bus drivers that control the hardware. Figure 10-2 shows how these work
together in USB communications. The function driver is often referred to as
the device driver, though a complete device driver actually encompasses
both the function driver and bus drivers. The function driver may be a class
driver or a device-specific driver.

When a device or subclass has requirements beyond what a class driver han
dles, a supplemental driver caled a filter driver can add the needed capabili-
ties. An upper filter driver resides above the class driver. Requests from

235

Chapter 10

APPLICATIONS

UPPER FILTER DRIVYER
SUPPORTS DEYICE-SPECIFIC
CAPABILITIES

LOWER FILTER DRIVER [
ENABLES DEVICES TO COMMUNICATE
WITH THE SYSTEM'S USB DRIVERS.

CLASS FUNCTION DRIVER) i T it
DEF INES A USER AL TLC T R R
INTEREACE: FOR A CLASS "FOR CUSTOM HARDWARE .

| USB HUB DRIVER
(USBHUB.5YS) :
MITIA

L__ | IALIZES PORTS

USH BUS-CLASS DRIVER
(USBD.,SY5]:
MANAGES USB TRANSACTIGNS,

HOST CONTROLLER DR|VER

COMMUNICATES WITH
HARDWARE .

(UHCT . 5Y5, OPENHCI . &8YS5, EHCI] . S5¥51):

Figure 10-2: USB communications use a host controller driver, class driver, hub

driver, and a function driver that may consist of one or more files.

applications pass through the upper filter driver before being passed to the
class driver. A lower filter driver resides between the class driver and bus
drivers. A class driver may pass requests to a lower filter driver, which in turn
passes them to a bus driver. Lower filter drivers can enable a single class
driver to support multiple interfaces, with each driver supporting the class-
specific operations required for an interface. For example, Windows
provides a driver that enables the HID-class driver to communicate with the

USB bus drivers.

236

How the Host Communicates

Some USB devices may use yet another type of driver, called a legacy virtual
ization driver. To communicate with the keyboard, mouse, and joystick,
Windows 98 uses the virtua device drivers (VxDs) inherited from Windows
95. When one of these peripherals has a USB interface, a legacy virtualiza-
tion driver trandates between the device's HID interface and the VxD's
interface. The legacy virtudization driver is a VXD that knows how to tak
to the HID driver.

The Bus Drivers

The USB's bus drivers consist of the root-hub driver, the bus-class driver,
and the host-controller driver. The root-hub driver manages the initiaizing
of ports and in general manages communications between device drivers
and the bus-class driver. The bus-class driver manages bus power, enumera-
tion, USB transactions, and communications between the root-hub driver
and the host-controller driver. The host-controller driver enables the host
controller hardware to communicate with the USB system software. The
host controller connects to the bus. The host-controller driver is separate
from the bus-class driver because Windows supports multiple types of host
controllers, each with its own driver.

The bus drivers are part of Windows, and application and device-driver
writers don't have to know the details about how they work. Perhaps because
of this, Microsoft povides very little in the way of documentation for them.
If you want to know more about how the low-level communications work,
one source of information is the source code and other documentation from
the Linux USB Project.

Communication Flow

One way to better understand what happens during a USB transfer isto
look at an example. The following are the steps in a USB transfer with a
data-acquisition device that uses a custom function driver.

Preliminary Requirements

Before an application can communicate with a device, severa things must
happen. The device must be attached to the bus. Windows must enumerate

237

Chapter 10

the device and identify the driver for the device. And the application that
will access the device must obtain a handle that identifies the device and
enables communications with it.

When a device is attached, Windows Device Manager handles enumeration
automatically, as described in Chapter 5. To identify which driver to use,
Windows compares the retrieved descriptors with the information in its INF
files, as described in Chapter 11.

The handle is a unique identifier that Windows assigns to an instance of the
device. An application gets the handle by calling the CreateFile API function
with a symbolic link that identifies the device.

Some drivers explicitly define a symbolic link for each device they contral.
For example, Cypress ezush.sys driver identifies the firss EZ-USB chip as
ezusb-0. If there are additiond EZ-USBs, the driver identifies them as
ezush-1, ezush-2, and so on up.

Other drivers use a newer method supported by Windows, where the sym-
bolic link contains a globaly unique identifier (GUID). The GUID is a
128-bit number that uniquely identifies an object. The object may be any
class, interface, or other entity that the software treats as an object.

Windows defines GUIDs for standard objects such as the HID class. For
unique devices, developers can obtain a GUID using the guidgen.exe pro-
gram included with Visua C++. The GUID is then included in the driver
code.

The guidgen program uses a complex agorithm that takes into account a
machine identifier, the date and time, and other factors that make it
extremely unlikely that another device will end up with an identica GUID.
The algorithm was origindly defined by the Open Software Foundation.

The standard format for expressing GUIDs divides the GUID into five sets
of hex characters, separated by hyphens. This is the GUID for the HID
class: 745a 7a0-74d3-11d0-b6fe-00a0c90f57da

Applications can use API calls to retrieve class and device GUIDs from the
operating system.

238

How the Host Communicates

The User's Role

When a device is attached and ready to transfer data, the host may request a
transfer. To read data from a data-acquisition unit, the user might click a
button in a daa-acquisition application. Or a user might sdect an option
that causes the application to request a reading once per minute. Or periodic
data acquiditions might start automatically when the devices driver is loaded
or when the user runs the application.

The Application's Role

The Windows API includes three functions for exchanging data with
devices. ReadFile, WriteFile, and DevicdoControl. A driver may support
any combination of these. Each cal includes the request, other required
information such as the data to write or amount of data to read, and the
device's handle. The Platform SDK section in the MSDN library docu-
ments these functions.

Although the names suggest that they're used only with files, WriteFile and
ReadFile are genera-purpose functions that can transfer data to and from
any driver that supports them. The data read or data to be written is stored
in a buffer specified by the call. A call to ReadFile doesn't necessarily cause
the driver to retrieve data from the device. The cal may instead return data
that was requested previoudy and stored in a buffer. The details vary with
the driver. Chapter 15 has more on how to use ReadFile and WriteFile.

DeviceloControl is another way to transfer data to and from buffers.
Included in each DeviceloControl request is a code that identifies a specific
request. Unlike ReadFile and WriteFile, a single DeviceloControl call can
transfer data in both directions. The driver specifies what data, if any, to pass
in each direction for each code. Some codes are commands that don't need
to pass additional data.

Windows defines control codes used by disk drives and other common
devices. These are examples:

IOCTL_STORAGE_CHECK_VERIFY determines if media is
present and readable on removable media

IOCTL STORAGE LOAD MEDIA loads media on a device.

239

Chapter 10

IOCTL_STORAGE_GET_MEDIA_TYPES returns the types of
media supported by a drive.

A driver may aso define its own control codes. Because the codes are sent
only to a specific driver, it doesn't matter if other drivers use the same codes.
The driver for Cypress thermometer application for the CY7C63001
defines codes to get the temperature and button state, set LED brightness,
and read and write to the controller's RAM and ports. This is a Visua-Basic
declaration for DeviceloControl:

Decl are Function DeviceloControl Lib "kernel 32"
(ByVval hDevice As Long,
ByVal dw oControl Code As Long,
| pl nBuf fer As Any,
ByVal nlnBufferSize As Long,
| pQut Buf fer As Any,
ByVal nCutBufferSize As Long,
| pByt esRet urned As Long,
| pOverl apped As OVERLAPPED)
As Long

Thisisacadl that uses the control code 04h:

Itemp = DeviceloControl

(hgDrviHId, 48,11 n,

IINSize,

10ut,

10ut Si ze, _

| S ze,

gOver | apped)
Windows may support additional APl functions for transferring data with
devices in a articular class. For example, the functions Hid GetFeature and

HidD_SetFeature read and send Feature reports to HID-class devices.

The Device Driver's Role

When an application calls an API function that reads or writes to a USB
device, Windows passes the cal to the appropriate function driver. The
driver converts the request to a format the USB bus-class driver can under-
stand.

240

How the Host Communicates

As mentioned earlier, drivers communicate with each other using structures
caled 1/0 Request Packets (IRPs). For USB communications, the IRPs con-
tain structures called USB Request Blocks (URBS) that specify protocols for
configuring devices and transferring data. The URBs are documented in the
Windows DDK.

A function driver requests a transfer by creating an URB and submitting it
in an IRP to a lower-level driver. The bus and host-controller drivers handle
the details of scheduling transactions on the bus. For interrupt and isochro-
nous transfers, if there is no outstanding IRP for an endpoint when its
scheduled time comes up, the transaction is skipped.

For transfers that require multiple transactions, the function driver submits
a single IRP for the entire transfer. All of the transfer's transactions are then
scheduled without requiring further communications with the function
driver.

If youre usng an existing function driver (rather than writing your own),
you need to understand how to access the driver's application-level interface,
but you don't have to concern yourself with IRPs and URBs. If you're writ-
ing a function driver, you need to provide the IRPs that communicate with
the systems USB drivers.

The Hub Driver's Role

The host's hub driver resides between a device-specific or USB-class driver
and the USB bus-class driver. The hub driver handles the initidizing of the
root hub's ports and any devices downstream of the ports. This driver
requires no programming by device developers. Windows includes the hub
driver usbhub.sys.

The Bus-class Driver's Role

The USB bus-class driver trandates communication requests between the
hub driver and the host-controller driver. It handles bus enumeration, power
management, and some aspects of USB transactions. These communica
tions require no programming by device developers. Windows includes the
bus-class driver usbd.sys.

241

Chapter 10

The Host-controller Driver's Role

The host-controller driver communicates with the host-controller hardware,
which in turn connects to the bus. The host-controller driver requires no
programming by device devel opers.

There are three types of host controllers. Two are for low- and full-speed
communications only and one is for high-speed communications only. The
low- and full-speed controller types are the Open Host Controller Interface
(OHCI) and Universa Host Controller Interface (UHCI). High-speed con-
trollers must use the Enhanced Host Controller Interface (EHCI). The USB
Implementers Forums website has links to the specifications.

Controllers that conform to the OHCI standard use the driver openhci.sys,
and controllers that conform to the UHCI standard use the driver uhci.sys.
Both drivers provide a way for the USB hardware to communicate with the
bus-class driver. Although they differ in how they do so, in most cases the
differences are transparent to driver developers and application programt
mers.

The two drivers take different approaches to implementing the host-con-
troller's functions. UHCI places more of the communications burden on
software and allows the use of smpler, cheaper hardware. OHCI places
more of the burden on the hardware and alows simpler software control.
UHCI was developed by Inted and OHCI was developed by Compaq,
Microsoft, and National Semiconductor.

The two host controller types do have some differences in performance. An
OHCI controller is capable of scheduling more than one stage of a control
transfer in a single frame, while a UHCI controller always schedules each
stage in a different frame. For bulk endpoints with a maximum packet size
less than 64 bytes, the Windows UHCI driver attempts no more than one
transaction per frame, while an OHCI driver may schedule additiona trans-
actions in a frame. And an OHCI controller will poll an interrupt endpoint
a least once every 32 milliseconds, even if the endpoint descriptor requests a
maximum latency of 255 milliseconds, while UHCI controllers can, but
don't have to, support less-frequent polling.

242

How the Host Communicates

An EHCI controller handles high-speed communications only. To support
all three speeds, a PC must have an EHCI controller and d@ther a compan
ion OHCI or UHCI controller in the PC or a 2.0-compliant hub, which
performs the function of a host controller for low- and full-speed devices.
An EHCI host controller and a companion 1.x host controller can share a
single bus. Users and application programmers don't have to know or care
which host controller is communicating with a device.

The Device's Role

After a transmission leaves the host's port, data may pass through additional
hubs. Eventualy the data reaches the hub that connects to the device, and
this hub passes the data on to the device. The device recognizes its address,
reads the incoming data, and takes appropriate action.

The Response

Most communications require a response, which may include data sent in
response to the request or a packet with a status code. This information trav-
els back to the host in reverse order: through the device's hub, onto the bus,
and to the PC's hardware and software. A device driver may pass a response
on to an application, which may display the result or take other action.

Ending Communications

When an application closes or otherwise decides that it no longer needs to
access the device, it uses the API function CloseHandle to free system
resources.

More Examples

Communications with other USB devices follow a smilar pattern, though
there can be differences in how the transfer initiates and in how the device
driver handles communications.

Other examples of a user initiating a transfer are clicking on a USB drive's
icon to view a disk's folders or clicking Print in an application to send a file
to aUSB printer. In each of these examples, nothing happens until the

243

Chapter 10

application requests a communication and the device driver fills a buffer
with data to send or makes a buffer available for received data.

In some cases, the driver causes the host to continuoudly request data from a
device whether or not an application has requested it. For example, a key-
board driver causes the host to make periodic requests for keypress data
because there is no way for an application to predict when a key will be
pressed.

The host aso sends requests to enumerate devices on system power-up or
device attachment. The devices hub causes the host to initiate these requests
when the hub notifies the host of the presence of a device. A device can use
the USB's remote-wakeup feature to initiate a transfer by signaing its hub,
and in turn the hogt, to request resuming communications.

Choosing a Driver Type

How do you decide whether to use an existing driver, a custom driver, or a
combination? Sometimes the choice is limited by what's available for the
device. From there it depends on a combination of the performance you
need, cost, and speed of devel opment.

Drivers Included with Windows

When it's feasible, the easiest approach to accessing a USB device isto use a
driver included with Windows. This way, there are no drivers to write or
install and any Windows computer can access the device. Chapter 12 has
details about the class drivers available in Windows. For custom designs, the
most useful of these are the HID drivers and possibly the mass-storage
driver.

Vendor-supplied Drivers

Another way to communicate with a device is to use a driver supplied by the
chip's vendor. The idea is a ready-to-install, genera-purpose driver, adong
with complete, commented source code in case you want to adapt it for use
with a particular device. The driver should aso include documentation that

244

How the Host Communicates

shows how to open a handle to the device and read and write to it in appli-
cation code. The usefulness of vendor-supplied drivers varies. A driver is
much less useful if it's buggy, doesn't include the features you need, or has
sketchy documentation that makes it hard to understand and use.

Chapter 12 describes drivers from FTDI for use with its USB UART chip
and from SigmaTé for use with its IrDA-to-USB bridge chip

Custom Drivers

Sometimes there is no generic or vendor driver that includes the transfer
types you want to use or has the performance you need. Or you may want to
define custom DeviceloControl codes. In these cases, the solution is to cre-
ate a custom device driver. The next section discusses this option.

Writing a Custom Driver

If you don't have experience writing device drivers, creating a WDM driver
is not a trivid task. It requires an investment in tools, expertise in C pro-
gramming, and a fair amount of knowledge about how Windows communi-
cates with hardware and applications. On the positive side, writing a USB
driver is easier than writing a driver for a device that connects to the 1SA

bus. Plus, a variety of products can help to ssmplify and speed up the pro-
cess

Requirements

The minimum requirement for writing a device driver from scratch is
Microsoft's Visua C++, which is capable of compiling WDM drivers. The
compiler aso includes a programming environment and a debugger to help
during development.

Beyond this basic requirement, other tools can help to varying degrees,
including the Windows Device Developer's Kit (DDK), a subscription to
Microsoft's Developer's Network (MSDN), driver toolkits, and advanced
debuggers.

245

Chapter 10

The Windows DDK includes example code and developer-level documenta-
tion. The USB-rdlated documentation includes tutorials on WDM drivers
and HIDs and source code for USB drivers.

For bulk transfers, the DDK includes source and compiled code, documen
tation, and an example agpplication for the bulkusb.sys driver. The driver is
designed to work with just about any USB chip that supports bulk transfers.
Applications use ReadFile and WriteFile for data transfers. In a similar way,
the DDK includes the isousb.sys driver for handling isochronous transfers. If
you decide to use either of these, check the USB Implementers Forums
webboard for tips and fixes before you begin!

The DDK also has a filter-driver example and the usbview utility. The exam-
ples can be a useful starting point in developing your own drivers. You can
download the Windows DDK from Microsoft's website.

MSDN is Microsoft's subscription service to massive quantities of docu
mentation, examples, and developers tools for Microsoft products. The top-
ics covered include WDM driver development and USB, with quarterly
updates. There are severd levels of subscription that enable you to get the
documentation adone or with varying amounts of Microsoft applications
and development tools. Much of the information and other tools are aso
downloadable from Microsoft's website.

How to write a USB driver from scratch is a much bigger topic than this
book has room for. Some excelent books cover the topic in detail, including
WDM device-driver writing in genera as well as sections specifically about
USB. Three good books are Programming the Microsoft Windows Driver
Model by Walter Oney, Writing Windows WDM Device Drivers by Chris
Cant, and Developing Windows NT Device Drivers by Edward N. Dekker
and Joseph M. Newcomer. (NT drivers are similar to WDM drivers, and the
book includes material on WDM and USB.) Chapter 17 describes
Microsoft's programs for driver testing and digital signing.

Using a Driver Toolkit

A driver toolkit provides a way to jump start driver development by doing as
much of the work for you as possible. Toolkits that support creating USB

246

How the Host Communicates

drivers are available from BSQUARE, Jungo Ltd., and Compuware
NuMega.

There are two generd categories of toolkits. One provides a generic driver
that handles USB communications, generates an INF file, and provides
other assistance in enabling applications to use the driver. This approach is
very fast and requires no programming at al to create the driver, but it can't
handle every gtuation. Other toolkits provide libraries and other tools that
assst in writing a custom driver for a device. This approach is more flexible
but requires programming expertise.

Toolkits that Use a Generic Driver

All USB communications follow the protocols defined in the specification,
s0 it makes sense that a single generic driver should be able to communicate
with just about any device. A generic driver would have to support al four
transfer types, including vendor-defined control requests, plus it should sup-
port the power management and Plug-and-Play capabilities required of al
WDM drivers. Additional functions such as the ability to retrieve descrip-
tors or select a configuration or interface are useful as well.

Two toolkits enable a device to use a generic driver: BSQUARE's WIinRT for

USB and Jungo's WinDriver USB. These toolkits require no driver pro-
gramming at al.

WiInRT for USB. WIinRT for USB includes a kerne-mode driver and sev-
eral supporting files. The driver supports synchronous and asynchronous
transfers of al four types, retrieving descriptors and the device GUID,
selecting an interface, and registering for device notification to detect when
a device is removed from the bus. For example, to request an interrupt trans-
fer, an application cals the function WinRTInterruptTransfer, passing the
device handle, endpoint number, buffer length, and a buffer. The function
returns a status code and the number of bytes transferred.

To create the files needed to support a device, you develop your device firm-
ware, store the firmware in the device, and attach the device to the bus. To
make the required setup files for the driver, run the WinRT for USB Con-

247

Chapter 10

- S
3-8 LIEE T
i I 520 AEWED PO UED UreverseiHort Cormlier
-4 oot M
“& Dgvice tonsected: UGE Human inferisce Tevice
=4 General purooee J5E Hub
g
WP oo oo cherd
M %z deace corredied
M Pde deraicu comre cied

Cypress USE Themmomeder
WIRRT for USE Device

Pevice Descriptoc:

[aluti [L Ex010n
bDey¥ ieellans: Ox0o
bDeTACe U Lasn xuo
toeviceProtoool | GO0
hsasFackels el Oxb@ (B}
idWendor: Ox04Ed "Cypressz Semiconduoctoc®
ld¥eaduct: OxD002
e e | o pENNO®
iManufactiuoer: i) |
AFtoduct Ox0Z

St lalmmber: L1
DRURCORTAqUEST lons oL

Connectiopftacus: Device conmpected
ifeERt Copfad Valis=: Ux01

Dy e Bus ;=|....=.| i Loinai
Davice Address; oz04
OpEn Fipes: 1

Detected Windomes S verslon 4.10.0

Successhuly bullt USH tres

Host conbrodier O intel BZITTARER POl 1o USE Unbrersal Host Condroller™

TS 5 e AL L G O R g |

Figure 10-3: The WIinRT USB console detects attached devices, displays
descriptors, and creates a driver and the setup files for a device.

sole application (Figure 10-3) and select your device from the tree of
detected USB devices. The Console prompts you for a symbolic name for
your device, which can be anything you specify, and other optiona informa-
tion. The Console then makes the setup files and offers to ingtdl the driver
on the current system. For testing, the WinRT for USB Wizard creates a

sample Visua C++ gpplication.

In addition to the driver file, there are two C header files containing the
function prototypes and data types for caling the functions in the driver
and error codes and .dil and .lib files that enable applications to access the

functionsin the driver. Chapter 15 has more about using .dll and Mb files.

When you distribute the device, you aso digtribute the INF file created by
the Console application, WinRTUsb.dll, WinRTUsb.sys, and any application

software you provide.

248

How the Host Communicates

Applications can adso access WIinRT USB's functions from the provided
ActiveX control. To enable using the control with Visuad Basic, you add it to
a project by clicking Project > Components > Controls and selecting the
WInNRT-USB @ntrol. The Object Browser then shows the supported classes
and their properties, functions, and subroutines. This line of Visua-Basic
code performs a bulk transfer:

returnlength = WinRTUsbl.BulkTransfer(0, size, buffer)

There are two editions of WInRT for USB. One is for use with Windows
98, Windows 2000, and Window Me. The other enables you to provide a
driver for use on Windows NT 4.

WinDriver USB. Jungo's WinDriver USB takes a somewhat different
gpproach but also can provide a driver without requiring you to write any
code. The WinDriver Wizard generates files that you compile to create a
custom user-mode driver in an .exe file. The user-mode driver communi-
cates with the provided kernel-mode driver windrvr.sys. You can compile the
files generated by the Wizard usng Visud C++, C++ Builder, or Dephi.
WinDriver will also create an INF file for the device.

The WinDriver Wizard enables you to select your device from those
detected, then test it immediately by reading and writing data (Figure 10-4).
You can then request the Wizard to create the driver files. When the driver is
installed, applications communicate with the device using device-specific
functions such as MyDevice Open and MyDevice GetDevicelnfo.

For faster performance, you can move portions of your code from the user-
mode driver to a kerne-mode driver caled a Kerne Plugln, which you
compile with Visud C++. For debugging, the included DebugMonitor
gpplication enables you to monitor activities handled by windrvr.sys. Win-
Driver USB's drivers run under Windows 98 and Windows 2000.

Toolkits that Provide Libraries for Creating a Custom Driver

The completely automated toolkits aren't suitable for every device. They
can't create filter drivers, and you may want a completely custom driver to
achieve the best possible performance. Three products for creating custom

249

Chapter 10

art listening to Pipe8|

Figure 10-4: WinDriver's Driver Wizard enables you to test your device frmware
by reading and writing to it, then creates the files you compile to create a
custom driver for the device.

drivers are BSQUARE's WinDK, CompuWare Numegas DriverWorks, and
Jungo's Kernel Driver.

Each of these has Wizards and code libraries that do much of the work for
you. You need to fill in the provided skeleton code and compile the driver.
The driver's performance is the same as if you had written the driver from
scratch.

Each of these toolkits is capable of generating driver code for any device
type, not just USB devices. WinDK has an optiond USB extension that
enables you to use the same source code to create a driver that will run on
Windows NT 4.

250

How Windows Selects a Driver

11

How Windows Selects a Driver

When Windows detects a new USB peripheral, one of the things it has to do
is decide which device driver applications should use to communicate with
the device and if necessary, load the selected driver. This is the job of Win-
dows Device Manager, which uses class and device installers and INF files
to find a match.

This chapter explains how these components work together to select drivers
for newly attached devices. | dso show how to create an INF file that will
cause the Device Manager to select the correct drivers.

The Process

The Device Manager is a Control-Panel applet that's responsible for ingtall-
ing, configuring, and removing devices. The Device Manager aso adds
information about each device to the system registry, which is the database

251

Chapter 11

that Windows maintains for storing critical information about the hardware
and software installed on a system.

In Windows 98, display the Device Manager by right-clicking the My Com-
puter icon on the desktop and selecting Properties, then the Device Mar+
ager tab. Or select Start Menu > Settings > Control Panel > System > Device
Manager. In Windows 2000, it's the same except for one more click after
System: System > Hardware > Device Manager.

The device and class installers are DLLs. Windows has default installers that
the Device Manager uses to locate and load drivers for devices in the classes
supported by the operating system (such as HIDs). The Device Manager
and the ingtallers together are adso responsible for displaying didog boxes as
needed to prompt users for information.

The INF file is a text file containing information that helps Windows iden
tify a device. The file tells Windows what driver or drivers to use and what
information to store in the registry.

Searching for INF Files

When Windows enumerates a new USB device, the Device Manager com-
pares the data in al of the systems INF files with the information in the
descriptors retrieved from the device on enumerating. A typical PC can
accumulate hundreds of INF files, so Windows 98 and Windows 2000 have
way's to speed up the search.

To prevent having to read through al of the INF files each time a new
device is detected, Windows 98 maintains a driver information database
with information culled from its INF files. The database files are drvdata.bin
and drvidx. bin, stored in the windows\inffolder.

You can view the contents of these files in a text editor or word processor.
(Ignore the extra characters in the files.) Don't change the contents of the
files, however; when you're finished viewing, just close the files without sav-
ing.

Drvidx. bin lists every Vendor and Product ID in the INF files, along with
the manufacturer name, provider name, and description. Drvdata.bin

252

How Windows Selects a Driver

matches manufacturers with INF files that contain information about their
products. After retrieving the Vendor and Product 1Ds from a device, the
Device Manager uses the information in these two files to find the manufac-
turer and the INF file with information about the specific product.

Windows 2000 doesn't have these database files, but instead uses PNF (pre-
compiled INF) files to speed searching. During device ingalation, Win-
dows 2000 creates a PNF file and stores it in the same folder as the devices
INF file. The PNF contains much of the same information as the INF but
in a format that enables quicker searching. Windows 98 systems may have
PNFs also.

The Registry's Role

The system registry stores information about dl installed devices, whether
or not they're attached and enumerated. When a new device is enumerated,
the Device Manager stores information about the device in the registry.

To learn what kinds of information the Device Manager finds and stores,
you can view (and edit) the registry's contents using the regedit.exe utility
that comes with Windows.

A word of caution: the system registry is a vital and essential component of
Windows. It's so important that Windows maintains multiple backup copies
in case the current copy becomes unusable. Be extremely careful about mak-
ing changes to the registry. If you goof and want to restore the registry to its
previous state, boot to the DOS prompt and type scanreg /restore. Just view-
ing the registry is safe, however.

The registry arranges its contents in a tree structure. Information about USB
devicesisin acouple of places.

HKEY_ _LOCAL_MACHINE\Enum\USB ligs
al USB devices.

HKEY indicates a registry key, which is an item in the registry structure.
HKEY_LOCAL_MACHINE is a pointer to a data structure containing
information about the systems hardware and installed software.

253

Chapter 11

USB devices are dso listed in this branch:;

HKEY_LOCAL_MACHINE\System\CurrentControl Sef\
Services\Class

The Class branch has sub-branches for various categories. The USB branch
lists the USB host controller and root hub, as Figure 11-1 shows. A USB
peripheral doesn't necessary show up in the USB branch; it may be in a
branch that pertains to the peripheral’s function. Standard periphera types
like keyboards, mice, and printers have their own branches, and will show
up there. HID-class devices aso have an entry in the HID branch. Other
peripherals, such as digita cameras, may be in the USB branch. If the
Device Manager can't figure out what to do with a device, it may cal it an
Unknown Device and place it in the USB branch. A custom periphera can
also create its own branch.

The Control Panel

The Device Manager is also responsible for adding attached devices to the
Device Manager's window, as Figure 11-2 shows.

The Device Manager's display shows only the USB devices that are currently
detected. You can unplug a device while viewing the display and watch the
devices listing disappear. Plug the device back in, and its listing pops back.
An exclamation point over the devices icon means that there was a problem
communicating with the device or finding a driver. An X over the icon
means that the device is present but disabled, possibly by the user. To view
additional information about a device, select the device and click Properties.

What the User Sees

What you see on the screen when you attach a new USB peripheral depends

on what drivers and INF file the device uses and whether or not the device
has been attached and enumerated previoudly.

254

How Windows Selects a Driver

| @ Fons palise ot s}
| 8 £4 Printer "SI TRERN"
i £ FrnterUpgmda DrO0a0aCan ()
{8l SCSWAdmpier " 5111990
- System "It 82371 AB/EE FCI 1o USE Unhversal Host Cormallar®
(-0 Tape "gyvscloss.dILUSBEmmPropPoges"
-E TapeCantralier "ISE INFY
B o TapsDatacion | ihegrsalHED D
{8 Thermush "PCIWVEN_MBEEDEY 7112
Linkngwn W I
- uss uﬁﬂ'w
EL "Microsoh"
EnID0DD00G 1)

B Ports [ot 55
-2 Frinter ~NTEERN"
T3 Prnterpgrade 5111 336"
- 0 ECSiAdapter “I 36 Fioo: Hub®
3 8 System "LISE "
H ' Tope “SrandardHub. Dev”
#-1 TapeCortrollar USE\RGOT_HUE"
‘:'!i ;::i'l Tepelwiaction "ushhab. gys®
i = Tharmushb P
| (38 Urikniown
= {5 usn
e]

—-— 1

Figure 11-1: The registry’'s Class\USB branch has information about the
system'’s host controller and root hub.

Specific Device Listings

When you attach a device, Windows displays a window with the message
New Hardware Found. If the device descriptors include a Product String,
under Windows 98 SE and later, the window displays the string. Otherwise,

255

Chapter 11

& B Hard diek: :nm—ulllt
(] = Hurnen Intariece Devices

[Keydoaid
[Wodem
22} Wonilors

i = Ty Mouzo

[I Mebwork adapies
M- ¥ Fods (COM & LFT)

23 Sound video and game confrollers
Systam devices
3 Teps deve confraliers
I+ . Tape drues &
4% Thamush

Intel B2 ABVER POl USE Unksarzal Hos Controfie
LISE RoatHub

Figure 11-2: The Control Panel's Device Manager lists all attached and
enumerated devices.

it displays Unknown Device. If the device has never been enumerated on the
system, Windows will need to locate a driver.

If Windows aesn't find a matching INF file, it runs the Add New Hard-
ware Wizard (Figure 11-3). You see a window recommending letting the
Wizard search for the best driver for the device. When you accept the rec-
ommendation and select Next, the Wizard requests a location to search.

If the device comes with a driver on disk, specify the drive containing the
disk. When the Wizard finds the file, it displays the filename and announces
that it's ready to ingtal the driver. (To make things as easy as possible for
users, vendors should store the INF file in the root directory of the product's
disk.) Click Next, and the Wizard displays Please wait while Windows builds
a driver information database.

256

How Windows Selects a Driver

Figure 11-3: Windows' Add New Hardware Wizard searches for and installs
drivers for newly attached devices.

The Wizard copies the INF file to the systems INF folder, loads the driver(s)
specified in the file, lists the device in the Device Manager, and displays a
window letting you know that it has finished ingtaling the required soft-
ware. The Device Managers listing shows the device description, manufac-
turer, and provider name from the INF file.

257

Chapter 11

If the device has been enumerated previoudy, the system aready has the
information it needs, so no windows need to be displayed. The enumeration
should be invisible except for a short delay that prevents the cursor from
selecting items while Windows finds the correct INF file and loads any
needed drivers.

Generic Device Listings

If a newly attached device uses only the standard HID drivers, it doesn't
need its own INF file to identify it. On the first attachment, the Device
Manager will determine that the device belongs to the HID class, and when
it can't find a Vendor and Product ID match, will decide that the generic
HID drivers are the best fit.

But because there was no exact match, the Device Manager will play it safe
and run the Add New Hardware Wizard to give you a chance to select a bet-
ter driver (by specifying a drive to search, for example). If you accept the
default selections, Windows looks for a driver in the system's INF folder,
selects the INF file for the HID class (hiddev.inf for Windows 98 or
input.inf for Windows 2000), and loads the HID drivers. The Device Mar+
ager lists the device as a Standard HID Device, with no indication of its spe-
cific function or manufacturer.

Inside an INF File

The Device Manager looks for INF files in the system's INF folder. The
default locations are \windows\inf for Windows 98 and \winnt\inf for
Windows 2000. By default, this is a hidden folder. If you don't see the
folder in My Computer, select View > Folder Options > View, then under
Hidden Files, select Show all files. Do not click Hidefile extensions for known
file types.

Examining the existing files is a good way to learn about the kinds of things
contained in the files and how the information is structured. Your PC is sure
to have plenty of INF files to examine. The INF file for the HID class is hid-
dev.inf. in Windows 98 and input.inf in Windows 2000. INF files can be
long and complicated, but the basics are fairly straightforward. In most
cases, you can create an INF file by adapting one that's smilar to what you

258

How Windows Selects a Driver

need. Vendors of USB controller chips often provide examples. The Win-
dows DDK aso has documentation on the contents and structure of INF
files.

INF files for Windows 2000 have a few changes compared to Windows 98,
including the need for a Services section that specifies how and when a

driver's services are loaded. The DDK documentation has more details
under INF File Sections and Directives.

Liging 11-1 is an INF file for a cusom HID under Windows 98. | used
hiddev.inf and. Cypress example INF files as models for the file. Figure 11-4
and Figure 11-5 show the information that the Device Manager displays
after enumerating a device with this INF file.

Syntax

The information in an INF file must follow a few syntax rules, which will
look familiar if you have experience with the .ini files commonly used in
Windows 3.X.

* Theinformation is arranged in sections, with each section containing
one or more items. The section name is in square brackets|[]. A carriage
return/line feed begins a new item. Some of the section names (Version,
Classinstdl) are standard names that Windows will look for. Other sec
tions match values specified in other sections. For example, if the Manu
facturer section designates the manufacturer as Lakeview, the INF file
will also have a L akeview section. The sections can be in any order,
though most follow the same convention, and the order of the items
within a section can be critical. So if you're adapting an example, keep
the order of items in the sections the same.

» A semicolon (;) indicates a comment.

» A backdash (\) at the end of aline acts as aline continuator, unlessit's
enclosed in quotes ("\").

» Text enclosed in percent symbols (Yesampletext%) refers to a string. For
example, you might have the following item:

provi der =%°r ovi der %

259

Chapter 11

il COROM
-l Disk drves

i [Dizploy adopters

[G Floppy disk corroliers
| Sy Hard disk controliers

= i Human interiaca Denvices

i H devica
ﬁ“

il i Keyhosnd

s Modem
EB Momitnrs
H- Ty Mouss

i g Hetwork adepters
::] Paris ({COM & LPT)
Sound, video and gama conirallers

Figure 11-4: The Device Manager displays information obtained from the
device's INF file. The device is listed both as an HID compliant device and as a
device matching the description and Manufacturer in the INF file.

260

How Windows Selects a Driver

- CAWINDOWS SYETEMYMMIZ VAD (tharm ved)
CAWINDOWE | SYSTEMHOPARSE 575
L CAWIND OWS\SYSTEM\HIDCLASS 55
= CYWINDOWS\SYSTEM\HIDUSE S5

Figure 11-5: The information displayed by the Device Manager includes the
Provider name and drivers specified in the device's INF file.

261

Chapter 11

[Version]
Si gnat ur e=" $CHI CAGOS"
Class=HI D

; The GUID for H Ds C assCU D={745al 7a0 74d3-11dC
b6f e- 00a0c90f 57da}

provi der =%Pr ovi der %
Layout Fi | e=l ayout.inf, |ayoutl.inf

[AQasslnstall]
Addr eg=Cl ass. AddReg

[A ass. AddReq]
HKR, , I nstaller,, mti.dll

[Manuf act ur er]
%Vf gName%-Lakevi ew

[Lakevi ew

, Uses Lakevi ew Research's Vendor |D (0925)
,Uses the Product ID 1234

9JSB\ VI D_0925&PI D_1234. Devi ceDesc%Sanpl eHl D,
USB\ VI D 0925&PI D 1234

[Destinati onDirs]
USBHI D. CopyLi st = 11 ; LDID SYS

Listing 11-1: (Sheet 1 of 2) A device's INF file helps Windows locate the driver
to use for the device.

262

How Windows Selects a Driver

[Sanpl eH O
GopyF | es=Sanpl eH D GopyLi st
AddReg=Sanpl eH D. AddReg

[Sanpl eH D AddReg]
HKR, , DevLoader, , *nt ker n
H®R , NTMPLx i ver, , "hi dush. sys"

[Sanpl eH D. GopyLi st]
hi dusb. sys hi dcl ass. sys
hi dpar se. sys

[Strings]

Provider="Microsoft"

MfgName="USB Corpee"'

USB\VID_0925& PID_1234.DeviceDesc="Sample USB human interface
device (HID)"

Listing 11-1: (Sheet 2 of 2) A device's INF file helps Windows locate the driver
to use for the device.

with an item in the Strings section that defines the provider string:

Provider="USB Complete"
e Some items set the value of an entry. For example, thisitem defines the
device's class entry as HID:
Class=HID
* Some items specify information to store in the system registry:
HKR ,Installer,, mti.dll

Sections

An INF file includes sections that hep Windows identify the device, find
the appropriate drivers, and store information about the device in the sys-
tem registry. Here is the purpose of each section in the example INF file:

263

Chapter 11

Version
The Version section is the file's header. Every INF file must have one.

The Version section in the example file has these items:

[Verson]

S gnat ur e=" $CH CAG"

Qass=HD

;The GAUDfor HDs

d ass@J D={ 745al 7a0 74d3- 1| dO b6f e- 00aCc90f 57da}

provi der =%r ovi der %

Layout Fi | e=l ayout.inf, layoutl.inf
The Signature key specifies which operating system the INF file is intended
for. For devices that use WDM drivers, the vaue can be $Windows 98%,
$ Windows NT$, or $Chicago$, no matter which operating system the PC
is using. Chicago was a beta name used when Windows 95 was under devel
opment and its use is till valid under later editions of Windows.

The Class key specifies the class for devices ingtaled with this file. The
exampl e specifies the HID class.

The ClassGUID key specifies the GUID in the registry for devices ingtalled
with this file. A GUID is a 128-bit identifier. The example is the GUID for
the HID class. It uses the standard GUID format. There's more on GUIDs
later in this chapter.

The Provider key names the creator of the INF file. In the example, %Pro-
vider% refers to a string defined later in thefile.

The LayoutFile key names the source disks and files needed to ingtal the
driver for the device. Because the HID drivers are included with Windows,

the example specifies files that contain ingtalation information for the Win-
dows setup. These files are adso INF files. The information is in the Source-
DisksFiles and SourceDisksNames sections of the files.

Classinstall

The Classingtall section installs a new class in the Class section of the regis-
try. The Device Manager processes this section only if adevice's classisn't yet
ingtaled in the operating system.

264

How Windows Selects a Driver

The example Classinstall section has one item:

[Qasslnstal]
Addr eg=Cl ass. AddReg

The Addreg key alds a class description to the system registry. In the exam-
ple, the key's value refers to the Class.Addreg section, which specifies an
ingaler file:

[A ass. AddReq]
HKR, , I nstall er,, mcti.dll

HKR stands for HKEY_ROQT, which is the base registry key for the sec-

tion that the AddReg appears in. This is typicdly under System\Current-
Control Se\Enum\Raoot, then a specific key for the device.

The ingdler file mmci.dll in the example is included with Windows 98 and
is stored in the \windows\system folder.

Manufacturer

The Manufacturer section identifies the device (or devices) and names the
Ingtall section for each. Every INF file must have this section.

In the example, the MfgName string (defined later in the file) is set to the
value Lakeview.

[Manufacturer]

YaVifgNameo=Lekeview
The Lakeview section has additiona information:

[Lakeview]

;Uses Lakeview Research's Vendor 1D (0925)

;Uses the Product ID 1234

9%USB\VID_0925& PID_1234.DeviceDesc%=SampleHID,
USB\VID_0925&PID_1234

This section names the devices Vendor and Product IDs. When the Device
Manager finds a match between these and the IDs retrieved from the device
on enumerating, it knows that it has found the right INF file.

265

Chapter 11

DestinationDirs

The DestinationDirs section names the fdder or folders that any CopyFiles,
RenFiles, and DelFiles items will use. In the example, SampleHID.CopyList
is the name of a section that has a CopyFiles item. The value is alogica disk
identifier (LDID) of 11, which is the system directory. The Device Informa-
tion (INF) File Reference in the Windows DDK documentation lists other
LDID values.

[DestinationDirs]

SampleHID.CopyLigt = 11
The SampleHID section has the CopyFiles item and an AddReg item:

[SampleHID]

CopyFiles=SampleHID.CopyList
AddReg=SampleHID.AddReg

These items name other sections in the file.
The SampleHID.CopyList section lists the drivers for the device:

[SapleHID.CopyLi]

hidush.sys

hidclass.sys

hidparse.sys
These are the drivers for generic HID-class devices. They're stored in \win-
dows\system32\drivers or \winnt\system32\drivers.

The SampleHID.AddReg section adds registry information for the device:

[Sanpl eHl D. AddReg]

HKR, , DevLoader, , *nt kern

HKR, , NTMPDr i ver, , " hi dusb. sys"
DevLoader names ntkern. vxd asthe VD (virtual driver) that loads the driv-
ers. Ntkern.vxd in turn loads the driver named in NTMPDriver. In the
example, this is hidusb.sys. Both files are included with Windows 98. You
won't find the file ntkern.vxd on your system because it's archived in, or
bound into, the file vimm32. vxd for quicker loading.

Strings

The Strings section defines the strings referred to by items in other sections.
Each item matches an item surrounded by percent signs in another section.

266

How Windows Selects a Driver

So, for example, the provider in the Version section is equa to %Provider%s,
which equals Microsoft (since they are the source of the drivers).

[Strings]

Provi der="M crosoft"

M gNane="USB Conpl et e"

USB\ VI D_0925&PI D 1234 . Devi ceDesc= "Sanpl e USB human
interface device (H D"

The Generic INF File for HIDs

The generic INF file for HIDs is hiddev.inf in Windows 98 and input.inf in
Windows 2000. Every Windows system should have one of these files. It's
gmilar to the sample file in Listing 11-1. The Device Manager uses this file
to ingal any HID that doesn't have its own INF file. The file also has Ve
dor and Product IDs and descriptions for severa manufacturers devices, so
these don't need their own INF files.

Creating INF Files

If you need to create an INF file for a device, Microsoft provides several
tools to help in creating the file and ensuring that it has all of the required
sections in the correct format. This section describes the tools and also gives
some tips that can come in handy when you're experimenting with INFs.

Todls

For creating INF files, Microsoft provides infedit for Windows 98 and Gen-
inf ChkINF, and InfCatReady for Windows 2000.

The Windows 98 DDK includes the infedit application (Figure 11-6),
which enables you to examine and edit INF files. To protect the installed
INF files, infedit hides the windows\inf folder, so to view an ingtdled file,
you'll need to copy it to a different folder. You can aso use any text editor to
view and edit INF files.

The Windows DDK includes two tools for Windows 2000 INF files: Geninf
for creating files and ChkINF for checking afil€'s structure and syntax.

267

Chapter 11

:._ IH-P Faliz Edditoe

WV F

P T L L B

= {28 C\testiusbhidio inf

r_l Class nstell Section
(£ Disk Mamas Saddion

+ L_:I ManuWadurar

= [£0 Inetall Sections

4 SemplaHD

= 28 CopyFiles Sactions
3 Rename Files Sactions
___] DiglFibas Sechons

EHED Add Ragistry Sections
{3 Add Registry Mo Replacs Sedlions
,;| Drelete Reqisiny Secions
l:] Log Corfig Gections
£33 Updats Atnexec bhatl Sachions
£ Upcats Config.sys Sectons
£ i il 10 Regisry Sectons
Lj Uipciete M file Secdons
£ Update M| fislds Sactians
0 Misceliansous Sections
:I E-Ihllrn]': Sachem

Al s il g B 'z‘f’?— J""‘;"-;—A il

4 """-i-m.r-u

FL"'I -

Section Heme

|Ppistelnis

Update Inil Fislds

Copy File Backtiono
IrenFilea™

Joel¥iles

Adcfag

JaddR=glat labber

Hie]F'“':l

jJLogc anfig

Updmte Autoexec.bat Sections
Llpu'q.h.:_ !‘.'I!I;ng «+aya Bectiona
INI to Registrv Sections
Feboot after I[nscall
Jrestart mafter install

|

Samp loHID. Copylint

Sormp lallD. AddReg

Ho
1=}

Figure 11-6: Windows 98's infedit tool enables you to view and edit INF files.

The Geninf application has an INF wizard that asks you questions about
your device and creates an INF file for it. The documentation warns that the
created file is a skeleton that may not be fully valid and is likely to need
additions or revisons. The application includes specific support for some
device classes.

ChkINF is a Perl script that requires a Perl interpreter, which you can down-
load free from www.activeware.com and other sources. The script runs from
an MS-DOS prompt and creates an HTML page that annotates an INF file
with errors and warnings as needed.

For drivers that will use digital signing as described in Chapter 17,
Microsoft provides the InfCatReady application, which looks for errors that
could interfere with the digital signature and thus prevent driver ingtdla-
tion. InfCatReady is avalable from the WHQL webste a www.
mi crosoft.com/hwtest.

268

Tips

How Windows Selects a Driver

Here are some tips for using and experimenting with INF files:

A commercid products Vendor ID must be an officia ID assigned by the
USB Implementers Forum. My examples use the Vendor 1D of 0925h,
which is assigned to my company, Lakeview Research. The owner of the
Vendor ID is responsible for ensuring that each product and version has a
unique set of IDs. Borrowing someone else's Vendor 1D can lead to conflicts
if the owner of the ID uses the same values for a different product.

As described above, for experimenting with HIDs, you can use Windows
generic INF file, instead of an INF file containing your Vendor ID. The
Device Manager will show the device as a generic HID, rather than using
the name you provide in an INF file.

When experimenting with different settings in an INF file, you may find
that at times the Device Manager remembers information from previous
INF files, even if you deleted the previous file and the information about the
device in the registry, powered down, and rebooted.

Under Windows 98, unless you follow a specific procedure when changing
the contents of an INF file, Windows may fail to rebuild the driver informa-
tion database.

To ensure that Windows 98 is aware of any changes you've made to an INF
file, follow this procedure:

1 Save a copy of the new INF file that you want to use. Save it under
another name (such as mydriver.new) or in alocation other than the system's
INF folder.

2. Attach the device and allow the Device Manager to enumerate it.

3. Inthe Device Managers window, select the devices entry and select
Remove.

4. Deleting the entry in the Device Manager causes the devices INF file to

be saved in the windows\inf\other folder, with the vendor's name added to

the beginning of the filename. For example, Lakeview's file mydriver.inf
would become lakeviewmydriver.inf. Delete this file as well. In some cases,

269

Chapter 11

such as the system's INF files, the inflother folder won't have anything to
delete.

5. Copy the INF file you want to use to the windows\inf folder. Be sure the
file has an extension of. inf (such as mydriver. inf).

6. Unplug and re-attach the device. Windows will rebuild the driver infor
mation database using your new IHF file.

Another way to accomplish the same ting under Windows 98 is described
in Microsoft's article Q139206, Hardware List Not Updated After Installing
New .inf File. The article suggests renaming the driver information database
to force Windows to rebuild it. In the windows\inf folder, rename drv-
data.bin to drvdata.xxx and rename drvidx.bin to drvidx.xxx. (By renaming
the files rather than deleting them, you can restore them if necessary.)
Another workaround is to use a different Product ID each time, in both the
INF file and the device firmware.

Under Windows 2000, to remove al information about a device, delete or
change the extension of its INF and PNF files. When Windows stores the
filesin \winnt\inf, it may rename them oem*.inf and oem* pnf, where * isa
number. To find the correct files, use the Find > Files or Folders utility avail-
able from Windows Start menu. Browse to the \winnt\inf folder and in the
Containing Text text box, enter VID_xxxx& PID_yyyy, where xxxx isthever+
dor ID and yyyy isthe product ID, both in hexadecimal.

If you do a lot of experimenting and don't delete each device when you're
done with it, the registry will fill with entries from your various configura-
tions. When you no longer need a regisiry key, you can delete it from within
regedit.exe (but see my cautions above about the registry).

The INF files that ship with Windows dl have file names with no more than
eight characters plus the 3character extension. Microsoft says that this is
due to "technical issues with the product ingall,” but that INF files added
after Windows isinstalled may use longer file names.

270

Device Classes

12

Device Classes

Most devices aren't totaly unique, but instead share many qualities with
other devices. For example, al printers receive and print data and send status
information back to the host. All mice send information about mouse
movements and button clicks to the host. All disk drives transfer files
between a disk and the host.

When a group of devices or interfaces share many attributes or when they
provide or request smilar services, it makes sense to define the attributes
and services in a class specification. The specification then serves as a guide
for device developers and device-driver writers.

This chapter describes USB's defined classes and takes a closer look at both
common and more unusua periphera types and how you can use classes to
smplify developing on both the host and device sides.

271

Chapter 12

Uses of Classes

Classes offer severa advantages. They make it easier to develop device driv-
ers and firmware because the work of defining the attributes and services the
device will use has been done, leaving only the implementation details. If
both the driver writer and firmware developer follow the same specification,
the driver should have no problem communicating with the device. Win-
dows and other operating systems include drivers for common classes. If

your devices class is supported by the operating system, you don't have to
provide a driver with the device.

When a device in a supported class has unique features or abilities, the
device vendor can provide a filter driver that adds capabilities to the class
driver included with the operating system. Adding a filter driver is easier
than writing the complete driver.

Even if the device's class isn't supported by the operating system, it may bein
the future. If you design the firmware and driver to comply with the class
pecification, it will be compatible with any driver added in future editions
of the operating system.

The USB Implementers Forum releases class specifications developed by
Device Working Groups whose members have expertise and interest in a
particular area. A specid case is the hub class, which is defined in the main
USB specification rather than in its own document. The operating system
must support the hub class because the host requires a root hub to do any
communications at al.

Elements of a Class Specification

All class specifications are based on the Common Class specification, which
describes what information a class specification should contain and how the
specification document should be organized. A class specification defines the
number and type of endpoints supported by the class. A specification may
aso define formats for data to be transferred, including both general data
and status and control information. Many class specifications aso define
functions or capabilities that describe how the data being transferred will be

272

Device Classes

used. For example, the HID class has Usage Tables that define how to inter-
pret data sent by keyboards, mice, joysticks, and other devices.

A class specification may define class-specific items for the standard descrip-
tors as well as class-specific descriptors, interfaces, endpoint usages, and con-
trol requests. For example, the device descriptor for a hub includes a
bDeviceClass value of 09h to indicate that the device belongs to the hub
class. The hub must also have a hub-class descriptor, with a descriptor type
of 29h. Hubs also support class-specific requests. When the host sends a
Get_Port_Status request to a hub with a port number in the Index field, the
hub responds with status information for the port. (Chapter 18 has more on
hubs.) A class may also require a device to support specific endpoints or
comply with tighter timing for standard requests.

Defined Classes

In addition to the hub class, specifications for severa other classes have been
released. However, just because a specification exists doesn't mean that Win-
dows includes drivers for the class. Table 12-1 shows the class drivers added
in each edition of Windows.

The following are classes with released specifications:

Audio Device. Devices that transfer audio, voice, or sound and related con-
trols. Windows 98 Gold (origind) and later include an audio driver. Win-
dows 2000 and Me also have a MIDI driver that supports the MIDI
protocol for music control.

Chip/Smart Card Interface Devices. For devices that conform to the
ISO/EC 7816 specification.

Communications Device. Telephones, modems, and other telecommuni-
cations devices. Windows 98 SE and later include a modem driver.

Content Security. Supports protected and controlled distribution of digital
content.

Device Firmwar e Upgrade. For updating program code in a device.

273

Chapter 12

Table 12-1: Microsoft adds new USB driver support with each release of
Windows. The releases are listed top to bottom from earliest to latest. Each
release also includes the drivers provided with earlier releases.

Windows Edition |[USB Verson [USB Drivers Added
Compliance

Windows 98 Gold (1.0 Audo
(origind)

HID 1 .0 (includes keyboard, pointing devices)
Windows 98 SE 11 Communications (modem)
HID 1.1 (addsthe ability to do interrupt OUT transfers)

Still image capture (scanner, camera)
(first phase/preliminary)

Windows 2000, 11(2.0 support | Mass storage
Windows Me expected inan IS the audio driver)
update)

Printer. Thisdriver can also be distributed for usewith
Windows 98.

Still image capture (scanner, camera) (enhanced)

Human Interface Device (HID). Keyboards, mice, joysticks, or any device
that transfers blocks of information to or from the host at moderate rates,
using control or interrupt transfers. Windows 98 Gold and later include
HID 1.0 drivers. Windows 98 SE and later include HID 1.1 drivers, which
support interrupt OUT transfers. The Monitor class describes HIDs that
provide user controls on display monitors (not the display interface itself).
The Physical Interface class supports HIDs that use rea-time physicd
feedback, such as force-feedback joysticks. The Power class describes HIDs
that provide power-supply control, including control for power conserva-
tion and uninterruptible power supplies.

IrDA Bridge Device. To replace or supplement a motherboard-mounted
IrDA transceiver.

Mass Storage. For CD-ROM, tape, floppy drives, etc. Windows 2000 and
Windows Me include a mass-storage driver (usbstor.sys).

Printer. The printer interface (not the page-description protocols). Win-
dows 2000 and Windows Me include a printer driver (usbprint.sys), and the
driver can be digtributed for use with Windows 98.

274

Device Classes

Imaging. For scanners and ill-image (not video) cameras. Windows 98 SE
included a preiminary verson that was enhanced in Windows 2000 and
Windows Me (usbscan.sys).

Other class specifications under development are Device Bay Controllers
and PC Legacy Compatibility. All of the specifications are available from the
USB Implementers Forum website.

For more details about a class, see the class specification and for most classes
supported under Windows, the DDK has further documentation.

The provided class drivers aren't installed until a device requires them. So for
example, a Windows 2000 system won't show the mass-storage driver usb-
stor.sys until a device that requires it is attached and the device's INF file
causes the driver to be installed. A driver may be archived in a file on the sys-
tem's hard drive, or the user may have to insert the Windows install disk to
retrieve thefile.

Matching a Device to a Class

Many peripherds are standard types such as the keyboards, mice, printers,
and disk drives found on most desktop systems (though not aways with
USB interfaces). Other peripherals perform non-standard functions such as
data acquisition or motor control for specific applicaions. The following
sections contain advice on how to select a class for various applications.

Standard Peripheral Types

Standard periphera types are likely to have built-in drivers. For the most
part, users and application programmers don't have to know or care whether
a device uses USB or another interface type. The hardware-specific commu-
nications are handled a a lower level and present a common interface to
applications. For example, users can access files on a hard drive in exactly the
same ways whether the drive uses USB, ATAPI, SCSI, IEEE-1394, or a par-
alel-port interface.

275

Chapter 12

Keyboard, Mouse and Joystick

The keyboard, mouse, and joystick are the big three of the HID class.
"Mouse" includes trackballs and other pointing devices. HIDs aso encom-
pass various other game controls. All Windows editions support USB ver-
sions of these peripherals.

Many applications don't need to access these devices directly. For example, a
Visua-Basic application doesn't have to read mouse clicks to find at if a
user has clicked on an option button because the button's click event exe-
cutes automatically when this occurs.

Windows provides two ways for applications to communicate directly with
HIDs. Windows API functions and the APIs supported by DirectX, which
enables faster, more direct access to the hardware. However, Windows 2000
doesn't allow applications to use APl calls or DirectX to access the system
keyboard or mouse.

Besides supporting standard peripherals, the HID class is a good, gereral-
purpose class for other uses. For this reason, the following chapters have
much more detail about how to use HIDs.

Mass Storage Devices

The mass-gtorage class encompasses disk drives, including floppies, hard
drives, CDs, and so on. Other devices that transfer files in one or both direc-
tions can use this class as well.

On a PC, al devices that use a mass-storage driver appear as drives in My
Computer. Users can use the same interface to copy, move, and delete files.
For example, for adigital camera that uses a mass-storage driver, the cameras
memory appears to the operating system like any other drive. Theré's no
need for proprietary software to access the images in the camera.

The many types of media supported by the mass-storage class have different
internad structures. Severa industry-standard sets of command blocks, or
command descriptor blocks, enable controlling and reading status informa-
tion from different device types. Floppies, CDs, tape drives, and Flash mem-
ory each typicaly use a different command-block set.

276

Device Classes

The mass-storage class supports two transport protocols that determine
which transfer types the device and host use to send command, data, and
status information.

Bulk-only transport uses bulk transfers for most communications. It uses
control transfers only to clear a Stal condition on a bulk endpoint and to
send class-specific requests. The two class-specific requests supported are
Bulk Only Mass Storage Reset (reset the device) and Get Max Lun (get the
number of logica units the device supports).

Control/bulk/interrupt (CBI) transport uses bulk transfers for transferring
data and control transfers to clear a Stal condition on a bulk endpoint and
to send class-specific requests. The single class-specific request is Accept
Device-Specific Command, which enables the host to send a command
block. A CBI device may use ether interrupt or control transfers to signa
the completion of commands.

In the device's interface descriptor, the value 08h in the binterfaceClass field
indicates that the device is mass-storage class. The binterfaceSubClass field
specifies the supported command-block set. The binterfaceProtocol field
contains a code indicating the supported transport protocol.

There are separate specifications for each transport protocol, plus a UF
Command Specification for removable media

There are severd approaches to writing or obtaining a mass-storage driver
for a device. Windows 2000 and Windows Me include a driver that sup-
ports bulk-only and CBI devices. Microsoft hasn't provided much docu-
mentation for the driver, but the class specification can serve as a guide to
firmware design, and applications can access devices in the same way they
access other system drives.

Windows 98 doesn't have a mass-storage driver, so device vendors will have
to provide one. Microsoft provides source code for a mass-storage driver for
use under Windows 98 (described in knowledge base Article ID Q257751).
Cypress Semiconductor has a mass-storage reference design for its EZ-USB
chip. The design works with Windows 2000's driver and with a free driver
provided by Cypress for use with Windows 98.

277

Chapter 12

For OEMs (original equipment manufacturers) whose existing devices have
standard SCSI, ATA, or ATAPI interfaces, SCM Microsystems has USB
Intelligent Cables and drivers that quickly add USB capability to the
devices. Many hard drives, CD drives, tape drives, and some scanners use
either SCSI, ATA (AT attachment), originally known as IDE, or ATAPI (AT
attachment packet interface), an extension to EIDE. The EUSB-SL1 product
contains a microcontroller and an ASIC that convert between the device's
existing SCSl interface and USB. In a smilar way, the EUSB-C product
converts between ATA and ATAPI devices and USB. The cables are available
only to OEMSs, not to end users.

Printers

Windows 2000 and Windows Me include a USB printer driver and
Microsoft adso permits distributing the driver for use with Windows 98. The
printer vendor must supply a high-level, user-mode driver that is layered
above the print spooler. The interface to the USB printer driver is similar to
the interface for paralel printers, so a single driver often works without
modification with both USB and the parald port.

Cameras and Scanners

The dill-image capture, or imaging, specification was created to support
dill-image (not video) digital cameras. Other devices that have smilar
requirements, such as scanners, fit into the class as well. Version 1.0 was
released in July 2000.

The Photographic and Imaging Manufacturers Association (PIMA) deve-
oped the PIMA 15740 Standard, which describes requirements for transfer-
ring files and for controlling digital <ill cameras. USB's specification is
based on this standard.

The class supports bulk IN and bulk OUT endpoints for sending both
image and non-image data, plus an interrupt IN endpoint for event data
Three class-specific requests are required and one is optiona. The required
requests are Cancel Request (cancel a bulk transfer), Device Reset Request
(the device returns to the Idle state if the bulk pipe has stalled), and Get
Device Status (the host receives information about a transfer cancelled by

278

Device Classes

the device). Optiona is Get Extended Event Data (the device returns infor-
mation about an event or condition.)

The interface descriptor in the device identifies a till-image device, with the
binterfaceClass field set to 06h to indicate an image interface and binter-
faceSubClass set to 01 h to indicate a still-image capture device.

Windows 98 SE included a preliminary verson of a ill-image driver that
was enhanced in Windows 2000 and Windows Me. The driver supports
USB, SCSI, and |IEEE-13%4.

Windows 2000 and Windows Me support the Microsoft Windows Image
Acquisition (WIA) architecture, which is built on the Microsoft Still Image
Architecture (STI) used in previous Windows editions. The device vendor
needs to supply only a user-mode WIA minidriver that provides a
device-specific interface to the generic dill-image driver. The Windows
DDK has more details about how to use the driver.

For Windows 98 Gold and probably Windows SE, youll need to provide a
device driver.

If dl that is needed is a way to transfer image files from a camera, another
option is to use a mass-storage driver, as described earlier.

Audio Applications

Audio has been supported beginning with Windows 98 Gold, so there
should be no need to write an audio driver. Windows 2000 and Windows
Me added a MIDI driver. Audio functions are often part of a device that aso
supports video, storage, or other functions.

An audio function consists of an Audio Interface Collection containing one
or more device interfaces. The AudioControl interface accesses controls such
as volume, mute, bass, and treble. One or more AudioStreaming interfaces
transport data representing audio to or from the device. One or more MID-
| Streaming interfaces transport MIDI data to or from the device.

The default control endpoint responds to class-specific requests. Isochro-
nous endpoints transfer data for the streaming interfaces. Some isochronous

279

Chapter 12

endpoints may require an additional isochronous synch endpoint. An
optional interrupt IN endpoint transfers status information.

MIDI (musica instrument digita interface) is a standard for controlling
synthesizers, sound cards, and other electronic devices that generate music.
A MIDI representation of a sound includes values for pitch, length, volume,
and other characteristics. A pure MIDI hardware interface carries asynchro-
nous data at 31.25 kilobits per second. USB MIDI carries MIDI data but
doesn't use MIDI's hardware interface.

The audio and MIDI specifications have the details needed to implement-
ing an audio interface.

Modems

The modem driver included with Windows 98 SE and later (usbser.sys) is
compatible with modems that use the Abstract Control Mode defined in
the communications class specification. A modem used by programs that
cal the Windows Telephony Application Programming Interface (TAPI) to
make data, fax, or voice cals must have its own INF file; descriptors that
place the device in the communications class aren't sufficient. The Windows
DDK includes a Modem Development Kit with tools, sample INF files, and
information for creating and testing INF files for AT (data) and AT+V (data
+ voice) command modems.

Non-standard Functions

One of the great things about USB is that you're not limited to a few stan+
dard periphera types. Applications can communicate with any periphera if
the operating system has a driver for the it. Some peripherals require custom
drivers. But even when a devices purpose is very different from typica
peripherals, it's often possible to design the device to fit into a defined class.

Devices that Transfer Data at Moderate Speeds

Motor controllers and data-acquisition units are two examples of specialized
peripheras that aren't found on most PCs. For a motor controller, the host
may send configuration and control requests to the device, which then pro-

280

Device Classes

vides the signals required to carry out the requested tasks. A controller may
also send status information to the host. For data acquisition, a device may
collect data from sensors and sends the results periodicaly to the host, and
the host may send configuration or control requests to the device.

For devices in both of these categories, or any device that transfers data at
low to moderate speeds, you may be able to design the device to fit the HID
class, eiminating the need to provide a custom driver.

A HID doesn't have to be a standard peripheral type, and it doesn't even
need a human interface. The only requirement is that the descriptors stored
in the device must conform to the requirements for HID-class descriptors,
and the device must send and receive data using interrupt or control trans-
fers as defined in the HID specification.

The main limitation to HID communications is the available transfer types.
For device-to-host data transfers, HIDs can use interrupt or control trans-
fers. For host-to-device transfers, Windows 98 SE or later, including Win-
dows 2000 and Me, will use interrupt transfers if an OUT interrupt pipe is
available. Otherwise the host will use control transfers to send data to the
device. The origind release of Windows 98 complies only with the HID 1.0
specification and uses control transfers for al host-to-device data.

As Chapter 3 explained, interrupt transfers aren't the fastest transfer type,
and they dont have the guaranteed transfer rate of isochronous transfers
(though they do have guaranteed maximum latency). Control transfers have
no guaranteed rate @ latency. But even with these limitations, the smplicity
of using the HID functions makes the class attractive when the limits are
acceptable.

Upgrading RS-232 Devices

The RS-232 serid port is a good, genera-purpose interface that has been
with the PC since its beginning. There are probably thousands of different
RS-232 peripherds in use. Microsoft and Intel's PC 2001 System Design
Guide doesn't forbid RS-232 ports, but it discourages them in favor of
newer, more powerful and flexible interfaces like USB. Just about any device

281

Chapter 12

that uses RS-232 can be implemented with USB. There are several
approaches to making the switch.

RS-232 modems of course can be designed for USB's modem class.

For many other devices, FTDIs FT8U232AM USB UART provides a quick
way to upgrade a design to USB. The chip converts an existing RS-232
serid device to USB while requiring minimal design changes and no changes
to host software. (Figure 12-1).

A typica device with an RS-232 interface contains a UART that converts
between the seria data used in RS-232 communications and the parald
data used by the CPU's internal buses. The signas on the line side of the
UART connect to converters that transate between RS-232 voltages and the
5V logic used by the CPU. The line side of the converter connects to a cable
that connects to the remote device.

The USB UART converts between USB and RS-232, including not just the
data lines but aso RTS, CTS, and the other status and control signals used
in RS-232 communications. One set of pins on the USB UART looks like
the line sde of a conventional UART, with pins for data and handshaking
signals. Two other pins connect to a USB transceiver.

The chip requires no programming except the optiond storing of Vendor,
Product, and Device IDs and strings in a seridl EEPROM.

To adapt an RS-232 design for USB, you replace the original UART's con-
nections to the RS-232 converters with connections to the complimentary
sgnas on the USB UART. Store the IDs and other optional information in
a serial EEPROM that connects to the USB UART and add a USB connec-
tion to the USB transceiver. The device firmware requires no changes
because the origind UART will think it's taking to an RS-232 device as
usud.

But providing the device hardware is only hdf of the job. The other haf is
the device driver. For the least disruption to existing applications, the driver
should cause application software to treat the device as if it were ill
attached to a COM port. FTDI provides drivers that do just that under

282

Device Classes
Figure 12-1: FTDI's USB UART can convert devices with RS-232 interfaces to
USB. A free device driver provided by FTDI causes the device to appear like a

- 4| THDATA T ——— Txh ll—— =
| — RNDATA R¥I} ——— RHD o —
L iy g Luidin | | PARALLEL INTERFACE
& L E =
-.mE:‘il-'-.Eéi — lers CTge ————CT4» — |79 oTHER DEVICE
10 HOST | ——— BTR OTRE —— DTRS —— |CIRCUITS
|
——— sk DERe ———— DSRe pr—
— DEh DD —1 BCD —
- Ri® Rie - —_—
MHAMIZ4S OR EDAI]VALEMT
TTL#RS-332 CONVERTER L
DE¥ICE UART
TYPICAL RS-232 DEVICE
{3, 3¢ out ‘
;I.BR =D TED == 1
i RED R |——
ush a s e RTEd ——| RTE# |
IR PARMLLEL |HTERFACE
TE RS B CTS# CTse ——— | Tb OTHER DEWICE
[(o
DTRe - —{ DR — LRGN
= EESK DSP""_ DER® F
EECS pone ——— pCoe —
T — EEQATA Al 1Rle —
iy
' | I -
| r--:a'elliifiﬂr DEYICE UaAT
1 kK gmx
[2.2H]
¢ ™ - ||,'I|h
A Sh |pour SERIAL EEPROM
CONTATH] KRG
les VENDoR &
| FRODUCT 108
— '15:

RE-232 DEVICE COMYERTED TO use
conventional COM-port device to host applications.
Windows and other operating systems. An RS-232 design converted for

USB with an FTDI UART can use exactly the same application software as
the RS-232 verson.

Another approach to upgrading RS-232 devices is to redesign the device to
eliminate the COM-port interface entirely. The device will probably be
cheaper to manufacture because there's no need for a UART, but the device

283

Chapter 12

will need new application software and possibly a custom device driver.
Many RS-232 devices, such as uninterruptible power supplies and the
point-of -sale devices described below, can be designed as HIDs. Others will
use bulk transfers and may require a custom driver.

Point-of-Sale Devices

Point-of-sale (POS) devices include bar-code scanners, displays, receipt
printers, cash drawers, coin dispensers, and other devices used in sales trans-
actions. Traditionally these have used RS-232 interfaces, and they're ided
candidates to upgrade to USB.

Most POS devices can be designed to fit into the HID class. The HID Point
of Sale Usage Tables document defines data formats for bar-code scanners,
weighing devices, and magnetic stripe readers. The document is available
from the USB Implementers Forums website.

Other approaches for POS devices are designed to make upgrading from
RS-232 as easy as possible. RS-232 POS devices can use the USB UART
described above to enable applications to access the device the same as if it
were still connected to a COM port.

Another option is the ERC driver and associated USB protocol from
Inside/Out Networks. The driver enables applications to access a device as if
it were a COM-port device. This approach requires the device to contain a
USB controller with device firmware that uses the licensed protocol.

Replacing Non-standard Parallel Port Devices

Besides the RS-232 szial port, another port that al PCs had from the
beginning was the parallel port, origindly intended for connecting a printer.
Like the serial port, the pardld port has found many other uses over the
years. The paralel port is faster than the seria port, so it became a favored
connection for scanners and disk drives. This became even more true when
the ports began supporting the new, faster PS/2, enhanced paralde port
(EPP) and extended capabilities port (ECP) modes. In each of its modes, the
parallel prt uses a defined protocol for exchanging bytes of data along with
status and control information.

284

Device Classes

Another category of paralelport devices uses custom protocols. The origi-
na port had 8 outputs, 5 inputs, and 4 open-collector, bidirectiond lines.
Under Windows 3.x and 9x, applications can read and write directly to the
port addresses, and under Windows NT and 2000 all that's needed to access
the ports is a kerne-mode driver available at low cost or free from severa
sources. What resulted was an assortment of devices following no standard
use of the port's input and outputs. For example, one popular use involved
connecting combinations of decoders, flip-flops, and data selectors to
expand the number of inputs and outputs applications could access.

But as with RS-232, Microsoft and Intel are discouraging the parald port's
usein favor of USB and |EEE-1394. And this brings up the question of
what to do with al of the existing designs.

For drives, scanners, and other standard device types, the logicd solution is
to design the device to comply with the appropriate USB class specification.

A quick solution for parald printers is to use a USB printer adapter. The
adapter's driver causes the operating system to see the printer as a network
printer. Adapters are available from severa vendors. A printer adapter isn't a
solution for paraleport scanners, drives, and so on, because the firmware
and driver are designed for use only with the PC's printer drivers.

For devices that use non-standard parallelport communications, the solu-
tion is to redesign the interface for USB. This requires adding a USB micro-
controller to the device, possibly providing a device driver, and revising the
application software to match the driver's requirements. The parald port
has 17 sgna pins, so to emulate them all requires a least that many 1/O
pins on the microcontroller. But many designs can get by with the 16 1/0
pins available on smaller, cheaper controller chips. If you must have 17 bits
on a chip with a smdl footprint, Cypress CY7C63743 has 16 1/O pins plus
two additional inputs that are available if the chip uses the interna oscillator
or an externa source for D-'s pull-up.

Applications that access the port at low and moderate speeds can probably
use the HID drivers included with Windows. This means there are no driv-
ers to write, but you'll need to rewrite the application software to use the
API calsfor accessing HIDs.

285

Chapter 12

If you want to make minima changes to the application software, provide a
driver that supports custom DeviceloControl functions that emulate the
functions used by the original application. For example, you could define an
loControlCode for a status-port read function that reads five inputs with bit
vaues of bit 3 through bit 7 and even inverts bit 7 to match what the paral-
lel-port hardware does. Instead of reading the status-port address with an
Inp function, applications would cal DeviceloControl with your loCon-
trolCode for the status-port read emulation.

PC-to-PC Connections

USB doesn't dlow peripherals to exchange data directly. All communications
must go through a host. There's no way for two hosts to send data to each
other without going through a periphera. There is, however, a way to enable
two PCs to communicate using their USB ports. Each PC can connect to a
USB periphera, and the two peripheras can communicate with each other
viaa shared buffer.

Cypress Semiconductor's AN2720SC is designed for this purpose. It's a sin-
gle chip containing two USB cores. Each core connects to a USB transceiver
and a shared 2Kilobyte buffer. Cypress provides a driver that causes each
PC to see the other as a network-connected PC. You add only a single crys-
tal, an EEPROM for storing a VID and PID, and few other components.

But you don't have to build your own PC-to-PC cable. It's a popular enough
gpplication that ready-made products are available, including Cypress EZ-
Link.

Wireless Links

Replacing a USB cable with a wireless connection isn't a smple task. The
man reason is that USB transactions involve communicating in both direc-
tions with tight timing requirements. For example, when a host sends a
token and data packet in the data stage of an interrupt transaction, the
device must respond quickly with ACK or another code in the handshake
packet. Designing a wireless link to do this while aso meeting al of USB's
timing and other requirements would be a challenge.

286

Device Classes

An easier solution when you need a wireless connection is to use a conven
tional wired connection to a USB device that also supports a wireless inter-
face. The device at the other end of the wireless link doesn't have to support
USB at all.

SigmaTd's STIr4200s takes this approach with its IrDA-to-USB bridge chip
for wireless applications. IrDA is a standard for communications that use
infrared energy instead of cables. The bridge's USB interface connects to a
USB hub, and the IrDA interface communicates with IrDA-capable devices.
The bridge trandates between the two interfaces. SigmaTel provides a driver
for use with the chip.

A similar approach would work for devices that use radio-frequency wireless
communications.

287

Human Interface Devices: Firmware Basics

Human Interface
Devices: Firmware
Basics

The human interface device (HID) class was one of the first USB classes to
be supported under Windows. On PCs running Windows 98 or later, appli-
cations can communicate with HIDs using the drivers built into the operat-
ing system. For this reason, USB devices that fit into the HID class are some
of the easiest to get up and running.

This chapter shows how to determine whether a peripheral will fit into the
humanrinterface class, explains the firmware requirements that define a
device as a HID and enable it to exchange data with its host, and introduces
the six HID-specific control requests. The next three chapters describe the

reports that HIDs use to exchange information and how to access HIDs
from applications.

288

Chapter 13

What is a HID?

Before you can know whether or not you can use Windows HID drivers to
communicate with a device, you need to know whether your device fits in
the HID class.

The designation human interface suggests that the device interacts directly
with people. A device may detect when someone presses a key or moves a
mouse or joystick, or the host may send a message that trandates to a joy-
stick effect that the user experiences. The classic examples of HIDs are key-
boards, mice, and joysticks. Other HIDs include front panels with knabs,
switches, buttons, and diders, remote controls;, telephone keypads, and
game controls such as data gloves and steering whesls.

But a HID doesn't have to have a human interface at al. It just needs to be
able to function within the limits of the classs specification. These are the
mgjor abilities and limitations of HID-class devices:

» The data exchanged resides in structures called reports. The device's firm
ware must support the HID report format. The host sends and receives
data by sending and requesting reports in control or interrupt transfers.
The report format is flexible, and can handle just about any type of data.

» Each transaction can carry a small to moderate amount of data. For a
low-speed device, the maximum is 8 bytes per transaction. For a
full-speed device, themaximum is 64 bytes per transaction. For a
high-speed device, the maximum is 1024 bytes per transaction. A long
report can use multiple transactions.

* A device may send information to the computer at unpredictable times.
For example, there's no way for the computer to know when the user will
press a key on the keyboard, so the host's driver polls the device periodi
caly to abtain new data.

* The maximum speed of transfersis limited, especially at low and full
speeds. As Chapter 4 explained, a host can guarantee alow-speed inter
rupt endpoint no more than 1 transaction per 10 milliseconds, for a
maximum of 800 bytes per second. A host can guarantee a full-speed
endpoint up to 1 transaction per millisecond, for a maximum of 64,000

289

Human Interface Devices: Firmware Basics

bytes per second, or a high-speed endpoint up to 3 transactions per 125
microseconds, for a maximum of 24.576 Megabytes per second.

» Thereisno guaranteed rate of transfer. If the deviceis configured for
10-millisecond intervals, the time between transactions may be any
period equd to or less than this. The exception is devices configured to
transfer data every frame at full speed or every microframe at high speed.
Since these are the fastest possible polling rates, the endpoint is guaran
teed to have this exact bandwidth available.

» Under Windows 98 Gold (origind), interrupt OUT transfers aren't sup
ported, so dl host-to-device data must use control transfers.

Although many HIDs mostly send data from the device to the host, a HID
can aso receive data from the host. The classic example of host-to-device
HID communications is the force-feedback joystick, where users experience
effects that match their actions, such as greater resistance when pulling the
stick to cause a simulated arplane to climb or when getting a bite on a sm-
ulated fishing rod.

Any device that can live within the classs limits is a candidate to be a HID.
The specification mentions bar-code readers, thermometers, and voltmeters
as examples of HIDs that may not have a conventional human interface.
Each of these sends data to the computer and may also receive requests that
configure the device. Examples of devices that mostly receive data are
remote displays, control panels for remote devices, robots, and devices of
any kind that receive occasional or periodic commands from the host.

The HID interface may be just one of multiple USB interfaces supported by
a device. A video display may have a HID interface for software control of
brightness, contrast, and refresh rates, while usng the conventional video
interface to send the data to be displayed. A USB speaker that uses isochro-
nous transfers for audio may aso have a HID interface for controlling vol-
ume, balance, treble, and bass. A HID interface is often cheaper than
traditional physica controls.

Two essential documents for working with HIDs are Device Class Definition
for Human Interface Devices, which defines the HID class, and HID Usage
Tables, which defines values that help the host understand and use the HID

290

Chapter 13

data. Both documents are products of a USB Device Working Group. The
members are affiliated with the member companies of the USB Implement-
ers Forum. The documents are published by the Implementers Forum and
available on the Forum's website.

Hardware Requirements

A HID interface must conform to the requirements of the HID class as
defined in the specification. The document describes the required descrip-
tors, the frequency of transfers, and the transfer types available.

To comply with the ecification, the interface's endpoints and descriptors
must meet several requirements.

Endpoints

All HID transfers use either the Default Control Pipe or an interrupt pipe.
A HID must have an interrupt IN endpoint for sending data to the host. An
interrupt OUT endpoint is optional.

The specification defines uses for each pipe. Table 13-1 shows the transfer
types and their usesin HIDs.

You can think of the data that the host and device exchange as being of two
types low-latency data that must get to its destination as soon as possible,
and configuration data or other data that doesn't have critical timing
requirements. (By configuration data, I'm referring to data sent in HID
reports, not the host's requesting and selecting of device configurations on
enumerating.)

The Control Pipe

The control pipe for a HID carries the standard USB requests as well as six
class-specific requests defined in the HID specification. Two of the HID-
specific requests, Set Report and Get_Report, provide a way for the host
and device to transfer a block of any kind of data to or from the device. The
host uses Set_Report to send reports and Get_Report to receive reports.

The other four requests relate to configuring the device. Set Idle and
Get_ldle set and read the Idle rate, which determines whether or not a

291

Human Interface Devices: Firmware Basics

Table 13-1: The transfer type used in a HID transfer depends on the chip's
abilities and the requirements of the data being sent.

Transfer | Source of Data | Type of Data Required [Windows
Type Pipe? |Support
Control Device (IN Datathat doesn't have critical timing|yes Windons98
transfer) requirements. and later
Host (OUT Datathat doesn't have critical timing
transfer) requirements, or any dataif thereis
no OUT interrupt pipe.
Interrupt | Device (IN Periodic or low-latency data. yes
transfer)
Host (OUT Periodic or low-latency data. no Windovs98
transfer) FEadlae

device resends data that hasn't changed since the last poll. Set_ Protocol and
Get_Protocol set and read a protocol value, which can enable a device to
function with a smplified protocol when the HID drivers aren't loaded on
the hogt.

Interrupt Transfers

The interrupt pipe or pipes provide an aternate way of exchanging device
data, especialy when the receiver must get the data quickly or periodicaly.
An interrupt IN pipe carries data to the host, and an interrupt OUT pipe
carries data to the device. Control transfers can be delayed if the bus is very
busy, but once the device is configured, the bandwidth for interrupt trans-
fers is guaranteed to be available. HIDs aren't required to have interrupt
OUT pipes. If there is no interrupt OUT pipe, the host sends al reports on
the control pipe, using Set_Report requests.

The &hility to do Interrupt OUT transfers was added in version 1.1 of the
USB specification, and the option to use an interrupt OUT pipe was added
to version 1.1 of the HID specification. A HID driver that complies only
with verson 1.0 (including the drivers in Windows 98 Gold) won't support
interrupt OUT transfers.

292

Chapter 13

Firmware Requirements

For the host's drivers to communicate with a HID, the device's firmware
must meet certain requirements. The device's descriptors must identify the
device as having a HID interface, and the firmware must support an inter-
rupt IN endpoint in addition to the Default Control Pipe. The firmware
must also contain a report descriptor that defines the format for transmitted
and received device data.

To send data, the specification requires the firmware to support Get_Report
control transfers and interrupt IN transfers, and to receive data, the firm-
ware must support Set_Report control transfers and may also support inter-
rupt OUT transfers.

All HID data must use a defined report format that defines the size and con-
tents of the data in the report. Devices may support one or more reports. A
report descriptor in the devices firmware describes the reports, and may aso
include information about how the receiver of the data should useit.

A vaue in each report defines the report as an Input, Output, or Feature
report. The host receives data in Input reports and sends data in Output
reports. Feature reports may travel in either direction.

For Input reports, the HID drivers in all releases of Windows 98 and later
use interrupt transfers. For Output reports, the transfer type depends on
what endpoints the device supports and which edition of Windows is
ingdled. The origind release of Windows 98 (Windows 98 Gold) complies
only with verdon 1.0 of the HID specification, and the HID driver uses
control transfers for Output reports. Windows 98 SE, Windows 2000, and
Windows Me comply with version 1.1 of the specification, so the HID
driver uses interrupt transfers for Output reports if the interface has an
interrupt OUT endpoint. Otherwise it uses control transfers. If the HID
interface doesn't have an interrupt OUT endpoint or if the firmware sup-
ports both transfer types for Output reports, the HID will be compatible
with any Windows edition. Feature reports aways use control transfers.

A report format can be smple or complex. The rest of this chapter and
Chapter 14 have much more about report formats.

293

Human Interface Devices: Firmware Basics

Identifying a Device as a HID

As with any USB device, a HID's descriptors tell the host what it needs to
know to communicate with the device. Listing 13-1 shows example device,
configuration, interface, class, and endpoint descriptors for a HID-class joy-
stick. The host learns about the HID interface when it sends a
Get_Descriptor request for the configuration containing the HID interface.
The configuration's interface descriptor identifies the interface as HID-class.
The HID class descriptor specifies the number of report descriptors sup-
ported by the interface. During enumeration, the HID driver retrieves the
HID class and report descriptors.

Descriptor Contents

The device and configuration descriptors have no HID-specific informa-
tion. The device descriptor contains a field for a class code, but this isnt
where the device is defined as a HID. Instead, the interface descriptor is
where the host learns that a device, or more properly, a device interface,
belongs to the HID class. If the class-code byte in the device's interface
descriptor is 3, the interfaceisa HID.

Other fields that contain HID-specific information in the interface descrip-
tor are the subclass and protocol fields, which can specify a boot interface.

Boot Interfaces

The subclass field has just one active setting. A subclass of 1 indicates that
the device supports a boot interface. When a device has a boot interface, the
device will be usable when the host's HID drivers aren't loaded. This might
occur when the computer boots directly to DOS, or when viewing the sys-
tem setup screens that you can access on bootup, or when using Windows
Safe mode for system troubleshooting. A keyboard or mouse with a boot
interface can use a predefined, smplified protocol supported by the BIOS of
many hosts. The BIOS loads from ROM or other non-volatile memory on
bootup and is available in any operating-system mode. The HID specifica
tion defines boot-interface protocols for keyboards and mice.

294

Chapter 13

devi ce_desc_t abl e:

db
db
db
db
db
db
db
db
db
db
db
db
db
db

12h

ah
00h, 01h
(00]]

(00]]

Oh

08h

B4h, 04h
| Fh, OFh
88h, 02h
OCh

Oh

Oh

A hNumber of

confi g _desc_tabl e:

db
db
db
db
db
db
db
db

I nterface_Descriptor:

db
db
db
db
db
db
db
db
db

09h
02h
22h, 00h
ah
ah
OGh
80h
32h

09h
04h
OGh
OGh
ah
03h
OGh
OGh
OGh

; Descriptor length (18 bytes)

; Descriptor type (Device)

; Conplies to USB Spec. Release (1. 00)

; Aass code (0)

; Subcl ass code (0)

; Protocol (No specific protocol)

; Max. packet size for EPO (8 hytes)

; Vendor | D (Cypress)

; Product ID (joystick = OxOFl F)

; Device release nunber (2. 88)

; Mr string descriptor index (None)

; Product string descriptor index (None)
; Serial No. string descriptor index (None)
possi bl e configurations (1)

end device desc table:

Descriptor length (9 bytes)
Descriptor type (Configuration)
Total data length (34 bytes)
Interface supported (1)
Configuration value (1)

I ndex of string descriptor (None)
Configuration (Bus powered)

Maxi mum power consunption (100mA)

Descriptor length (9 bytes)
Descriptor type (Interface)
Nunmber of interface (0)
Aternate setting (0)

Nunmber of endpoi nts supported
Cl ass code (HID)

Subcl ass code (None)

Prot ocol code (None)

I ndex of string(None)

Listing 13-1: Descriptors for a HID-class joystick (Sheet 1 of 2)

295

Human Interface Devices: Firmware Basics

Cl ass_Descriptor:

db 09h Descriptor length (9 bytes)

db 21h Descriptor type (H D)

db 00h, 01h H D class release nunber (1. 00)

db OOh Local i zed country code (None)

db A h # of HI D class descriptors to follow (1)
db 22h Report descriptor type (H D

Total |ength of report descriptor db
(end_hid_report_desc_table - hid_report_desc_table), OOh

Endpoi nt _Descri ptor:

db 07h ; Descriptor length (7 bytes)

db 05h ; Descriptor type (Endpoint)

db 81h ; Encoded address (Respond to IN, 1 endpnt)
db 03h ; Endpoint attribute (Interrupt transfer)
db 06h, COh ; Maxi mum packet size (6 bytes)

db OAh ; Polling interval (10 ns)

end_config_desc_tabl e:

Listing 13-1: Descriptors for a HID-class joystick (Sheet 2 of 2)

If a device does have a boot interface, the protocol field indicates if the
device supports the keyboard (1) or mouse (2) interface. A vaue of zero
indicates no device, and values 3255 are reserved. A subclass of zero means
that the device doesn't support a boot protocol. Values 2 through 255 are
reserved.

The HID Usage Tables document defines the keyboard and mouse boot
descriptors. The BIOS doesn't need to read a descriptor from the device
because it knows what the boot protocol is and assumes that the device will
support it. So a boot device doesn't have to include a boot-interface descrip-
tor in firmware; it just has to support the boot protocol if the host hasn't
requested the protocol defined in the report descriptor. When the operating
system loads, the HID drivers use the HID-specific request Set_Protocol to
cause the device to switch from the boot protocol to the report protocol.

296

Chapter 13

Draft 4 Compliance

During the development of the HID 1.0 specification, a change was made
to the ordering of descriptors in HID firmware. In the early versions, the
descriptors were stored and retrieved in this order:
Configuration Interface Endpoint HID By Draft 4 of the
specification, the order had changed to:

Configuration

Interface HID

Endpoint
The change means that the HID descriptor is associated with an interface,

rather than an endpoint. If a HID has two endpoints, the device doesn't
need a HID descriptor for each.

A device that complies with HID 1.0 or later uses the Draft 4 ordering. A
USB test utility (such as HIDView, described in Chapter 17) that checks for
Draft 4 compliance is examining the order of the descriptors.

HID Class Descriptor

The main purpose of the HID class descriptor is to identify additional
descriptors for use in HID communications. The class descriptor has seven
or more fields, depending on the number of additional descriptors. Table
13-2 showsthe fields.

The Descriptor
bL ength. The length in bytes of the descriptor.
bDescriptor Type. The vaue 21h indicates the HID class.

297

Human Interface Devices: Firmware Basics

Table 13-2: The HID class descriptor has 7 or more fields in 9 or more bytes.

Offset Field Sze |Description

(decimal) (bytes)

0 bLength 1 Descriptor sizein bytes

1 bDescriptorType 1 21hindicatesthe HID class

2 bcdHID 2 HID specification release number (BCD)

4 bCountryCode 1 Numeric expression identifying the country for
localized hardware (BCD)

5 bNumbDescriptors 1 Number of subordinate class descriptors supported

6 bDescriptorType 1 The type of class descriptor

7 wDescriptorLength |2 Total length of report descriptor

9 bDescriptorType 1 Constant identifying the type of descriptor.
Optional, for devices with more than one descrip-
tor.

10 wDescriptorLength |2 Total length of descriptor. Optional, for devices
with more than one descriptor. May be followed by
additional wDescriptorType and
wDescriptorL ength fields.

The Class

bcdHID. The HID specification number that the device and its descriptors
comply with. In BCD (binary-coded decimal) format. The vaue is a 4char-
acter hexadecima vaue with a decimal point assumed in the middle. For
example, Verson 1.0 is OlOOh; Version 1.1 is 0lI0Oh.

bCountryCode. If the hardware is locdized for a specific country, this field
is a code identifying the country. The HID specification lists the codes. If
the hardware isn't localized, thisfield is 00h.

bNumbDescriptors. The number of class descriptors that are subordinate to
this descriptor.

bDescriptor Type. The type (report or physical) of a descriptor that is sub-
ordinate to the HID class descriptor. Every HID must support at least one
report descriptor. An interface may support multiple report descriptors and
one or more physical descriptors.

wDescriptorLength. The length of the descriptor described in the previous
fidd.

298

Chapter 13

Additional bDescriptorType, wDescriptorLength (optional). If there are
additional subordinate descriptors, the descriptor type and length for each
follow in sequence.

Report Descriptors

A report descriptor defines the format and uses of the data that carries out
the purpose of the device. If the device is a mouse, the data reports mouse
movements and button clicks. If the device is a relay controller, the data
contains codes that specify which relays to open and close.

The report descriptor needs to be flexible enough to handle devices with
very different purposes. The data should be stored in a concise form so it
doesn't waste storage space in the device or bus time when the data trans-
mits. The HID report descriptor achieves both of these at a price of a format
that's more complex and less readable than a more verbose format might be.
The format doesn't limit the type of data in a report, but the report descrip-
tor must describe the size and contents of the report in advance. A report
descriptor's contents and length vary with te device, and can be short and
smple, long and complex, or anywhere in between.

A report descriptor is a type of class descriptor. The host retrieves the
descriptor by sending a Get_Descriptor request with the Vaue field contain-
ing 22h in the high byte and the report ID in the low byte. The default
report 1D is OOh.

One way to get a fed for what a report descriptor contains and how it's
structured is to look a one. Listing 13-2 is a bare-bones report descriptor
that describes an Input report that sends two bytes of data to the host and an
Output report that sends two bytes of data to the device. Other report
descriptors build on this basic format, so a short descriptor like this is a good
place to start understanding report descriptorsin general.

The items in the example descriptor are required in all descriptors. Some
items apply to the entire descriptor, while others are specified separately for
the input and output data. More complicated report descriptors may use
additional instances of these same items aong with other optiond items.

299

hi d_report_desc_table:

db 06h, AOh, FFh
db 09h, AS5h

db Alh, Oh
db 09h, A6h

; The input report
db 09h, A7h
db 15h, 80h
db 25h, 7Fh
db 75h, 08h
db 95h, 02h
db 81h, 02h

; The output report
db 09h, A9h
db 15h, 80h
db 25h, 7Fh
db 75h, 08h
db 95h, 02h
db 91h, 02h

db CCh

end_hi d_report_desc_tabl e:

Human Interface Devices: Firmware Basics

Usage Page (vendor defined)
Usage (vendor defined)

Col I ection (Application) Usage
(vendor defined)

Usage (vendor defined)

Logi cal M nimum (-127)

Logi cal Maxi mum (128)

Report Size (8) (bits)

Report Count (2) (fields)

I nput (Data, Variable, Absolute)

Usage (vendor defi ned)

Logi cal M nimum (-128)

Logi cal Maxi mum (127)

Report Size (8) (bits)

Report Count (2) (fields)

Qut put (Data, Variable, Absolute)

End Col | ecti on

Listing 13-2: This report descriptor enables sending and receiving of two bytes.

Each item in the example report consists of a byte that identifies the item
and one or more bytes containing the item's data. Here is what each item in

the example descriptor specifies.

The Usage Page item is identified by the value 06h and specifies the genera
function of the device, such as generic desktop control, game control, or
aphanumeric display (to name just a few): You can think of the Usage Page
as a subset of the HID class. In the example descriptor, the Usage Page is the
vendor-defined value FFAOhh. The HID specification lists vaues for differ-
ent Usage Pages and values reserved for vendor-defined Usage Pages.

300

Chapter 13

The Usage item is identified by the value 09h and specifies the function of
the individua report. Just as the Usage Page is a subset of the class, the
Usage is a subset of the Usage Page. For example, Usages available for
generic desktop controls include mouse, joystick, and keyboard. Because the
example's Usage Page is vendor-defined, all of the Usages in the Usage Page
are vendor-defined aso. In the example, the Usage is A5h.

The Collection (Application) item begins a group of items that together
perform a single function, such as keyboard or mouse. Each report descrip-
tor must have an Application Collection to enable Windows to enumerate
it. The Usage item that follows the Collection item names the function of
the collection. In the example, it's the vendor-defined value A6.

The Logicd Minimum and Maximum have vaues of 15h and 25h and
specify the range of values that the report can contain. Negative values may
be expressed as two's complements. In the example, the values 80h and 7Fh
indicates arange of -128 to +127.

The Report Size item has a vaue of 75h and indicates how many bits are in
each reported data item. In the example, each dataitem is eight bits.

The Report Count item has a value of 95h and indicates how many data
items the report contains. In the example, each report contains two data
items.

The fina item specifies whether the report carries data from the host to the

device (91h) or from the device to the host (81h), aong with other informa-
tion about the data.

The End Callection item closes the Application Collection.

HID-specific Requests

The HID specification defines six HID-specific control requests. Table 13-3
lists the requests, and the following pages describe each request in more
detail.

All HIDs must support Get_Report, and boot devices must support
Get_Protocal and Set_Protocol. The other requests (Set_Report, Get_Idle,

301

Human Interface Devices: Firmware Basics

Table 13-3: In addition to the eleven standard control requests, HIDs may
support up to six HID-specific requests.

Request #|Request | Data Vdue Index Data Data Kxequired
source Length stage !
(bytes) contents
Olh Get_ device report interface |report report yes
Report type, length
report 1D
02h Get device report ID [interface |1 ide no
Ide duration
03h Get_ device 0 interface |1 protocol |required
Protocol for boot
devices
09h Set_ host report interface |report report no
Report type, length
report ID
OAh H host ide interface |0 none no
Ide duration,
report ID
OBh Set_ host protocol |interface |0 none required
Protocol for boot
devices

and Set Idle) are optiona. If a device doesn't have an Interrupt OUT end-
point or if it is communicating with a 1.0 host such as Windows 98 Gold, it
will need to support Set Report to receive data from the host. Devices that
don't support Feature reports will send data using interrupt transfers only
and thus have no use for Get_Report, but to comply with the specification,
they should support the request in case a host should decide to use it. A
device will enumerate and transfer data under Windows without supporting
this request, however.

302

Chapter 13

Get_Report
Purpose: Enables the host to receive data from a device in control transfers.
Request Number: Olh
Sour ce of Data: device
Data L ength: length of the report

Contents of Value field: The high byte contains the report type (I=Input,
2=Output, 3=Feature), and the low byte contains the report ID. The
default report ID is 0.

Contents of Index field: the number of the interface that supports this
reguest.

Contents of data packet in the Data stage: the report

Comments: The HID specification advises that the host should not use
this request to obtain periodic data. (It should use interrupt transfers
instead.) The request is intended only for obtaining the state of feature
items or other information that the host needs to know when it initidizes
the device. However, a host using a boot protocol might use Get_Report to
receive keypress or mouse data.

All HIDs must support this request.

303

Human Interface Devices: Firmware Basics

Set_Report
Purpose: Enables a device to receive data from the host in control transfers.
Request Number: 09h
Sour ce of Data: host
Data L ength: length of the report

Contents of Value field: The high byte contains the report type (I=Input,
2=Output, 3=Feature), and the low byte contains the report ID. The
default report ID isO.

Contents of Index field: the number of the interface that supports this
request.
Contents of data packet in the Data stage: the report

Comments: If a device doesn't have an Interrupt OUT endpoint or if the
host complies only with verson 1.0 of the HID specification, this request is
the only way the host can send data to the device. For other devices, the
host may use this request to send Feature reports or other information that
that isn't time-sensitive. HIDs aren't required to support this request.

304

Chapter 13

Get Idle

Purpose: The host reads the current Idle rate from a device.
Request Number: 02h Source of Data: device Data L ength:
1

Contents of Value field: The high byte is 0. The low byte indicates the
report 1D that the request applies to. If the low byte is 0, the request applies
to dl of the devices Input reports.

Contents of Index field: the number of the interface that supports this
request.

Contents of data packet in the Data stage: the Idle rate, expressed in
units of 4 milliseconds.

Comments: See Set_Idle for more details. HIDs aren't required to support
this request.

305

Human Interface Devices: Firmware Basics

Set Idle

Purpose: Saves bandwidth by limiting the reporting frequency of an inter-
rupt IN endpoint when the data hasn't changed since the last report.

Request Number: OAh
Sour ce of Data: none
Data Length: 0

Contents of Value field: The high byte sets the duration, or the maximum
amount of time between reports. A value of 0 means that there is no maxi-
mum and the device will report only when the report data has changed.
Otherwise, the device returns a NAK. The low byte indicates the report 1D
that the request applies to. If the low byte is O, the request applies to dl of
the device's Input reports.

Contents of Index field: the number of the interface that supports this
reguest.

Contents of data packet in the Data stage: none

Comments. The duration is in units of 4 milliseconds, which gives a range
of 4 to 1,020 millissconds. No matter what the duration vaue is, if the
report data has changed since the last report sent, on receiving a request,
the device sends a report. If the data hasn't changed and the amount of time
specified in the duration value hasn't elapsed since the last report, the device
returns a NAK. If the data hasn't changed and the amount of time specified
in the duration value has elapsed since the last report, the device sends a
report. A duration value of O indicates an infinite duration; the device sends
a report only if the report data has changed, and responds to al other inter-
rupt IN requests with NAK.

HIDs aren't required to support this request. On enumerating a HID, the
Windows HID driver attempts to set the idle rate to 0. If the HID supports
the request, it will send a report only if the report data has changed. If the
HID returns a Stall in response to this request, the request isn't supported
and the device can send reports whether or not the data has changed.

306

Chapter 13

Get_Protocol

Purpose: The host learns whether the boot or report protocol is currently
active on the device.

Request Number: 03h
Sour ce of Data: device
Data Length: 1 Contents
of Valuefield: O

Contents of Index field: the number of the interface that supports this
request.

Contents of data packet in the Data stage: The protocol. O=boot proto-
col, 1 =report protocol.

Comments: Boot devices must support this request.

307

Human Interface Devices: Firmware Basics

Set_Protocol
Purpose: The host specifies whether to use the boot or report protocol.

Request Number: OBh Source of Data: host Data Length: 1 Contents of
Valuefield: 0

Contents of Index field: the number of the interface that supports this
request.

Contents of data packet in the Data stage: 0O=Boot Protocol; |=Report
Protocol

Comments: Boot devices must support this request.

308

Chapter 13

Transferring Data

When enumeration is complete, the host has done al of the following: it has
identified the device interface as a HID, it has established pipes with the
supported endpoints, and it has learned what report formats to use in send-
ing and receiving data.

The host uses control transfers to send and receive Feature reports contain-
ing additiond configuration data or other data that doesn't have critica tim-
ing requirements. For example, a control-pane application for a video
monitor may use control transfers to send settings to the monitor. The host
uses interrupt transfers to send and receive periodic, low-latency data in
Input and Output reports. The device's firmware must have the comple-
mentary code to respond to the host's requests.

Sending Data to the Host

The host receives data after requesting it in an interrupt or control transfer.
To respond to an interrupt transfer, the device's firmware needs only to have
the requested data in its transmit buffer and to be configured to send the
data in response to an interrupt IN request. For Cypress enCoRe series,
doing this requires writing a vaue to Endpoint 1's transmit configuration
register to enable transmitting and to specify the number of bytes to send
and the data-toggle bit's vaue.

Below is example code for the enCoRe that prepares two bytes to transmit
on the next interrupt IN transfer:

On receiving a Set_Configuration request, enable the Endpoint 1 interrupt:

; Set the endpoint mode to NAK Ins and Outs
mov A, NAK_IN OUT

iowr epl_mode

; Enable Endpoint O and 1 interrupts.

mov A, EPO_INT | EPLINT

iowr endpoint_int

mov A, OOh

; Reset the data toggl e.

mov [epl_data toggle], A

309

Human Interface Devices: Firmware Basics

To prepare to send data to the host, copy the data to Endpoint 1 's buffer and
configure the endpoint to return datain an IN transaction:

mov A, [data byte 0]

mov [epl_dmabuff0], A

mov A, [data byte |]

mov [epl_dmabuffl], A

; Qonfigure Endpoint 1 to send 2 bytes,

mov A, 02h

; Keep the data toggl e the sane.

or A [epl _data toggle]

i ow epl _count

; Configure the endpoint to send data in IN

; transactions,

mv A ACKIN

i owr epl _node
After sending the data, in Endpoint 1's interrupt service routine, toggle the
datatoggle so it will be correct for the next transaction:

; Toggle the data toggl e.

mov A, 8Ch

xor [epl_data toggle], A
The details will vary for other chips. When the device has no data to send,
the endpoint should be configured to return NAK.

Responding to a Get Report request for a Feature report is much like
responding to any control Read request. Control transfers are more compli-
cated than interrupt transfers because of their multiple stages, but you can
use the code for other control Read requests as a model. The device must be
able to detect the request in the Setup stage, write the requested report data
to the USB output buffer for transmitting in the Data stage, and acknowl-
edge the host's O-length data packet in the Status stage.

Receiving Data from the Host

The host receives data after requesting it in an interrupt or control transfer.
As explained earlier, a host may use control or interrupt transfers for Output
reports. The chip's architecture and descriptors determine whether or not
the HID interface has an interrupt OUT pipe available. The host aways
uses Set_Report control requests to send Feature reports.

310

Chapter 13

If the interface has an interrupt OUT endpoint and needs to receive lov-
latency data, the endpoint should be configured to receive report data
Typicdly, when new data arrives, an interrupt informs the device of the
event. An interrupt-service routine in the firmware then does whatever is
necessary with the data, either using the data right away or storing it for later
use. The interrupt-service routine should aso do whatever is needed to pre-
pare the endpoint to receive a new report.

If the interface doesn't have an interrupt OUT endpoint, the firmware must
detect Set_Report control requests and handle the report data in the
requests. The chip must do the same to receive Feature reports. A device that
has an interrupt OUT endpoint should aso be able to receive reports in
Set Report control transfers so it can receive Feature reports, or Output
reportsif it happens to communicate with a 1.0 host.

A Set Report request consists of at least three transactions. The host ini-
tiates a Setup transaction that specifies the request and the number of bytes
in the report, followed by one or more data transactions with the report
data. The device returns a response in the Status stage.

For a Set Report request, the device must be able to detect the request in
the Setup stage, receive the report data in the Data stage, and send a hand-
shake in the Status stage. These are the steps a device typically follows to
handle a Set Report request:

1 The device detects a Setup packet, stores the data in the transaction's data
packet, returns ACK, and triggers an interrupt that causes the firmware to
jump to an interrupt-service routine.

2. Theinterrupt-service routine does the following:

» Detects the code that indicates the arrival of a Set_Report request.

* Reads the report-length, report-type, and report-1D parametersin the
Setup transaction.

» Ensure that Endpoint 0 is configured to accept the data following an
OUT token packet.

3. When the interrupt-service routine ends, the device returns to normal
operation until it receives an OUT token packet indicating that the host is

311

Human Interface Devices: Firmware Basics

sending data to the control endpoint in the Data stage. After receiving the
data, the endpoint returns a status code in the handshake packet. An inter-
rupt causes the firmware to jump to an interrupt-service routine for the end-
point.

4. The interrupt-service routine does whatever is needed with the received
data.

5. If additional data packets are expected in the Data stage, repeat steps 3
and 4 for any additional OUT transactions, up to the Length value in the
Setup transaction.

6. In responseto an IN token packet in the Status stage, the endpoint sends
a O-length data packet and the host returns ACK.

Below is enCoRe code that executes on detecting a Set_Report request. The
code finds out how many bytes to read and configures Endpoint O to receive
datain an OUT transaction. This involves setting two configuration hits.

set_report:
; Find out how nany bytes to read in the OUT
; transaction(s) that will follow

; This value is in W.engthlo.

; (Weengthhi is unused for this device).
; Save the length in data_count.

mov A, [wLengt hl 0]

mov [data_count], A

mov A, O

mov [wLengthhi], A

Unl ock the counter register so it can be updated
; with the nunber of bytes in the data stage, iord
epO_count

; Enabl e receiving data in an OUT transaction
jmp initialize_control _wite

initialize_control_wite:

; The firmvare uses the value in epO_transtype to
; decide how to respond to a token packet.

nov A, TRANS_CONTROL_WRI TE

mov [epO_transtype], A

312

Chapter 13

; Set the data toggle.
mov A, DATA TOGGLE
nmov [epO data toggle], A

7 Send ACK in response to QUJT packet s,

: which will contain the Gontrol Wite data.

; Send NAK in response to I N packets (not expected).
mov A, ACK_OUT_NAK I N

i ow epQ node

;Return fromthe Endpoint 0 I SR
pop A pop Xreti

The chip then waits for the arrival of the OUT token packet to begin the
Data stage. When an Endpoint O interrupt occurs, the code checks for an
OUT packet, and if one has arrived, it stores the received data and returns a
O-byte data packet in the Status stage:

control _wite data stage:
; Junp here on receiving an Qut packet in the
; Data stage of a Gontrol Wite transfer.

; If the data-valid bit isn't set,

; We're done with the data stage.

i ord epO count

and A, DATA VALID

jz control _wite_ data_stage done

; Check the data-toggle bit. If it's incorrect,
; we're done with the Data stage.

iord epO count

and A, DATA TOGGLE

xor A, [epO_data_toggl e]

jnz control _wite data_stage done

; Qopy the report's bytes to data nenory,
nov A, [epO dmabuff0] nov

[data byte 0], A nov A [epO dnabuff1]
nov [data byte |], A

313

Human Interface Devices: Firmware Basics

; Toggl e the data-toggle bit.
nov A, DATA TOGGLE

Xor [epO_data toggle], A

; Configure Endpoint O to send a 0-byte data packet
in response to an I N packet (the transfer's Status ;
stage) and to Stall an Qut packet.

nov A, STATUS | N_ONLY
iow epO _node

control _wite_data_stage_done:

; Return fromEndpoint O' s ISR
pop A pop X reti

After sending the O-byte data packet, the endpoint is ready for another
transfer.

314

Human Interface Devices: Reports

14

Human Interface
Devices: Reports

Chapter 13 introduced the reports that HIDs use to exchange data. A report
can be a buffer of undefined bytes, or it can be a complex assortment of
items, each with assigned functions and units. This chapter shows how to
design areport to fit a specific application.

Report Structure

A report descriptor may contain any of dozens of items arranged in various
combinations. It can be long and complex, short and smple, or anywhere in
between. The advantage of a more complex descriptor is that the device can
provide detailed information about the data it sends and expects to receive.
The descriptor can specify the values uses and what units to apply to the
raw data, and it can tell applications whether or not a device supports a par-
ticular feature, such as force feedback on ajoystick.

315

Chapter 14

But just because the specification supports an tem that applies to a device
doesn't mean that the report has to include it. For custom devices that are
intended for use with a single application, the application often knows the
report format in advance, so there's no need to request the information from
the device. For example, when the vendor of a data-acquisition unit creates
an application for use with the unit, the vendor dready knows what data
format the device will use in its reports. At mogt, the application might
check the product 1D and version number from the device descriptor to
learn whether it can request a particular setting or action.

Some of the details about report structures can get tedious, and it's not nec-
essary to understand every nuance about them in most cases. So fedl free to
skim through the details. You can adways come back to them later if you
need to.

The report descriptor consists of a series of items that describe the values to
be transferred. Each item has a defined scope, and some items may apply to
multiple vaues, diminating the need to repeat.

Using the HID Descriptor Tool

The HID Descriptor Tool (Figure 14-1) is a free utility available from the
USB Implementers Forum. It helps in creating report descriptors, and will
also check your descriptor's structure, reporting any errors it finds. Instead
of having to look up the values that correspond to each item in your report,
you can select the item from a list and enter the value you want to assign to
it, and the software will add the item to the descriptor. You can aso ald
items manually. The Parse Descriptor function displays the raw and inter-
preted values in your descriptor and comments on any errors found. When
you have a descriptor with no errors, you can convert it to the syntax
required by your firmware. The tool tas limited support for vendor-specific
items, and may flag these as errors.

316

Human Interface Devices: Reports

ad
f.ipen
(Physical}

e 33
REPORT_COUNT (2]
REPORT _SIZE {2}
IMPUT (Data,Var,Abs)
REFORT_COUNT (4
REPORT_SIZE (1)

THPUT (Crst, Var,Abs)
E_PBGSE (Burtton)
wtton 1}

Usage Fag Genenc Deskiop

Usega Gama Pad
Coledion Application
aa Usage Poantar

A1 00 Colledion Lirkad
Ah 10y 09 30 Usnge ®
Chi(12dy m|n Li=sage b
Eh{ 14d} 1600 Losgical Mirarmum 1]
10k [16d) 2503 Lisgical hMesamuim 3
12h(18d) 9502 Fepont Caunt i
T4k [20d) 502 Report Size 2
16k | Z2d) oz Ingut [“awimbla}
Tiki 24d) 9504 Raport Count 4
14h | 26d) & ! Fapor Size 1

10h | 28]
1Eh | 30

Ingaut [Constant, Yanable)

Figure 14-1: The HID Descriptor Tool helps in creating and testing HID report
descriptors.

317

Chapter 14

Predefined Values

A report descriptor can contain values that describe specific uses. There are
several documents that define the Usage and other values that reports may
contain. The first place to look is the HID Usage Tables document. This has
tables of values for generic desktop controls, smulation controls, game con-
trols, LEDs, buttons, telephony devices, and more. The document aso tells
you where to find values that are defined elsewhere. Some are in the HID
specification, while others are in the class specifications for specific device
types such as monitor, power, and image-class devices.

The HID specification defines two report item types. short items and long
items. As of HID 1.1, there are no defined Long items, and the type is just
reserved for future use.

Short Items

A Short item's Lbyte prefix specifies the item type, item tag, and item size.
These are the elements that make up the prefix byte:

Bit Numbe Contents Description

7 ltemTag Numeric va ue that indicates the item's function
6

5

4

3 Item Type Item scope: Main, Global, or Local

2

1 Item Size Number of bytesin theitem

0

The item tag (bits 4-7) indicates the item's function.

The item type (bits 3 and 2) describes the scope of the item: Main (00),
Globa (01), or Locd (10). Main items define or group the data fields in the
descriptor. Global items describe the reported data. Loca items define char-
acteridtics of individua controls in the data. (This chapter has more infor-
mation about these.)

318

Human Interface Devices: Reports

Theitem size (bits 1 and 0) indicates how many data bytes the item con-
tains. Note that an item size of 3 (11 in binary) corresponds to 4 data bytes:

Item Size Number of
(binary) Data Bytes
00 0

01 1

10 2

11 4

Long Items

A Long item uses multiple bytes to store the same information as the Short
item's 1 -byte prefix. A Long item's 1 -byte prefix (FEh) identifies the item as
a Long item. In addition, the item has a byte that specifies the number of
data bytes, a byte containing the item tag, and up to 255 bytes of data.

The Main Item Type

A Main item defines or groups data items within a report descriptor. There
are five subtypes with the Main item type. The Input, Output, and Feature
items each define fields in the report. Collection and End Collection items
don't define fields, but instead group related items within a report. The
default value for al Main itemsisO.

Input, Output, and Feature Items

Table 14-1 shows the supported values for the Input, Output, and Festure

items, including the item tag and the meanings of the bits in the vaue that
follows the tag.

An Input item can apply to any control, sensor reading, or other informa-
tion that the device sends to the host. An Input report contains one or more
Input items. The host uses interrupt IN transfers to request Input reports.

An Output item applies to information that the host sends to the device. An
Output report contains one or more Output items. Output reports contain
data that reports the states of controls, such as whether to open or close a

319

Chapter 14

Table 14-1: The data included with Input, Output, and Feature Item Tags
describes the report data.

Main Item Tag Bit Number Meaning if bit=0 Meaningif bit=1
Input 0 Data Constant
(100000m, where 1 Array Variable
bytes) 2 Absolute Relative
3 No wrap Wrap
4 Linear Non-linear
5 Preferred state No preferred state
6 No null position Null state
7 Reserved
8 Bit fied Buffered bytes
93l Reserved
Output 0 Data Constant
gﬁgmﬁ%g; 1 Array Varizble
bytes) 2 Absolute Relative
3 No wrap Wrap
4 Linear Non-linear
5 Preferred state No preferred state
6 No null position Null state
7 Non-volatile Voldtile
8 Bit field Buffered bytes
93 Reserved
Feature 0 Data Constant
(101100nn, where 1 Array Variable
bytes) .
2 Absolute Relative
3 No wrap Wrap
4 Linear Non-linear
5 Preferred state No preferred state
6 No null position Null state
7 Non- volatile Volatile
8 Bit field Buffered bytes
9-31 Reserved

320

Human Interface Devices: Reports

switch or the intensity to apply to an effect. As explained earlier, if an inter-
rupt OUT pipe is avalable, a HID 1.1-compliant host uses interrupt OUT
transfers to send Output reports. Otherwise, the host uses Set Report con-
trol requests.

A Feature item normally applies to information that the host sends to the
device. However, it's also possible for the host © read Feature items from a
device. A Feature report contains one or more Feature items. Feature reports
typically contain configuration settings that affect the overall behavior of the
device or one of its components. Feature reports normally control settings
that you might otherwise adjust in a physica control pand. For example,
the host may have a virtual (on-screen) control panel to enable users to select
and control features. The host uses control transfers with Set Report and
Get_Report requests to send and receive Feature reports.

Following each item tag are 32 bits that describe the data. At mogt, only 9 of
the bits are used, with the rest reserved. The device firmware and host soft-
ware may use or ignore this information.

The bit functions are the same for Input, Output, and Feature items, except
that Input items don't support the volatile/non-volatile bit. These are the
uses for each hit:

Data | Constant. Data means that the contents of the item are modifiable
(read/write). Constant means the contents are not modifiable (read-only).

Array | Variable. This bit specifies whether the data reports the state of
every control or just reports the controls that are active. Reporting only the
active controls results in a more compact report for devices such as key-
boards, where there are many controls (keys) but only one or a few are active
at the same time.

For example, if a keypad has eight keys, setting this bit to Variable would
mean that the keypad's report would contain a bit for each key. In the report
descriptor, the report size would be one bit, the report count would be eight,
and the total amount of data sent would be eight bits. Setting the bit to
Array would mean that each key has an assigned index, and the keypads
report would contain only the hdex of the keys that are active. With eight
keys, the report size would be three bits, which can report a key number

321

Chapter 14

from O through 7. The report count would equa the maximum number of
simultaneous keypresses that could be reported. If the user can press only
one key at a time, the report count would be 1 and the total amount of data
sent would be just 3 hits. If the user can press dl of the keys at once, the
report count would be 8 and the total amount of data sent would be 24 hits.

The specification recommends returning O when no controls are active, and
specifying a Logica Minimum of 1 and a Logicd Maximum equa to the
number of controls.

Absolute | Relative. Absolute means that the value is based on a fixed ori-
gin; Relative means that the data indicates the change from the last reading.
A joystick normaly reports absolute data (the joystick's current position),
while a mouse reports relative data (how far the mouse has moved since the
last report).

No Wrap | Wrap. Wrap indicates that the vaue rolls over if it continues to
increment after reaching its maximum or continues to decrement after
reaching its minimum. A vaue specified as No Wrap that exceeds the limits
may report a value outsde the specified limits. This bit doesn't apply to
Array data.

Linear | Non-linear. Linear indicates that the measured data and the
reported value have a linear relationship. A graph of the reported data and
the property being measured forms a straight line. In non-linear data, a
graph of the reported dita and the property being measured forms a curve.
This bit doesn't apply to Array data.

Preferred State | No Preferred State. Preferred state indicates that the con-
trol will return to a particular state when the user isn't interacting with it. A
momentary pushbutton has a preferred state (out) when no one is pressing
it. A toggle switch has no preferred state; it remains in the state selected by
the last user. This bit doesn't apply to Array data.

No Null Position | Null State. Null state indicates that the control supports
a state where it isn't sending meaningful data. A control indicates that it's in
its null state by sending a vaue outside the range defined by its Logicd Min-
imum and Maximum. No Null Position indicates that the control can
always be assumed to be sending meaningful data. A hat switch on ajoystick

322

Human Interface Devices: Reports

is in a null podstion when it isnt being pressed. This hit doesn't apply to
Array data.

Non-volatile | Volatile. The Volatile bit gpplies only to Output and Feature
reports. Volatile means that the device can change the vaue on its own,
without host interaction, as well as when the host sends a report requesting
the device to change the value. For example, a control pane may have a con-
trol that users can set in two ways. They may use a mouse to click a setting
in a window on the host to cause the host to send a report to the device, or
they may press a physical button on the device. Non-volatile means that the
device changes the value only when the host requests it in a report.

When the host is sending areport and doesn't want to change avolatile
item, the value to assign depends on whether the data is defined as relative
or absolute. If a volatile item is defined as relative, a report that assigns a
value of 0 should result in no change. If a volatile item is defined as absolute,
areport that assigns an out-of-range value should result in no change.

This bit doesn't apply to Array data.

Bit Field | Buffered Bytes. Bit Field means that each bit or a group of bits
in a byte can represent a separate piece of data and the field doesn't represent
a dngle quantity. The application interprets the contents of the field. Buff-
ered Bytes means that the data consists of one or more bytes. The report size
for Buffered Bytes must be eight. This bit doesn't apply to Array data.

Collection and End Collection Tags

All of the report types can use Collection and End Collection items to group
related items.

There are three defined types of collections. application, physicd, and logi-
ca. Vendors can aso define their own collection types. Collections can be
nested. Table 14-2 shows the vaues of the Collection and End Collection
tags and the defined values for the different collection types.

An agpplication collection contains items that have a common purpose or
together carry out a single function. For example, the boot descriptor for a

323

Chapter 14

Table 14-2: Data values for the Collection and End Collection Main Item Tags.

Main Item Type Vaue Description
Collection (Alh) OOh Physical

Olh Application

02h Logical

03h-7Fh Reserved

80h-FFh Vendor-defined
End Collection (COh) None Closes acollection

keyboard groups the keypress and LED data in an application collection. All
reports must be in an gpplication collection

A physicd collection contains items that represent data at a single geometric
point. A device that collects a variety of sensor readings from multiple loca-
tions might group the data for each location in a collection. The boot
descriptor for a mouse groups the button and position indicators in a phys-
cal collection.

A logical collection forms a data structure consisting of items of different
types that are linked by the collection. An example is the contents of a data
buffer and a count of the number of bytes in the buffer.

Each collection begins with a Collection item and ends with an End Collec-
tion item. All Main items between the Collection and End Collection items
are part of the collection. Each collection must have a Usage tag (described
below).

If a report contains an unknown vendor-defined collection type, the host
should ignore al Main items in the collection. If a known collection type
has an unknown Usage, the host should ignore dl items in the collection.

The Global Item Type

Globa items identify reports and describe the data in them, including char-
acteristics such as the datas function, maximum and minimum alowed val
ues, and the size and number of report items. A Globa item tag applies to
every item that follows until the next Global tag. This saves storage space

324

Human Interface Devices: Reports

because there's no need to repeat values that don't change from one item to
the next. There are 12 defined Globa items, shown in Table 14-3.

Identifying the Report

Report ID is a prefix that may precede the report data in a data packet. A
device can support multiple reports of the same type, with each containing
different data and having its own ID. This way, a transfer doesn't have to
include every piece of data every time. However, in many cases the
amplicity of having a single report is more important than the need to
reduce the bandwidth used by reports to the absolute minimum.

In a descriptor, a Report 1D item applies to dl items that follow until a new
Report ID. If there is no Report ID item, the default ID of zero is
assumed. A descriptor should not declare a Report ID of zero. Input,
Output, and Feature reports can share a Report 1D.

If one or more report types has multiple Report 1Ds, every report must
have a declared ID. For example, if an interface supports Report IDs 1 and
2 for Feature reports, any Input or Output reports must also have a Report
ID greater than O.

In a transfer that uses a Set Report or Get_Report request, the host
specifies a report 1D in the Setup transaction, in the low byte of the Vaue
fidd. In an interrupt transfer, if the interface supports more than one
report ID, the report ID should be the first byte sent with a report. If the
interface supports only the default report ID of zero, the report ID should
not be sent with the report in an interrupt transfer.

Under Windows, applications should always precede a report to be sent
withareport ID. If thelD is O, the HID driver doesn't send it on the bus
with the report data. In a smilar way, reports read into an application
aways begin with a report ID. The HID driver inserts an ID of zero
before the report data if necessary.

When a HID supports multiple report IDs for Input reports of different
sizes, Windows HID driver aways uses buffers large enough to hold the
longest report. Shorter reports that are a multiple of the maximum
packet

325

Chapter 14

Table 14-3: There are twelve defined Global items.

Global Item Type Value (nnindicates | Description
the number of bytes
that follow)
Usage Page 000001nn Defines the data's usage or function.
Logical Minimum 0o0dm Smallest value that an item will report.
Logica Maximum {OOOOm Largest value that an item will report.
Physical Minimum [OOIIOInn Thelogical minimum expressed in physica units
Physical Maximum |{OOOOm Thelogica maximum expressedin physica units
Unit exponent OlOI0InNn Base 10 exponent of units.
Unit OlloQInNn Unit values
Report Size OlllOInn Size of an item's fields in hits.
Report ID 100001 Prefix that identifies a report.
Report Count [00I0INN The number of datafields for an item
Push 0100INN Places acopy of theglobal item state table on the
sack.
Pop [0110Inn Replacesthe item state table with the | ast Structure
pushed onto the stack.
Reserved 11000Inn to For future use.
[1110Inn

packet size must terminate with a 0-length data packet to let the host know
that all of the data has been sent.

Windows' HID driver uses interrupt transfers to retrieve Input reports.
When there are multiple Input Report IDs, the driver has no way to request
a specific report. On receiving the IN token packet, the device returns what-
ever report is in its buffer, so the device firmware must decide which report
to make aailable. The HID driver stores the received report and its ID in its
buffer.

Describing the Data's Use

The items that describe how the data will be used are Usage Page, Logical
and Physcad Maximums and Minimums, Unit, and Unit Exponent. All of
these help the recelver of the report to interpret the report's data. All but the
Usage Page are involved with converting raw report data to values with units

326

Human Interface Devices: Reports

atached. These items make it possible for a report to contain data in a com-
pact form, with the receiver of the data having the responsbility of convert-
ing the data to meaningful values. However, the sender of the report data
may instead choose to do some or al of the converting.

Usage Page. An item's Usage is a 32-bit value that describes its function.
The Usage is made up of two 16-hit parts. the Usage Page, which is a Global
item, and the Usage Index, which is a Local item. Multiple items may share
a Usage Page while having different Usage Indexes. After a Usage Page
appears in a report, al Usage Indexes that follow will use that Usage Page
until a new one is declared. Re-using the Usage Page reduces the amount of
data that the descriptor has to store and send.

The HID Usage Tables document lists the defined Usage Pages and their
values and also names the document section or other document that
describes each page and its indexes. There are Usage Pages for many com-
mon device types, including generic desktop controls (mouse, keyboard,
joygtick), digitizer, bar-code scanner, camera control, and various game con-
trols. Specialized devices may not have a defined Usage Page. In this case, a
vendor can define the Usage Page. Vaues from FFOOh to FFFFh are reserved
for vendor-defined Usage Pages.

Logical Minimum and Logical Maximum. The Logicd Minimum and
Maximum define the limits for reported values. The limits are expressed in
"logicd units," which means that they use the same units as the vaues they
describe. For example, if a device reports readings of up to 500 milliamperes
in units of 2 milliamperes, the Logica Maximum is 250.

Negative values may be expressed as two's complements. Bit 7 is a sign bit
that indicates whether the value is positive (0) or negative (1). The vaues 0
to 7Fh are the positive decima values Othrough 127, and FFh to 80h are
the negative decimal values -1 through -128. To find the negative value rep-

327

Chapter 14

resented by a two's complement, complement each bit and add 1 to the
result. Here are some examples.

Negative Value Expressed as a Two's Complement: FFh [FDh [80h
Complement each hit: OOh |02h 7Fh
Add I: Olh |03h 80h
Vaue Expressed as a Negative Number (decimal): -1 |-3 -128

The HID specification says that if both the Logicd Minimum and Maxi-
mum are considered postive, there's no need for a sign bit. For example, a
range from O to 255 can have a Logica Minimum of OOh and a Logica
Maximum of FFh. A device will enumerate and transfer data without prob-
lems whether the Logical Minimum and Maximum are expressed as signed
or unsigned values. The receiver of the data has to know whether or not the
data can be negative.

The HIDView utility (described in Chapter 17) assumes the use of signed
values. With a Logical Minimum of OOh and a Logica Maximum of FFh, it
reports the error, "Logicd Minimum must be less than the Logicd Maxi-
mum." It doesn't report this error with a minimum of 80h (-128) and maxi-
mum of 7F (+127). On the other hand, the HID Descriptor Tool reports an
eror if you use a minimum of 80h and maximum of 7Fh, while it accepts
OOh and FFh.

The Physical Minimum, Physical Maximum, Unit Exponent, and Unit
items define how to convert the reported vaues into more meaningful units.

Physical Minimum and Physical Maximum. The Physical Minimum and
Maximum define the limits for the value when expressed in the units
defined by the Units tag. In the earlier example of vaues of O through 250
in units of 2 milliamperes, the Physcd Minimum is 0 and the Physica
Maximum is 500. The receiving device uses the logical and physicd limit
values to obtain the value in the desired units. In the example, reporting the
data in units of 2 milliamperes means that the value can transfer in a single
byte, with the receiver of the data usng the Physicd Minimum and Maxi-
mum va ues to trandate to milliamperes. The priceisalossin resolution,

328

Human Interface Devices: Reports

compared to reporting 1 bit per milliampere. If the report doesn't specify the
values, they default to the same as the Logica Minimum and Maximum.

Unit Exponent. The Unit Exponent specifies what power of 10 to apply to
the value obtained after using the logical and physica limits to trandate the
value into the desired units. The exponent can range from -8 to +7. A vaue
of 0 causes the value to be multiplied by 10°, or 1, which is the same as
applying no exponent. These are the codes:

Exponent{f0 [1 |2 |3 |4 |5 |6 |7 |-8|-7|-6(-5[-4([-3|-2]|-1
Goe [00[Q|02 |03 [04 [05 [06 [07 [08 [09 [A |08 [OC [OD[CE [oF

For example, if the value obtained is 1234 and the Unit Exponent is OEh,
thefina valueis 12.34.

Unit. The Unit tag specifies what units to apply to the report data after it's
converted using the Physical and Unit Exponent items. The HID specifica
tion defines codes for the kasic units of length, mass, time, temperature, cur-
rent, and luminous intensity. Most other units can be derived from these.

Specifying a Unit value can be more complicated than you might expect.
Table 14-4 shows vaues you can work from. The value can be as long as
four bytes, with each nibble having a defined function. Nibble O (the least
significant nibble) specifies the measurement system, either English or Sl
(International System of Units), and whether the measurement is in linear
or angular units. Each of the nibble positions that follow represents a quality
to be measured, with the vaue of the nibble representing the exponent to
apply to the value. For example, a nibble with a value of 2 means that its
corresponding vaue is in units squared. A nibble with a vaue of ODh, which
represents -3, means that the units are expressed as 1/units’. These expo-
nents are separate from the Unit Exponent value, which is a power of ten
applied to the data, rather than an exponent applied to the units.

Converting Raw Data

To convert raw data to values with units attached, three things must occur.
The firmware's report descriptor must contain the information needed for

329

Chapter 14

Table 14-4: The units to apply to a reported value are a function of the
measuring system and exponent values specified in the Unit item

Nibble Quality Measuring System (Nibble 0 value)
Number Measured None (0) [SI Linear (1)| Sl Rotation |English English
(2) Linear (3) Rotation (4)
1 Length None Centimeters | Radians Inches Degrees
2 Mass None Grams Slugs
3 Time None Seconds
4 Tempera- |None Kelvin Fahrenheit
ture
5 Current None Amperes
6 Luminous [None Candelas
Intensity
7 Reserved [None

the conversion. The sender of the data must send data that matches the
specification in the descriptor. And the receiver of the data must apply the
conversions specified in the descriptor.

Below are examples of descriptors and raw and converted data. Remember
that just because a tag exists in the HID specification doesn't mean you have
to use it. If the application knows what format and units to use for the val-
ues it's going to send or receive, the firmware doesn't have to specify it.

To measure time in seconds, up to a minute, the report descriptor might
include this information:

Logicd Minimum: O

Logicd Maximum: 60

Physicd Minimum: O

Physicd Maximum: 60
Unit: 1003h. Nibble 0 = 3 to sdlect the English Linear measuring

system (though in this case, any value from 1 to 4 would work).
Nibble 3 = 1 to sdect time in seconds.

Unit Exponent: 0

With this information, the receiver knows that the value sent equals a num-

ber of seconds.

330

Human Interface Devices: Reports

Now, what if instead you want to measure time in tenths of seconds, again
up to a minute? You would need to increase the Logica and Physica Maxi-
mums and change the Unit Exponent:

Logicd Minimum: O

Logicd Maximum: 600

Physicd Minimum: O

Physicd Maximum: 600

Unit: 1003h. Nibble 0 = 3 to sdect the English Linear measuring
system. Nibble 3 = 1 to select time in seconds.

Unit Exponent: OFh. This represents an exponent of-1, to indicate
that the value is expressed in tenths of seconds rather than seconds.

Sending values as large as 600 will require 3 bytes, which the firmware spec-
ifies in the Report Size tag.

To send a temperature value using one byte to represent temperatures from -
20 to 110 degrees Fahrenheit, the report descriptor might contain the fol-

lowing:

Logicd Minimum: -128 (80h expressed as a two's complement)

Logicd Maximum: 127 (7Fh)

Physica Minimum: -20 (ECh expressed as a two's complement)
Physca Maximum: 110 (6Eh)

Unit: 10003h. Nibble 0 is 3 to sdect the English Linear measuring

system, though in this case, any value from 1 to 4 is OK. Nibble 4 is
3 to sdect degrees Fahrenheit.

Unit Exponent: O

These values ensure the highest possible resolution, because the transmitted
values can span the full range from 0 to 255.

In this case the logicd and physica limits differ, so converting is required.
To find the resolution, or number of bits per unit, use this equation:

Resol ution = _

(Logi cal _Maxi nrum - Logical _Mninmm / _
((Physi cal _Maxi rum - Physi cal _M ni nun) *
(10 ~ Unit_Exponent))

331

Chapter 14

With the example values, this works out to 1.96 bits per degree, or 0.51
degree per bit.
To convert avaue to the specified units, use this equation:
Vdue =

Value_In_Logical _Units *

((Physi cal _Maxi rum - Physi cal _M ni nunm) *

(10 ~ Unit_Exponent)) / (Logical _Maxi mum

- Logical _M ni mum
If the value in logicd units {he raw data) is 63, the converted value in the
specified unitsis 32 degrees Fahrenheit.

Specifying velocity in centimeters per second requires a Unit value that con-
tains units of both centimeters and seconds. From Table 14-4, the Unit
value to use is 1011h. Nibble 0 = 1 to select the SI measuring system, nibble
1 =1 to select length in centimeters, and nibble 3 = 1 to sdlect time in sec-
onds.

To illustrate how complicated it can get, the Unit vaue for volts is FOD121h,
which indicates the SI Linear measuring system in units of
(cm?)* (gm)/(sec®)* (amp™). However, remember that the Unit value only
specifies the units. All the receiver has to do is identify the Units value and
assign the units to received data; there's no need to do the calculations
implied in the Units value.

Describing the Data's Size and Format
Two Global items describe the size and format of the report data.

Report Size specifies the size in bits of an Input, Output, or Feature item's
fields. Each field contains one piece of data.

Report Count specifies how many fields an Input, Output, or Feature item
contains. For example, for two 8-bit fields, Report Size is 8 and Report
Count is 2. For ten 4hit fields, Report Size is 4 and Report Count is 10. For
one 16-hit field, Report Sizeis 16 and Report Count is 1.

A single Input, Output, or Feature report can have multiple items, each with
its own Report Size and Report Count.

332

Human Interface Devices: Reports

Saving and Restoring Global Items

The find two Globa items enable saving and restoring sets of Globa items.
These dlow flexibility in the report formats while usng minimum storage
space in the device.

Push places a copy of the Globa-item state table on the CPU's stack. The
Global-item state table contains the current settings for all previously
defined Global items.

Pop is the complement to Push. It restores the saved states of the previoudy
pushed Global item States.

The Local Item Type

Locd items define qualities of the knobs, switches, buttons, and other con-
trols that a report returns data for. A Loca item applies to al controls that
follow within the Main item, until a new vaue is assigned. Local items don't
cary over to the next Main item. Each Main item begins fresh, with no
Local items defined.

Local items relate to genera usages, body-part designators, and strings. A
Delimiter item enables grouping sets of Local items. Table 14-5 shows the
values and meaning of each of the items.

Usage. The Local Usage item is the Usage Index that works together with
the Globa Usage Page to describe the function of an item or collection. As
with the Usage Page, the HID Usage Tables document lists many Usage
Indexes. For example, the Buttons Usage Page uses Local Usage Indexes
from 1 to FFFFh to specify individua buttons, with a value of O meaning
no button pressed.

A report may assign one Usage to multiple controls, or it may assign a differ-
ent Usage to each control. If a report item is preceded by a single Usage, that
Usage applies to al of the item's controls. If a report item is preceded by
more than one Usage, and the number of controls equals the number of
Usages, each Usage applies to one control, with the Usages and controls

333

Chapter 14

Table 14-5: There are ten defined Local items.

Locdl Item Type

Vdue (nn indicates the
number of bytes that
fdlow)

Description

Usage 0000 IOnn An index that describes the use for an
item or collection.

Usage Minimum 0001 10nn The starting Usage associated with an
array or bitmap.

Usage Maximum 00dO0m The ending Usage associated with an
array or bitmap.

Designator Index OQllonn Designates the body part used for acon-
trol.

Designator Minimum 0000 The starting Designator associated with
an array or bitmap.

Designator Maximum 010110m The ending Designator associated with an
array or bitmap.

String Index Olllonn Associates a string with an item or con-
trol.

String Minimum (00004 Thefirst string index when assigning a
group of sequential stringsto controlsin
an array or bitmap.

String Maximum 1001I0m Thelast string index when assigning a
group of sequential stringsto controlsin
an array or bitmap.

Ddimiter [0lI0IONN Thebeginning (1) or end (0) of aset of
Local items.

Reserved 101011nnto 11 1110nn | For future use.

pairing up in sequence. In the following example, the report contains two
bytes. The first byte's Usage is X, and the second byte's Usage is Y.

Report Size (8),
Report Count (2),
Usage (X),

Usage (Y),

I nput (Data, Variable,

Absol ut e),

If areport item is preceded by more than one Usage and the number of con-
trols is greater than the number of Usages, each Usage pairs up with one
control, and the find Usage applies to dl of the remaining controls. In the
following example, the report is 16 bytes. Usage X applies to the first byte,

334

Human Interface Devices: Reports

Usage Y applies to the second byte, and a vendor-defined Usage applies to
the third through 16th bytes.

Usage (X)

Usage (Y)

Usage (vendor defined)

Report Count (16),

Report Size (8),

I nput (Data, Variable, Absolute)
Usage Minimum and Maximum. The Usage Minimum and Maximum
can assgn a single Usage to multiple controls. The following example
reports the state (0 or 1) of each of three buttons. The Usage Minimum and
Maximum assign the Button Usage Page to al three items. The item uses
one bit per button.

Logical Mnimum (0)

Logi cal Maximum (1)

Report Count (3)

Report Size (1)

Usage Page (Button Page)

Usage M ninmum (1)

Usage Maxi mum (3)

I nput (Data, Variable, Absol ute)
The Usage Minimum and Maximum can also assign a single Usage to a
series of array items.

Designator Index. For items with a Physical descriptor, the Designator
Index specifies the body part the control uses.

Designator Minimum and Maximum. When a report contains multiple
controls with the same Designator, the Designator Minimum and Maxi-
mum can specify which controls the Usage applies to.

String Index. An item or control can include a string index to associate a
string with that item or control. The strings are stored in the same format
described in Chapter 5 for product, manufacturer, and serial-number
strings.

String Minimum and Maximum. When a report contains multiple con-
trols with the same String Index, the String Minimum and Maximum can
specify which controls the Usage applies to.

335

Chapter 14

Delimiter. The Delimiter defines the beginning (1) or end (0) of a loca
item. A delimited loca item may contain aternate usages for a control. This
enables different applications to define a device's controls in different ways.
For example, abutton may have a generic use (Button 1) and a specific use
(Send, Quit, etc.).

Physical Descriptors

A physical descriptor describes the part or parts of the body intended to acti-
vate a control. For example, each finger might have its own assigned contrdl.

A physicd descriptor is a type of class descriptor. The host can retrieve a
physica descriptor by sending a Get_Descriptor request with 23h in the
high byte of the Value field and OOh in the low byte of the Vaue field.

Physical descriptors are optional. For most devices, they either don't apply at
al or the information they could provide has no practica use. The HID
specification has more information on how to use physical descriptors, for
those devices that need them.

Padding

To pad a descriptor so it contains a multiple of eight bits, the descriptor may
include a Main item with no assigned Usage. The following example
describes an Input report that transfers three bits with data and five bits of
padding:

Report Count (3)

Report Size (1)

Usage Page (Button Page)

Usage M nimum (1)

Usage Maxi mum (3)

I nput (Data, Variable, Absolute)
Report Size (5),

Input (Constant)

336

Human Interface Devices: Host Application Primer

15

Human Interface
Devices.
Host Application Primer

Chapter 13 and Chapter 14 described humantinterface-device communica
tions from the device's perspective and the report format that HIDs use to
exchange data with the host. This chapter introduces the Windows func-
tions that applications can use to communicate with HIDs. Applications
may use any programming language that can cal APl functions. Chapter 16
has example code in Visua Basic and Visua C++. Much of the information
in this chapter applies to communicating with any USB device, not just
HIDs.

337

Chapter 15

Host Communications Overview

Windows 98 and Windows 2000 include everything applications need to
communicate with HID-class devices. There's no need to install drivers
because Windows has them built in.

How the Host Finds a Device

Communicating with a HID isn't as smple as opening a port, setting a few
parameters, and then reading and writing data, as you can do with RS-232
and paralel ports. Before an application can exchange data with a HID, it
has to identify the device and get information about its reports. To do this,
the application has to jump through a few hoops by caling a series of AP
functions. The application first finds out what HIDs are attached to the sys-
tem. It then examines information about each until it finds one with the
desired attributes. For a custom device, the application can search for spe-
cific Vendor and Product 1Ds. Or the application can search for a device of a
particular type, such as a mouse or joystick.

After finding a device, the application can exchange information with it by
sending and receving reports.

Table 151 lists APl functions used in establishing communications and
exchanging data with a HID. The functions are listed in a typica order that
an gpplication might cdl them.

338

Human Interface Devices: Host Application Primer

Table 15-1: Communicating with HIDs uses a variety of API functions. These are
the major functions used in identifying a HID and sending and receiving reports.

API Function DLL Purpose

HidD_GaHidGud hid.dll Obtain the GUID for the HID class

SaupDiGaClasDevs setupapi.dil Return adeviceinformation set contain-
ing al of the devicesin a specified class.

SetupDiEnumDevicelnterfaces | setupapi.dll Return information about adevicein the
device information set.

SetupDiGetDevicel nterfaceDetail | setupapi.dil Return a device pathname.

SetupDiDestroyDevicelnfoList |setupapi.dil lgee resources used by SetupDiGetClass-

evs

Cregterle kernd 32.dlI Open communications with a device.

HidD GaAttributes hid.dll ReturnaVendor ID, Product ID, and
Veasgon Numbe.

HidD_GetPreparsedData hid.dll Return ahandle to abuffer with informa-

N tion about the device's capabilities

HidP_GaCaps hid.dll Return a structure describing the device's
capabilities.

HidD_FresPreparssiData hid.dl Free resources used by
HidD_GetPreparsedData.

WhiteHle kerne 32.dlI Send an Output report to the device.

ReadHle kernel 32.dll Read an Input report from the device.

HidD SaFedure hid.dll Send a Feature report to the device.

HidD_GafFedure hid.dll Read a Feature report from the device.

ClosHarde kerne 32.dlI Free resources used by CreateFile.

Documentation

The functions are in three DLLs whose documentation is spread among sev-
egd areas in the Windows DDK documentation and the MSDN library.
These are DLLs that contain functions used in HID communications:

FHleare |Type of Functions Included

hid.dll HID communications.

setupapi.dil | Finding and identifying devices
kernel32.dIl | Exchanging data, other general functions

339

Chapter 15

The functions that relate only to HID communications are in hid.dll and
are documented in the DDK, under Kernel-Mode Drivers > Driversfor Input
Devices. Functions related to detecting devices are in setupapi.dil and are
documented in the DDK under Setup, Plug & Play, and Power Management
> Device Installation Functions and aso in the Platform SDK under Device
Management Functions. These functions apply to al Plug-and-Play devices,
including USB devices. Functions relating to opening communications,
reading Input reports, and writing Output reports are in kernel32.dll and are
documented in the MSDN library, in the Platform SDK under File 1/O.
Many other devices also use these functions.

Windows 98 SE added seven HID functions to those supported by Win-
dows 98 Gold. Windows 2000 and Windows Me support the new functions
as wel. The Windows 2000 DDK documentation includes the added func-
tions; the Windows 98 DDK doesnt.

The HID Functions

Hid.dll supports many more functions than the essentids ligted in Table
15-1. The following three tables together comprise a complete list of the
HID functions grouped by purpose. Functions whose names begin with
HidP are avalable to both applications and device drivers. Functions
whaose names begin with HidD are available only to applications.

Table 15-2 ligs functions that gpplications use to learn about a HID.
Table 15-3 ligs functions that goplications use in reading and writing
reports. Table 15-4 ligs functions that gpplications use in configuring the
input buffer to receive reports. The documentation aso names three func-
tions for future use HidD_GetConfiguration, HidD_SetConfiguration,
and HidP_TrandatelUsagesT ol 8042ScanCodes.

You can use these functions with just about any HID-class device,
induding cusom designs. Windows 2000 doesnt dlow applications to
use the functions to access the system keyboard or mouse, but applica
tions don't normally need to do so because the operating system provides
other ways to communicate with the keyboard and mouse.

340

Human Interface Devices: Host Application Primer

Table 15-2: Applications can use these functions in hid.dll to learn about a

device.

Function

Purpose

HidD_GetAttributes

Retrievesthe HID's Vendor ID, Product ID, and Version
Number.

HidD_FreePreparsedData

Frees resources used by HidD_GetPreparsedData.

HidD_GetHidGuid

Obtains the GUID for the HID class.

HidD_GetlndexedString*

Retrieves astring identified by an index.

HidD_GetManufacturerString*

Retrieves the string that identifies the device manufacturer.

HidD_GetPhysical Descriptor*

Retrieves the string that identifies the physical device.

HidD_GetPreparsedData

Retrieves a handle to a buffer with information about the
device's capabilities.

HidD_GetProductString*

Retrieves the string that identifies the product.

HidD_GetSerialNumberString *

Retrieves the string containing the device's serial number.

HidP_GetButtonCaps

Retrieves the capabilities of all buttonsin areport.

HidP_GetCaps

Retrieves a pointer to a structure describing the device's
capabilities.

HidP_GetLinkCollectionNodes

Retrieves an array of structures that describes the relation-
ship of link collections within atop-level collection.

HidP_GetSpecificButtonCaps

Retrieves the capabilities of buttonsin areport. The request
can specify a Usage Page, Usage, or Link Collection.

HidP_GetSpecificVaueCaps

Retrieves the capabilities of valuesin areport. The request
can specify a Usage Page, Usage, or Link Collection.

HidP_GetVaueCaps

Retrieves the capabilities of all valuesin areport.

HidP_MaxUsagel istLength

Retrieves the maximum number of buttons that areport can
return. Can specify a Usage Page.

HidP_UsageL istDifference

Compares two button lists and find the buttons that are set
inonelist and not in the other.

*not supported under Windows 98 Gold.

DirectX

An alternative to using API functions for accessing HIDs is to use
Microsoft's DirectX components. DirectX enables control of system hard-
ware, including HIDs. DirectX originated as a tool for game programmers
with agoad of providing fast access to hardware. Instead of having to poll an

341

Chapter 15

Table 15-3: Applications can use these functions in hid.dll to read and write

reports.

Function Purpose
HidD_GetFeature Retrieves a Feature report.
HidD_SetFeature Sends a Feature report.

HidP_GetButtons

Returns apointer to abuffer containing the Usage of each
button that is pressed. Can specify a Usage Page.

HidP_GetButtonsEx

Returns a pointer to abuffer containing the Usageand
Usage Page of each button that is pressed.

HidP_GetScaledUsageVaue

Returnsthe signed result of ava ue that has been adjusted
for its scaling factor.

HidP GaUseVdue

Returns a pointer to a vaue.

HidP_GetUsageValueArray

Returns data for aUsage that contains multiple dataitems.

HidP_SetButtons

Sets button data.

HidP_SetScaledUsage Vaue Takesasigned, physical (scaled) number, convertsit tothe
logical representation used by the device, andinsertsitina
report.

HidP_ SaUsgevdue Setsavaue.

HidP_SetUsageVaueArray

Sets data for a Usage that contains multiple data items.

input buffer with ReadFile, you can configure the DirectX software compo-
nents to notify an application when data is available to read.

The Directlnput components of DirectX enable communications with
HIDs under C++, Delphi, or Visual Basic. The DirectX SDK has examples
in Visua C++ and Visuad Basic. The samples are oriented towards commu-
nicating with standard device types. The documentation suggests that you
can use DirectX to communicate with any HID, but provides few details on

how to do so.

Using API Functions

The examples in this chapter use Microsoft's Visua Basic and Visuad C++.
As explained in Chapter 10, an APl function is a part of Windows Applica-
tion Programmer's Interface, which contains thousands of functions that
applications can use to communicate with the operating system. The execut-

342

Human Interface Devices: Host Application Primer

Table 15-4: Applications can use these functions in hid.dll to control the driver's
input buffer for reading reports.

Function Purpose
HidD_HushQuee* Empty the input buffer.

HidD_GetNuminputBuffers* Retrievesthe size of thering buffer the driver yses to store
input reports. The default is 8.

HidD_SetNumlnputBuffers* Setsthe size of thering buffer the driver uses to store input
- reports.

*Not supported under Windows 98 Gold.

able code for the functions resides in dynamic linked library (DLL) files pro-
vided with Windows.

Before getting into the details of the functions themselves, I'll present some
background on how to call API functions from Visual Basic and Visua C++
applications. If you're aready familiar with using APl calls, or if you want to
get right to the HID-specific functions, you can skip over the these intro-
ductory sections. I'll begin with Visual C++.

Using Visual C++

To use an AP function, a Visud C++ agpplication needs three things. the
ability to locate the file containing the function's compiled code, a function
declaration, and a call that causes the function to execute.

Applications that access HIDs will cal functions contained in hid.dll and
setupapi.dil. Each of the DLLs has two companion files, a library file (hid.lib
and setupapi.lib) and one or more header files (hidpi.h, hidsdi.h, hidusage.h,
and setupapi.h). The header file contains the prototypes, structures, and
symbols for the functions that gpplications may cdl, and the library file
diminates the need for the application to get a pointer to the function in the
DLL.

A DLL contains compiled code for the functions that it exports, or makes
available to applications. For each exported function, the DLL's library file
contains a stub function whose name and arguments match the name and
arguments of one d the DLL's functions. The stub function calls its corre-
sponding function in the DLL. During the compile process, the linker

343

Chapter 15

incorporates the code in the library file into the applications executable file.
When the agpplication calls a function in the library file, the function of the
same name in the DLL executes.

The hid.dll and setupapi.dll files are included with Windows. They're typi-
caly stored in the windows\system or windows\system32\drivers folder. (In
Windows 2000, substitute winnt for windows.) Both are standard locations
that Windows searches when DLL functions are caled. The library and
header files are included in the DDK.

The header files for other common Windows functions are included auto-

matically when you create a project. For example, afxwin.h adds headers for
common Windows and MFC functions.

Toinclude a API function in an application, you need to do the following:

1 Add thelibrary files to the project. In Visual C++, click Project > Settings
> Link > Category: Input. In the Object/library modules box enter hid.lib
and setupapi. lib. In the same window, if necessary, you can enter a path for
the library files under Additional library path.

2. Include the header files in one of the applications files. Here's an example:

extern "C' {
#i ncl ude "hidsdi.h"
#i ncl ude <setupapi. h>

}
The #include directive causes the contents of the named file to be
included in the file, the same as if they were copied and pasted into it:

The extern "C" modifier enables a C++ module to include header files
that use C naming conventions. The difference is that C++ uses name deco-
ration, or name mangling, on externa symbols. The punctuation around
the file name determines where the compiler will search for the file, and in
what order. Thisis relevant if you have different versions of a file in multiple
locations!

Enclosing the file name in brackets (<setupapi .h>) causes the compiler to
search for the file first in the path specified by the compiler's // option, then
in the paths specified by the Include environment variable. Enclosing the

344

Human Interface Devices: Host Application Primer

file name in quotes ("hidsdi .h") causes the compiler to search for the file
first in the same directory as the file containing the #nclude directive,
then in the directories of any files that contain # include directives for that
file, then in the path specified by the compiler's // option, and findly in the
paths specified by the Include environment variable.

3. Cdl the function. Here is code that declares the variable HidGuid and
passes a pointer to it in the function HidD_GetHidGuid in hid.dll:

GUD H dauid;
H dD_Get Hi dGui d(&Hi dGui d);

Using Visual Basic

In Visual Basic, the process of caling APl functions is different than in
Visual C++. In place of an include file, the application needs a module con-
taining VisualBasic declarations for the DLL's functions and structures.
Some of these, but not al, are provided with Visua Basic. You dont need
library files, as Visual Basic requires only the DLL's name and the DLL itself
in astandard or specified location.

You can write a lot of Visua-Basic applications without ever coding an AP
cal. Visud Basic provides its own syntax and controls for performing com-
mon functions. For example, to print a file, you can use Visua BasiC's
Printer Object instead of API functions. The Printer Object provides an eas-
ier and more fail-safe way to access printers. When you run the application,
the code that executes may call APl functions, but Visua-Basic program:
mers are insulated from having to make the calls directly.

But sometimes you may want to do something that Visua Basic doesn't sup-
port explicitly. In these cases, which can include communicating with
HIDs, Visual-Basic applications can call API functions.

In a Visual-Basic agpplication, the code to call an APl function follows the
same syntax rules as the code to cal any function. But instead of placing the
function's executable code in a routine within the application, the API func-
tion requires only a declaration that enables Windows to find the DLL con-
taining the function's code.

345

Chapter 15

Cdling API functions in Visua Basic requires some extra knowledge. The
documentation included with Visua Basic doesn't offer much guidance.
Microsoft's documentation for the API functions uses C syntax to show how
to declare and call the functions. The DDK includes the declarations in
header files that Visud C++ programmers can include in applications. To
use an API function in Visua Basic, you need to trandate the declaraion
and function cal from C to Visua Basic.

The process is more complicated than a ssmple word-for-word trandation,
mainly because Visual Basic doesn't support al of C's structures, and it
stores string variables in a different format. Before you can trandate, you
need to understand exactly what the function is passing and returning. Even
if you have an example to work from, understanding what the function is
doing helpsin using it correctly.

For greater detail on APl cals in Visua Basic, | recommend Dan Apple-
man's books, especialy Dan Appleman’'s Win32 API Puzzle Book and Tutorial
for Visual Basic Programmers. Thisisthe book | used as areferencein figur-
ing out how to call the API functions in this chapter.

To use an API function in a Visuad Basic program, you need three things.
the DLL containing the function, a declaration that enables the application
to find and use the function, and a call that causes the function to execute.

The Declaration

This is a Visua-Basic declaration for the API function WriteFile, which you
can use to write datato a HID (as well asto files and other devices):

Public Declare Function WiteFile Lib
"kernel 32" (ByVal hFle As Long, ByRef
| pBuffer As Byte, ByVal
nNunber O Byt esToWite As Long, ByRef
| pNurber G Byt esWitten As Long, ByVal
| pOrer| apped As Long)

As Long

The declaration includes severa pieces of information;
The function's name (WriteFile).

346

Human Interface Devices: Host Application Primer

» The vaues the function will passto the operating system (hFile, IpBuffer,
NNumberOfBytesToWrite, IpNumberOfBytesWritten, and IpOver-
lapped). The names use the convention of adding a prefix to indicate the
type of data the variable contains. h=handle, |p=long pointer, and so on.

» The data types of the values passed (Long, Byte).

* Whether the values will be passed by value (ByVal) or by reference
(ByRef).

» The name of the file that contains the executable code for the function
(kernel32.dll).

» The datatype of the value returned for the function (Long). A few API
cals have no return value and may be declared as subroutines rather than
functions.

The declaration must be in the Declarations section of a module. You might
want to place the declarations for APl functions and the user-defined types
they pass in a gparate module (a .bas file) in your project. This will make
them easy to add to multiple projects.

Visual Basic's documentation includes the file wn32api.txt, which contains
declarations for many API cals. You can add this file as a module in your
project, or you can cut and paste the declarations you need into another
module in the project. However, the file doesn't include every API cal, espe-
cialy newer ones like those that relate to HID communications.

To declare a function not included in win32api.txt, the sarting point is
Microsoft's documentation, which includes a declaration in C, comments,
and sometimes an example. You can aso find C declarations in the header
files included in the DDKs. Sometimes these header files have useful com-
ments as well. The header files are text files that you can view in any word
processor.

347

Chapter 15

These are header files that have HID-related declarations:

File Name| Contents
hid.h HID user-mode declarations and functions
hidpi.h Public interface to the HID parsing library

hidsdi.h |Public definitionsfor the code that implementsthe HID
DLL

hidusage.h{ HID usages
setupapi.h| Setup services

Sometimes the function's documentation names the header file. If not, a
quick way to find it is to use the Find > Files or Folders utility available from
Windows Sart menu. In the Named text box, enter *.h, and in the Containing
Text text box, enter the name of the function whose declaration you want
to find. Be sure that Include Subfolders is checked, and Et Windows go to
work finding the file for you.

In some cases, the trandation from C to Visua-Basic syntax is fairly straight-
forward. In others, the C parameters don't correspond in a simple way to the
aternativesin Visual Basic.

These are some generd guiddlines for creating Visual-Basic declarations:

Variable Types

C and Visua Basic each use different terms to specify variable types, and C
supports more variable types than Visua Basic. However, to specify a vari-
able type for an API call, al you really have to do is determine the variable's

348

Human Interface Devices: Host Application Primer

length, then use a Visua-Basic type that matches. These are some of the C
types and their Visual-Basic equivaents:

CType Visua-Basic Type
CHAR Byte

USHORT Integer

USAGE

ULONG HWND Long

BOOLEAN DWORD

LP_ (long pointer prefix)

P (long pointer prefix)

PCTSTR String

To avoid problems that can result from passing the wrong variable type, an
API declaration should declare variables as specific types if possible. In some
cases, an application may use a variable in multiple ways, each requiring a
different type. There are two ways to handle this. You can create multiple
declarations, using the Alias keyword to give each a different name, or you
can declare the variable As Any and specify the variable type in the func-
tion cal.

ByRefand ByVal

For each variable, you have a choice of passing it by reference (ByRef) or by
value (ByVal). These parameters have the same meanings as when you use
them in the functions and subroutines you write in Visua-Basic applica
tions. Often ether will work. But the concept is important to understand
when calling APl functions, because many of the functions have variables
that must be passed a specific way.

ByRef and ByVal determine what information the call passes to enable the
function to access the variable. Every variable has an address in memory
where its value is stored. When an application passes a variable to a func-
tion, it can pass the variables address or the vaue itsdf. The information is
passed by placing it on the stack, which is a temporary storage location used
(among other things) to pass values to functions.

349

Chapter 15

Passing a variable ByRef means that the function call places the address of
the variable on the stack. If the function changes the value by writing a new
value to the address, the new value will be available to the caling application
because the new vaue will be stored at the address where the application
expects to find it. The address passed is called a pointer, because it points to,
or indicates, the address where the value is stored.

Passing a variable ByVa means that the function call places the vaue of the
variable on the stack. The value at the variable's origina address in memory
is unchanged. If the function changes the value, the calling application won't
know about it because the function has no way to pass the new value back to
the application.

Passing ByRe€f is the default, but you can include the ByRef parameter in
declarations if you wish. This way, you can quickly see if you've forgotten to
assign the parameter to a value. If the declaration doesn't include ByVa or
ByRef, you can specify either when you call the function.

For dl variable types except strings, there are two situations where you must
pass a variable ByRef:

» The cdled function changes the value and the calling application needs
to use the new value. Passing ByRef enables the calling application to
access the new value.

* Thevariableis auser-defined type. You can't pass user-defined types
ByVad in Visua Basc.

String variables are a specia case. Visual Basic uses aformat called BSTR for
storing strings in memory. The BSTR format differs from the format
expected by API cals. In memory, a BSTR string consists of four bytes con-
taining the string's length in bytes followed by the string's characters in Uni-
code (2 bytes per character). In contrast, most Windows 98 API functions
expect a string to consist of a series of ANSI character codes (1 byte per
character), followed by a null (0) termination. Windows 2000 supports two
versons of most functions, one that uses Windows 98's ANSl format and
one that uses Unicode characters followed by anull termination.

350

Human Interface Devices: Host Application Primer

Fortunately, there is a solution that doesn't require the application code to
trandate between formats. If the string is declared ByVa, Visua Basic cre-
ates a copy of the string in ANSI format and passes a pointer to the string.
In other words, declaring a Visua-Basic string ByVal actualy causes the
string to be passed ByRef in the expected format. If the function will change
the contents of the string, the application should initidize the string to be at
least as long as the longest expected returned string.

For various reasons, some structures can't be passed either ByRef or ByVal.
In these cases, there is an alternate way. It requires creating a byte array equal
to the structure's size, then using Visua Basic's undocumented VarPtr opera-
tor to pass the byte array's address ByVa. When the function returns, the

application can copy the data from the byte array into a structure, which is a
user-defined variable type.

Passing Nulls

When an optional parameter is a pointer, a function may accept a null vaue
(zero) to indicate that the function cdl isn't using the pointer.

For example, CreateFile includes a parameter that points to a security-
attributes structure. The parameter is declared ByRef:
ByRef | pSecurityAttributes As SECURI TY_ATTRI BUTES

If the call isn't using security attributes, the application should pass zero. But
if you pass avaue of zero ByRef, the function actually passes the address of a
memory location that contains zero. Windows 98 handles the cal without
error, but Windows 2000 returns Invalid access to memory location.

In Visuad C++, the solution is to pass a NULL constant. In Visua Basic,
declare the parameter ByVal asal.ong:

ByVal IpSecurityAttributes As Long
Then pass avalue of 0 in the function call.

If a parameter is declared As Any and you want to pass a Long, use atrailing
& (for example, 0 &) to ensure that the value is passed as a Long.

351

Chapter 15

Functions and Subroutines

Most API routines are functions, which have a return value that the declara-
tion must also specify. A few are subroutines, with no return value. You can
declare these as subroutines, or as functions with the returned value ignored.

Providing the DLL's Name

Each declaration must also name the file that contains the function's execut-
able code. The file is a DLL. When the application runs, Windows loads the
named DLLs into memory (unless they're already |oaded).

In most cases, the declaration only has to include the file name and not the
location. The DLLs used for HID communications are ncluded with Win-
dows. When the first HID enumerates on the system, the DLLs are stored
in standard locations (such as \windows\system) that the operating system
searches automatically. The operating system also searches the application's
working directory for a DLL. In the Visua-Basic environment, the working
directory is Visual Basic's directory, not your application's directory. If you
use a DLL that isn't stored in a standard Windows directory or the applica
tions working directory, the declaration must specify the location.

For some system files, such as kernel32, the .dil extension is optiond in the
declaration.

Strings

As mentioned earlier, Windows 98 and Windows 2000 differ in how they
store strings. Windows 98 stores each character as an 8-bit ANS code, while
Windows 2000 stores each character as a 16-bit Unicode. To handle the dif-
ference, there are two versions of API calls that pass string variables. The
8-bit verson ends in A (ANSI), and the 16-bit verson ends in W(wide). For
example, there is a SetupDiGetClassDevsA function and a SetupDiGet-
ClassDevsW function.

Both Windows 98 and Windows 2000 support the ANSlI versions. Win-
dows 98 supports very few Unicode functions. Windows 2000 uses Unicode
internally, but can convert to and from ANSI as needed.

352

Human Interface Devices: Host Application Primer

Structures

Some of the API functions used in HID applications pass and return struc-
tures, which contain multiple items that may be of different types. The doc-
umentation for the API functions ncludes documentation for the structures
used by the cals. The header files contain declarations for the structures in
C syntax.

Here again, Visua Basic uses different syntax and trandating is required. In
Visua Basic, you can declare structures as user-defined types. Some of the
structures trandate in a straightforward way. For example, the Visua-Basic
declaration for the HIDD_ATTRIBUTES structure consists of Long and
Integer variables that trandate directly from the USHORT and ULONG
typesin the C declaration:
Public Type HI DD_ATTRI BUTES

Size As Long

Vendor | D As | nteger

Product| D As | nteger

Ver si onNunber As | nt eger
End Type

Y ou can then declare a variable of the user-defined type:
Di m Devi ceAttri butes As HI DD _ATTRI BUTES
Before passing the structure in an API call, the Size property must be set to
the size of the structure in bytes. The LenB operator will do this:
DeviceAttributes.Size = LenB(DeviceAttributes) The
HidD_GetAttributes API function can then pass the structure ByRef: "

Publ i c Declare Function Hi dD GetAttributes
Lib "hid.dlI"
(ByVval HidDeviceObject As Long, ByRef
Attributes As HI DD_ATTRI BUTES)

As Long

When an application calls the function, the function can change the values
in the structure, and the application will see the new values.

353

Chapter 15

Calling a Function

After the code has declared a function and any user-defined types it passes,
the application may call the function.

Hereisacall to the HidD_GetAttributes function declared above:

DmResult as Long Result =

HdD GetAttributes (H dDevice,

Devi ceAttri but es)
HidDevice is a Long vaue returned by a previous APl cal. Result is
non-zero on success. DeviceAttributes is a structure containing the Vendor
ID, Product ID, and product version number retrieved from the device dur-
ing enumeration.

Two Useful Routines

In addition to the basic APl functions for USB communications, there are a
couple of other API functions that I've found useful in HID and other
applications. One copies data in memory, and the other returns text describ-
ing the last error detected by the operating system.

Moving Data in Memory

The API function RtIMoveMemory transfers a series of bytes from one loca
tion in memory to another. This function is useful for copying raw data
between byte arrays and structures. This is the declaration:
Publ i c Decl are Function Rt | MveMenory
Li b "ker nel 32"
(dest As Any,
src As Any,
ByVal Gount As Long)
As Long
Rather than declaring the data address's (src) and destination (dest) as spe-
cific types, the values are declared As Any to dlow flexibility in usng the
function. Count is the number of bytes to copy.

354

Human Interface Devices: Host Application Primer

Here RtIMoveMemory copies four bytes from a structure into a byte array
whose address will be passed in a call to the SetupDiGetDevicelnterfaceDe-
tail function.

Call Rtl MoveMenory
(Det ai |l Dat aBuffer(0) ,
MyDevi cel nt er faceDet ai | Dat a,
4)

Viewing Errors

The second useful function is FormatMessage, which returns text describing
the last error that Windows detected.

Thisis the function's declaration:

Publ i ¢ Decl are Function Fornat Message
Li b "kernel 32"
Al i as "For mat MessageA"
(Byval dwFl ags As Long,
ByRef | pSource As Any,
ByVal dw\essageld As Long,
ByVal dwiLanguageld As Long,
Byval | pBuffer As String,
ByVal nSize As Long,
ByVal Arguments As Long)

As Long

The function aso uses the following system constant:
Publ i ¢ Const FORMAT_MESSAGE_FROM SYSTEM = &H1000

| use FormatMessage in a Visual-Basic function that returns the string con-
taining the error message. During debugging, | cal the function after mak-
ing an API call and display the error, either in a list box or using a
debug.print statement in the immediate window. This code is adapted from
an example in Dan Appleman's Win32 API Puzzle Book:

Private Function GetErrorString

(Byval LastError As Long) As
String

"Returns the error nmessage for the |ast error

Di m Bytes As Long

355

Chapter 15

DmErrorString As String
BrorSring = Sring$(129, 0)
Byt es = Fornmat Message

(FORMAT_MESSAGE_FROM SYSTEM

0&,
Last Error,

Q
BrorSring$,

128,
0

"Subtract two characters fromthe nessage to
"stripthe Rand LF. If Bytes > 2 Then

GtErorSring = Left$(ErorSring, Bytes - 2)
End I f

End Functi on

Device Attachment and Removal

Other capabilities an application might want are detecting when a device is
attached or removed from the bus and controlling whether or not an
attached device is enabled. Windows provides ways to do this.

USBView

One way to search for a device is to search a list of every attached device.
The Windows DDK includes C source code for the USBView application
(Figure 15-1), which displays in tree form al hosts, hubs, and devices
attached to the hubs. You can aso view each device's descriptors. The code
uses DeviceloControl functions to retrieve the information. For a
Visua-Basic application that does the same thing, | recommend the Displ-
ayUSB example in John Hyde's book, USB Design by Example, which, by the
way, is an excellent companion to this book.

356

Human Interface Devices: Host Application Primer

b Loenpada
B ke BEE1) EE T oo LB L it ot Ol
=1 Fupnst-ui

I i} Dbt cC o LIRS Hisrmn it [lirias
L
s [Ponl] DevioeCarancies: el prpose LSS Hb
[Pant] M CedoaConnactad
[Part] Damawl o . USE Composte Denecd
[Farit] o Cmiost sonechd
[Pard] H s snnecmd
WFont] DamdceCenneoed . BO 04000
- FPort] Hallmarmorreded
" [Poend] Mol miicaln nncied

Figure 15-1: The USBView utility in the Windows DDK displays all hosts, hubs,
and device attached to hubs.

Searching for a Device

To find out if a specific device is attached, an application can search using
the Plug and Play/Device Management functions listed in Table 15-1 and
described in greater detail in the next chapter. Searching can aso reved if a
previoudly attached device has been removed. An application will aso learn
that a device is removed when it attempts to communicate and receives the
error invalid handle.

Device Notification

Another way to learn of newly attached or removed devices uses Windows
RegisterDeviceNatification function. In caling the function, an application
can pass a pointer to a structure containing the GUID of a device interface
to monitor and a handle to awindow to receive the event notifications.

357

Chapter 15

When a device with a matching interface is attached or removed, the win-
dow receives a message such as DBT_DEVICE ARRIVAL or
DBT_DEVICE_REMOVE_COMPLETE with a pointer to a structure
that identifies the device. Attachment or remova of a device also resultsin a
DBT_DEVNODES CHANGED message that indicates that an event of
some type has occurred. Another way to detect a specific device's arrival or
removal is to investigate further on receiving a
DBT_DEVNODES _CHANGED message. To find out whether a device
has been removed, attempt to open a handle to it. To search for newly
attached devices, use the Plug-and-Play functions.

A cdl to UnRegisterDeviceNotification causes the notifications to cease. A
Windows 2000 application should call this function before closing. Because
of buggy behavior, Windows 98 applications shouldn't use UnRegisterDevi-
ceNotification.

Enabling and Disabling Devices

The Windows 2000 DDK documents Setup functions that can enable or
disable a device in software.

The CM_Request_Device Eject function prepares a device for safe removal
and physicaly gects media that are gectable. The SetupDiChangeState
function can disable a device or load drivers for and start a device.

358

Human Interface Devices: Host Application Example

16

Human Interface
Devices:
Host Application
Example

With the previous chapters information about reports and how to cal AP
functions, we're now ready to communicate with a HID. In this chapter, |
present code that applications can use to communicate with HID-class
devices. The examples are in both Visua-Basic and Visual C++. Headings

identify text that is specific to a language. Much of the information applies
to communications with any USB device.

359

Chapter 16

Finding a Device

The first task is to find the device you want to communicate with. This
involves examining properties of the HIDs availlable on a system and look-
ing for a match, either in Vendor and Product I1Ds or in device capabilities.
A series of API calswill accomplish this. The process uses many of the same
Setup functions you would use to locate other USB devices.

Obtain the GUID for the HID Class

Before an application can communicate with a HID, it must obtain the glo-
baly unique identifier (GUID) for the HID class. Chapter 10 introduced
the GUID, which is a 128-bit value that uniquely identifies an object. In
this case, the object is the HID class. The GUID vaue is included in the file
hidclass.h, so0 in theory you could hard-code it into the application. But you
can aso abtain the GUID by using an APl function that reads the value
from the system. Doing it this way, you'll be sure to have the correct value in
the expected format.

The API call to retrieve the GUID for the HID class is HidD_GetHidGuid.
The application doesn't have to do anything with the GUID itsdf. It just
passes the GUID's address to other API functions.

Visual C++
Thisisthe function's declaration:

VOID
Hi dD_Get Hi dGui d(

OUT LPGUID H dGuid);
Thisis the code to cal the function:

H dD_Get H dGui d(&Hi dGui d);

Visual Basic
Thisis the function's declaration:

Public Declare Sub Hi dD_Get Hi dGuid
Lib "hid.dlI"

360

Human Interface Devices: Host Application Example

(ByRef HidGuid As GUI D)

This routine has no return value, so it can be declared as a subroutine, as
above. Or you can declare it as a function, with a return value of type Long,
and ignore the returned value:

Publ i ¢ Declare Function Hi dD_Get Hi dGui d

Lib "hid.dlI"
(ByRef HidGuid As GUID) as
Long
The GUID is returned in the variable HidGuid, which has the following
user-defined type:

Public Type GU D
Datal As Long
Dat a2 As | nteger
Dat a3 As | nteger
Datad(7) As Byte
End Type
HidGuid is declared byRef because Visua Basic requires user-defined types

to be passed byRef.
The call to get the GUID is.
Cal | Hi dD_Get Hi dGui d(Hi dGuid) o

Dim Result as Long
Result = Hi dD_Get Hi dGui d(Hi dGui d)

Get an Array of Structures with Information about the HIDs

The GUID enables the application to get information about a system's
HIDs. The functions to do this are Windows Device Management Func-
tions. There are two sets of essentialy identical documentation for these in
the Windows DDK documentation and in the Platform SDK in the
MSDN documentation.

The SetupDiGetClassDevs function returns the address of an array of struc-
tures containing information about al attached and enumerated HIDs.

361

Chapter 16

Visual C++
Thisis the functions declaration:

HDEVI NFO
Set upDi Get Cl assDevs(
IN LPGQUID ClassGuid, OPTIONAL
IN PCTSTR Enunerator, OPTI ONAL
IN HWAND hwndParent, OPTI ONAL
IN DAVORD Fl ags);

Thisisthe code to call the function:

hDevl nf o=Set upDi Get Cl assDevs (&H dQuid,
NULL, NULL,
DI GCF_PRESENT| DI GCF_| NTERFACEDEVI CE) ;

Visual Basic
Thisis the function's declaration:

Publ i c Decl are Function SetupDi Get Cl assDevs
Lib "setupapi.dlI"
Alias "SetupDi Get Cl assDevsA"
(ByRef ClassGuid As GUI D,
ByVal Enumerator As String,
ByVal hwndParent As Long,
ByVal Flags As Long)
As Long

Thisisthe code to call the function:

Publ i ¢ Const DI GCF_PRESENT = &H2
Publ i ¢ Const DI GCF_DEVI CElI NTERFACE = &H10

hDevl nfo = Set upbDi Get Cl assDevs (H dQuid,
vbNul I String, O (DI GCF PRESENT O DI GCF
DEVI CEl NTERFACE))

362

Human Interface Devices: Host Application Example

Details

ClassGuid is HidGuid, the vaue returned in the last cdl. Enumerator and
hwndParent are unused. The flags are two system constants defined in the
file setupapi.h.

The flags tell the function to look only for device interfaces that are cur-
rently present (attached and enumerated) and that are members of the HID
class, as specified in the ClassGuid parameter.

The vaue returned, hDevinfo, is the address of an array of structures con-
taining information about al attached and enumerated HIDs. Again, there's
no need to access the individua elements in the collection. You need the
value only so you can passit on in the next API cal.

When the application is finished using the array pointed to by hDevinfo, it
should free the resources used by calling the API function SetupDiDestroy-
DevicelnfoList, as described later in this chapter.

Identify Each HID Interface

The next cdl is to SetupDiEnumDevicelnterfaces, which retrieves a pointer
to a structure that identifies an interface in the previoudy retrieved Device-
InfoSet array. Each call must specify one interface by passing an array index.
To retrieve information about al of the interfaces, an gpplication can use a
loop to step through the array, incrementing the array index until the func-
tion returns zero, indicating that there are no more interfaces. The GetLas
tError API call will then return No more data is available.

How do you know if an interface is the one you're looking for? You don',
yet. The application needs more information before it can decide if it wants
to use an interface. If the function returns multiple interfaces, the applica
tion will need to investigate each in turn, until it either finds what it's look-
ing for or determines that the desired interface isn't present.

Again, the use for any returned pointers is to pass them on to the next func-
tion so we can learn more about the interfaces.

363

Chapter 16

Visual C++
Thisisthe function's declaration:

BOOLEAN
Set upDi EnunmDevi cel nterfaces(
I N HDEVI NFO Devi cel nf oSet,
I N PSP_DEVI NFO DATA DevicelnfoData, OPTI ONAL
IN LPGQUID InterfaceClassG@iid, | N DWORD
Menmber | ndex,
OUT PSP_DEVI CE_| NTERFACE_DATA

Devi cel nterfaceData);
This is the declaration for Devicel nterfaceData's type:

typedef struct _SP_DEVI CE_| NTERFACE DATA ({
DWORD chSi ze;
GUID InterfaceC assGui d;
DWORD FI ags;
ULONG _PTR Reserved; }
SP_DEVI CE_| NTERFACE_DATA, *
PSP_DEVI CE_| NTERFACE DATA

And thisis the code to call the function:

devl nf oDat a. cbSi ze = si zeof (devl nf oDat a) ;
Resul t =Set upDi EnunDevi cel nterfaces

(hDevl nf o,

0,

&Hi dGui d,

Member | ndex,

&devl nf oDat a) ;

Visual Basic
This is the functions declaration:

Publ i c Decl are Function SetupD EnunmDevi cel nterfaces
Lib "setupapi.dlIl"
(ByVal Devicel nfoSet As Long,
ByVal Devicel nfoData As Long,
ByRef InterfaceCl assGuid As GUI D,
ByVal Menberl ndex As Long,
ByRef Devicel nterfaceData
As SP_DEVI CE_| NTERFACE_DATA)
As Long

364

Human Interface Devices: Host Application Example

DevicelnterfaceData is a user-defined type:

Publ i ¢ Type SP_DEVI CE_| NTERFACE_DATA
cbSi ze As Long
Interfaced ass@iid As GJD
Fl ags As Long
Reserved As Long
End Type

Thisisthe code to call the function:

Result as Long

D m Menber | ndex as Long

D m MyDevi cel nterfacebData As SP_DEVI CE | NTERFACE DATA
"Sore the size of the structure

M/Devi cel nt erfaceDat a. cbSi ze =

LenB(M/Devi cel nterfaceData) Result =

Set upD Enuntevi cel nt er f aces

(Devi cel nf 0Set

D m

H da@ui d,
Menier | ndex,
MyDevi cel nt er f aceDat a)

Details

The parameter cbSize is the size of the SP_DEVICE_INTERFACE_DATA
structure in bytes. Before calling SetupDiEnumDevicelnterfaces, the size
must be stored in the structure that the function will pass. Use the sizeof
operator in Visua C++ or the LenB operator in Visua Basic to retrieve the
size, which is 28 bytes. 4 for each Long and 16 for the GUID, which con-
tains one Long (4 bytes), two Integers (4 bytes), and eight Bytes. The other
valuesin the structure should be zero.

Two of the values passed to this function are values returned previoudy:
HidGuid and DevicelnfoSet. DevicelnfoData is an optional pointer to an
SP_DEVINFO_DATA structure that limits the search to interfaces of a par-
ticular device. Memberindex is the index of the DevicelnfoSet array. MyDe-
vicelnterfaceData is the returned structure that identifies an interface of the
requested type, which in this caseisaHID.

365

Chapter 16

Get the Device Pathname

The next APl call, SetupDiGetDevicelnterfaceDetail, returns yet another
structure. This time the structure relates to a device interface identified in
the previous call. The structure's DevicePath member is a device pathname
that the application can use to open communications with the device.

Before caling this function for the first time, theré's no way to know the
vaue of DevicelnterfaceDetailDataSize, which must contain the size in
bytes of the DevicelnterfaceDetailData structure. Yet the call won't return
the structure unless it has this information. The solution is to cal the func-
tion twice. The first time, GetLastError will return the error The data area
passed to a system call is too small, but the RequiredSize parameter will con-
tain the correct value for DevicelnterfaceDetailDataSize. The second time,
you pess the returned value and the function succeeds.

Visual C++
Thisis the function's declaration:

BOOLEAN
Set upDi Get Devi cel nterfaceDet ai | (
I N HDEVI NFO Devi cel nf oSet,
I N PSP_DEVI CE_| NTERFACE_DATA Devi cel nterfaceDat a,
OUT PSP_DEVI CE_| NTERFACE DETAI L__DATA
Devi cel nterfaceDetail Data, OPTI ONAL | N DWORD
Devi cel nterfaceDet ai | Dat aSi ze, OUT PDWORD
Requi redSi ze, OPTI ONAL OUT PSP_DEVI NFO DATA
Devi cel nfoData OPTI ONAL

Thisis the declaration for Devicea nterfaceDetail Data's structure:

typedef struct _SP DEVI CE | NTERFACE DETAI L_DATA {
DWORD cbSi ze;
TCHAR Devi cePat h[ANYSI ZE_ARRAY] ; }

SP_DEVI CE_| NTERFACE_DETAI L_DATA, *

PSP_DEVI CE_| NTERFACE_DETAI L_DATA,;

This is the code to call the function twice, first to get the structure's size, and
second to get a pointer to the structure:
/1l Get the Length val ue.

366

Human Interface Devices: Host Application Example

[l The call will return with a "buffer too small™"
/1 error which can be ignored.
Result = SetupDi Get Devi cel nterfaceDet ai l

(hDevl nf o,

kdevl nf oDat a,

NULL,

0,

&Lengt h,

NULL) ;

/1 Al'locate menory for the hDevinfo structure,
/1 using the returned Length. detail Data =
(PSP_DEVI CE_| NTERFACE_DETAI L_DATA) mal | oc(Lengt h);

/] Set cbSize in the detail Data structure.
detail Data -> cbSize =
si zeof (SP_DEVI CE_| NTERFACE_DETAI L_DATA) ;

/1 Call the function again, this time passing it the
/1 returned buffer size.
Result = SetupDi Get Devi cel nterfaceDet ai |

(hDevl nf o,

&devl nf oDat a,

det ai | Dat a,

Lengt h,

&Requi r ed,

NULL) ;

Visual Basic
The functions declaration is:

Publ i c Decl are Function
Set upDi Get Devi cel nterfaceDet ai l
Lib "setupapi.dll"
Alias "SetupDi Get Devi cel nterfaceDetail A"
(Byval Devicel nfoSet As Long, ByRef
Devi cel nt er f aceDat a
As SP_DEVI CE_| NTERFACE_DATA, ByVal
Devi cel nterfaceDetail Data As Long, ByVal
Devi cel nterfaceDet ai | Dat aSi ze As Long, ByRef
Requi redSi ze As Long, ByVal Devicel nfoData As
Long)

367

Chapter 16

As Long The structure returned in DevicelnterfaceDetailDatais a
user-defined type:

Publ i ¢ Type SP_DEVI CE_| NTERFACE_DETAI L_DATA
cbSi ze As Long
Devi cePath As Byte
End Type
Because of the different string formats used by Visua Basic and C, you can't
pass this structure in the usua way, using ByRef to pass the structures
address. But there is a way around the problem. The first step is to alocate a
buffer in memory to hold the structure. Then you can use the VarPtr opera
tor to get the starting address of the buffer, and pass the address ByVal.
When the function returns, you can copy the data in the buffer into a Devi-
celnterfaceDetail Data structure, or just extract the data of interest, whichis
the device pathname.

Thisisthe code for the first cal:

D m Needed as Long
Result = SetupD Get Devi cel nterfaceDetail
(Devi cel nfoSet, _
My/Devi cel nt er f aceDat a,
0
0, _
Needed,
0
DevicelnfoSet and MyDevicelnterfaceData are structures returned by previ-
ous calls. After caling this function, Needed contains the buffer size to pass

in the next call.
Before calling the function again, we need to take care of afew things.

The DetailData variable to be passed in the next cal is set to equa the value
returned in Needed:

D m Detail Data as Long
Det ai | Dat a = Needed
D m Detail DataBuffer() as Byte

The size of the structure to be returned is stored in its cbSize parameter:

"Sore the structure's size.

368

Human Interface Devices: Host Application Example

MyDevi cel nterfaceDet ai | Dat a. cbSi ze =
Len(MyDevi cel nterfaceDet ai | Dat a}

Because were going to pass only the address of a byte array for the returned

structure, we need to allocate enough memory in the array to hold the struc-
ture:

ReDi m Det ai | Dat aBuf f er (Needed)

The first four bytes of the byte array hold the array's size, which can be cop-
ied from the cbSize property in the MyDevice nterfaceDetail Data structure:

Call RtlI MoveMenory
(Detail DataBuffer(0),
MyDevi cel nt er f aceDet ai | Dat a,
4

Now we're ready to call SetupDiGetDevicelnterfaceDetail again:

"Call SetupDi GetDevicel nterfaceDetail again. 'This
time, pass the address 'of the first elenent of
Detai | DataBuffer 'and the returned required buffer
size in DetailData. Result =
Set upDi Get Devi cel nterfaceDet ai l

(Devi cel nf oSet

MyDevi cel nt er f aceDat a,

Var Pt r (Det ai | Dat aBuffer(0O)),

Det ai | Dat a,

Needed,

0
VarPtr(Detail DataBuffer(0)) is the starting address of the byte array that will

contain the MyDevicelnterfaceDetailData structure. DetailData holds the
size returned by the previous call.

The item of interest in the returned structure is the device pathname to be
used in additiona API calls. To extract the pathname from the byte array,
convert the byte array to a string, convert the result to Unicode for compati-
bility with Visua Basic, and strip the cbSize characters from the beginning
of the string.

"Convert the byte array to a string.

Devi cePat hNane = CStr(Detai |l DataBuffer())

" Convert to Unicode.

Devi cePat hName = Str Conv(Devi cePat hNanme, vbUni code)

369

Chapter 16

"Srip cbSze (4 characters) fromthe begi nni ng.
Devi cePat hNane =

Ri ght $(Devi cePat hNarre, Len(Devi cePat hNane) - 4)

Get a Handle for the Device

Now that we have a device pathname, we're ready to open communications
with the device itself. The firs step is the al-purpose function CreateFile,
which can open a handle to a file or any device whose driver supports Cre-
ateFile. Devices with HID interfaces are among these.

On success, the value returned by CreateFile is a handle that other API func-
tions can use to exchange data with the device.

Visual C++
Thisis the function's declaration:
HAN\CLE Great eF | g(

)

LPCTSTR | pH | eNang,

DAORD dwDesi r edAccess,

D/NRD dwshar eMbde,

LPSECURI TY_ATTRI BUTES | pSecurityAttributes,
D/RD dwCr eat i onDi sposi ti on,

D/RD dwH agsAndAt tri but es,

HANDLE hTenpl ateFile

Thisis the code to cal the function:

Devi ceHandl e=CreateFil e

(det ai | Dat a- >Devi cePat h,

GENERI C_READ| GENERI C_WRI TE,

FI LE_SHARE_READ| FI LE_SHARE_WRI TE,
(LPSECURI TY_ATTRI BUTES) NULL,
OPEN_EXI STING, 0, NULL);

Visual Basic

Thisis the function's declaration:

Public Declare Function QeateFle _

Li b "kernel s2" _

370

Human Interface Devices: Host Application Example

Alias "CreateFi |l eA" _ (ByVal

| pFil eName As String, _ Byva

dwDesi redAccess As Long, _ ByVal

dwshar eMbde As Long, _ ByVval

| pSecurityAttri butes _

As SECURI TY_ATTRI BUTES, _ ByVal
dwCr eat i onDi sposition As Long, _ ByVal
dwFl agsAndAttri butes As Long, _ ByVal
hTenpl ateFile As Long) _ As Long

And thisis the code to call the function:

D m H dDevi ce As Long
H dDevice = QeateFle _
(Devi cePat hNane,
GENERI C_READ Or GENERI C_WRI TE, _
(FI LE_SHARE_READ Or FI LE_SHARE WRI TE),
Security, _
OPEN_EXI STI NG,
0,
0
The function passes a pointer to the DevicePathName string returned in the
previous cal. The parameter is declared as a String to be passed ByVd,
because of Visua Basic's different string format, as explained earlier. Security
is a structure of type SECURITY_ATTRIBUTES with IpSecurityDescrip-
tor=0, binheritHandle=True, and nLength=Len(Security), The constants
passed by the call are defined in severd locations, including winnt.h and
wdm.h, and must be declared in a declarations section of a module in the
Visual-Basic application:
Publ ic Const GENERI C_READ = &HB0000000 Public
Gonst GANER C VR TE = � Publ i ¢ Const
FI LE_ SHARE READ = &H1 Public Const

FI LE_ SHARE WRI TE = &2 Public Const
OPEN_EXI STING = 3

Details

When the application no longer needs to access the device, it should free
system resources by calling the CloseHandle API function, as described later
in this chapter.

371

Chapter 16

Read the Vendor and Product IDs

One way to identify whether or not a device is the one you want is to get its
Vendor and Product IDs and compare them with the IDs for the product
you're looking for. This is the way to find custom devices that don't fit stan-
dard usages. For other devices, this information may not be important, and
if not, you can skip this step.

The API function HidD_GetAttributes retrieves a pointer to a structure
containing the Vendor and Product I1Ds and the product's version number.

Visual C++
Thisisthe function's declaration:

BOOLEAN
Hi dD _Get Attri but es(
I N HANDLE Hi dDevi ceObj ect,
OUT PHI DD _ATTRI BUTES Attri butes
|
The HIDD_ATTRIBUTES structure contains the information about the
device

typedef struct _HI DD _ATTRI BUTES {
ULONG Si ze;
USHORT Vendor | D;
USHORT Product | D;
USHORT Ver si onNumber; }
HI DD_ATTRI BUTES, *PHI DD_ATTRI BUTES;

This is the code to retrieve the structure:

/1 Set the Size nenber to the nunber of bytes //
in the structure.
Attributes . S ze = sizeof (Attributes) ;
Result = HidD GetAttributes
(Devi ceHandl e,
&Attri butes);

Visual Basic
Thisis the declaration for the function:
Public Declare Function Hi dD GetAttri butes

372

Human Interface Devices: Host Application Example

Lib "hid.d1"
(ByVal H dDevi ce(pj ect As Long, ByRef
Attributes As H DD ATTRI BUTES) As Long
The HIDD _ATTRIBUTES dructure contains the information about the
device:

Public Type H DD _ATTRI BUTES
S ze As Long
Vendor | D As | nt eger
Product I D As | nteger
\er si onNunber As | nt eger
End Type

Thisis the code to retrieve the structure:

D m DeviceAttributes As H DD ATTRI BUTES
"Set the Size property to the nunber of bytes
"in the structure.
Devi ceAttri butes. Si ze = LenB(Devi ceAttri butes)
Result = H dD GetAttributes

(H dDevi ce,

DeviceAttributes)

Details

The HidDeviceObject parameter is the handle returned by CreateFile. If the
function returns a non-zero vaue, the DeviceAttributes sructure filled
without error.

The application can then compare the retrieved values with the desired Ven
dor and Product 1Ds and version number.

If it isn't a match, the gpplication should use the CloseHandle API cal to
close the handle to the interface. The application can then move on to test
the next HID detected by SetupDiEnumDevicelnterfaces. When the appli-
cation is finished examining the HIDs, it should free the resources reserved
by SetupDiGetClassDevs by calling SetupDiDestroyDevicelnfoList.

373

Chapter 16

Get a Pointer to a Buffer with Device Capabilities

Another way to find out more about a device is to examine its capabilities.
You can do this for a device whose Vendor and Product IDs matched the

values you were looking for, or you can examine the capabilities for an
unknown device.

The first task is to get a pointer to a buffer with information about the
device's capabilities. The API call to do thisis HidD_GetPreparsedData.

Visual C++
Thisis the function's declaration:

BOOLEAN
Hi dD_Cet Pr epar sedDat a(
I N HANDLE Hi dDevi ceObj ect,
OUT PHI DP_PREPARSED DATA *Prepar sedDat a
)
Thisis the code to call the function:

PH CP_PREPARSED DATA Preparsedbata , -
H dD_Cet Prepar sedDat a

(Devi ceHandl e,

& epar sedlat a) ;

Visual Basic

Thisis the function's declaration:

Publ i c Decl are Function Hi dD_Get Prepar sedDat a
Lib"hid.dI"
(ByVval HidDeviceObject As Long,

ByRef PreparsedData As Long) As
Long

Thisisthe code to call the function:

Result = Hi dD_Get Prepar sedDat a
(H dlevi ce, PreparsedDat a)

HidDeviceObject is the handle returned by CreateFile. PreparsedData is a
pointer to the buffer containing the data. The application doesn't need to

374

Human Interface Devices: Host Application Example

access the data in the buffer; it just needs to pass its starting address to
another API function.

When the application no longer needs to access the PreparsedData, it should
free system resources by calling HidD_FreePreparsedD ata, as described later
in this chapter.

Get the Device's Capabilities

The HidP_GetCaps function returns a structure that contains information
about the device's capabilities. The structure contains the device's Usage,
Usage Page, report lengths, and the number of button capabilities, vaue
capabilities, and data indices for Input, Output, and Feature reports, as
stored in the device's firmware. If you didn't use the Vendor and Product 1Ds
to identify the device, the capabilities information can help you decide if
you want to continue communicating with the device. Even if you know
that you have the device you're looking for, the report lengths and other
information are useful in determining what kinds of data you can transfer.
Not every item in the structure appliesto al devices.

Visual C++
Thisis the function's declaration:

NTSTATUS
Hi dP_Get Caps(
I N PHI DP_PREPARSED DATA Prepar sedDat a,
OUT PHI DP_CAPS Capabilities

This is the declaration for the HIDP_CAPS structure:

typedef struct _H DP_CAPS { USAGE
Usage; USAGE UsagePage ; USHORT
| nput Report Byt eLength ; USHORT
Qut put Report Byt eLength ; USHORT
Feat ur eReport Byt eLength ;

USHORT Nunber Li nkCol | ecti onNodes ;
USHORT Nunber | nput Butt onCaps ;

375

Chapter 16

USHORT Number | nput Val ueCaps
USHORT Number Qut put But t onCaps
USHORT Number Qut put Val ueCaps
USHORT Number Feat ur eBut t onCaps ;
USHORT Number Feat ur eVal ueCaps ; }
HI DP_CAPS, *PHI DP_CAPS ;

Thisisthe code to call the function:

Hi dP_GCet Caps
(PreparsedDat a,
&Capabilities);

Visual Basic
Thisisthe declaration for the function:

Publ i ¢ Decl are Function Hi dP_Get Caps

Lib "hid.dlI"
(ByVval PreparsedData As Long,
ByRef Capabilities As H DP_CAPS) As

The information is returned in aHIDP_CAPS structure:

Public Type H DP_CAPS Usage As | nteger

UsagePage As | nteger

I nput Report Byt eLength As | nteger
Qut put Report Byt eLengt h As | nt eger
Feat ur eReport Byt eLength As | nteger
Reserved(16) As I|nteger

Nunber Li nkCol | ecti onNodes As | nt eger
Nurber | nput But t onCaps As | nt eger
Nunmber | nput Val ueCaps As | nt eger
Nurber | nput Dat al ndi ces As | nt eger
Nunber Qut put Butt onCaps As | nt eger
Nunmber Qut put Val ueCaps As | nt eger
Nurber Qut put Dat al ndi ces As | nt eger
Nurmber Feat ur eBut t onCaps As | nt eger
Nurmber Feat ur eVal ueCaps As | nt eger
Nurmber Feat ur eDat al ndi ces As | nt eger

End Type

Thisisthe code to call the function:

Result = Hi dP_Get Caps

376

Human Interface Devices: Host Application Example

(Prepar sedDat a,
Capabilities)

Details

PreparsedData is the pointer returned by HidD_GetPreparsedData. When
the function returns, you can examine and use whatever values are of inter-
es in the Capabilities structure. For example, if you're looking for a mouse,
you can look for a Usage Page of Olh and a Usage of 02h.

The report lengths are useful for setting buffer sizes for sending and receiv-
ing reports.

An application designed for use with a custom device may aready know
what it needs to know about the device's capabilities. In this case, if the
application identifies the device by its Vendor and Product IDs, it can skip
examining the capabilities because it has no need for the information.

Get the Capabilities of the Values

The device capabilities aren't al that an application can retrieve from the
device. It can aso get the capabilities of each value and button in a report.

HidP_GetValueCaps returns a pointer to an array of structures containing
information about each vaue in a report. The NumberlnputVaueCaps
property of the HIDP_CAPS structure is the number of vaues in the inter-
face.

The items in the structure include many familiar values from the device's
report descriptor, as described in Chapter 14. The items include the Report
ID, whether a value is absolute or relative, whether it has a null state, and
logical and physica minimums and maximums A LinkCollection identifier
distinguishes between controls with the same Usage and Usage Page in the
same collection.

In a smilar way, the HidP_GetButtonCaps function can retrieve informa-
tion about a report's buttons. The information is stored in a
HidP_ButtonCaps structure.

If the application has no use for this information, it doesn't have to retrieve
it.

377

Chapter 16

Reading and Writing Data

All of the previous APl cadls are concerned with finding a device that
matches what the application is looking for. When this is accomplished, the
gpplication and a device are finaly ready to exchange data in reports.

There are four API calls for exchanging report data, depending on the report
type. The USB request type that the host uses aso varies with the report
type and in one case on the operating system and the supported endpoints:

Report Type |API Function USB Transfer Type |When Used
Input ReadFile Interrupt IN Always
Output WriteFile Control Transfer Under Windows 98 Gold or
with Set_Report when the HID interface has no
interrupt OUT endpoint
Interrupt OUT Under Windows 98 SE and later if
the HID interface has an interrupt
OUT endpoint
Feature IN HidD_GetFeature |Control Transfer Always
with Get_Report
Feature OUT |HidD_SetFeature |Control Transfer Always
with Set_Report

Sending an Output Report to the Device

An application can send an Output report when it has a handle to the HID
interface and knows the number of bytes in the report. To write data, the
gpplication copies the data to send to a buffer and cals WriteFile. The
buffer size should equal the size reported in the OutputReportBytel ength
property of the HIDP_CAPS structure returned by HidP_GetCaps. This
size equds the report size in bytes plus one byte for the Report ID, which is
the first byte in the buffer.

Like CreateFile, WriteFile is a generic APl call that can be used with afile or
any device whose driver supports the function.

As Chapter 13 explained, the type of transfer the HID driver uses to send
the Output report depends on the edition of Windows and whether the
HID interface has an interrupt OUT endpoint. The application doesn't

378

Human Interface Devices: Host Application Example

have to know or care which transfer type the driver uses, because it's handled
a alower level.

Visual C++
Thisisthe function's declaration:

BOOL WiteFil e(

HANDLE hFi | e,

LPCVA D | pBuffer,

DWORD nNumnber Of Byt esToW i t e,
LPDWORD | pNurber OF Byt esWi tten,
LPOVERLAPPED | pOver | apped);

This the code to call the function:

/1l The report's data can reside in a byte array.
/1l The array's size = report length in bytes + 1.
CHAR Qut put Report [3] ;
/1l The first byte in the buffer containing the report
/1 is the Report ID.
Qut put Report [0] =0;
/1 (The application should fill the follow ng bytes
/1 with the report's data.)
Result = WiteFile

(Devi ceHandl e,

Qut put Report,

Capabi lities. Qut put Report Byt eLengt h,

&Byt esWitten,

NULL) ;

Visual Basic
Thisisthe function's declaration:

Public Declare Function WiteFile Lib
"kernel 32" (ByVal hFile As Long, ByRef
| pBuffer As Byte, ByVal
nNurmber Of Byt esToWite As Long, ByRef
| pNunber Of BytesWitten As Long, ByVval
| pOver | apped As Long)

As Long

379

Chapter 16

The data to send is in a Byte array that contains the Report ID in the first
byte, followed by the report data. This code creates and fills a SendBuffer
Byte array:

Di m SendBuffer() As Byte
' The SendBuffer array begins at O,
'so subtract 1 from Qutput Report Byt elLengt h.
ReDi m SendBuf f er
(Capabilities.Qutput ReportBytelLength - 1)
"The first byte is the Report ID
SendBuffer(0) = 0 ' The next bytes are data.
" This exanple copies the data from an Qut put Report Dat a
"Byte array filled earlier by the application. For
Count =
1 To Capabilities.CQutputReportByteLength - 1
SendBuf f er (Count) = CQut put Report Dat a(Count - 1)
Next Count

Thisisthe code to cdl WriteFile to send areport to the device:

Di m Nunber Of Byt esWitten As Long
Nunber Of BytesWitten = 0 Result =
WiteFile
(H dDevi ce,
SendBuffer (0O,
CLng(Capabilities. Qutput Report Byt elLength),
Nunber Of Byt esWi tten,

0
SendBuffer(O) is the first element in a Byte array containing the Report 1D
and report data. The parameter is passed ByRef to cause the function to pass
the byte's address. CLng(Capabilities.OutputReportBytel_ength) is the size
of the output report returned by HidP_GetCaps, converted to a Long to
match the declaration.

Details

The hFile parameter is the handle returned by CreateFile. The IpNumber-
OfBytesWritten parameter returns the number of bytes the function success-
fully wrote to the device. If the Result value returned by the function is
non-zero, the function succeeded.

380

Human Interface Devices: Host Application Example

If the interface supports only the default Report ID of O, the Report ID
doesn't transmit on the bus, but it must be present in the buffer the applica-
tion passes to WriteFile.

Probably the most common error returned by WriteFile in HID communi-
cations is CRC Error. This error indicates that the host controller attempted
to send the report, but didn't receive an expected response from the device.
In spite of the error message, the problem isn't likely to be due to an error
detected in a CRC calculation. The error is more likely to be due to a firm+
ware problem that is keeping the device from responding in the expected

way.

Reading an Input Report from the Device

The complement to WriteFile is ReadFile. When the application has a han
dle to the HID interface and knows the number of bytesin the device's
Input report, the application can use ReadFile to read an Input report from
adevice.

Like CreateFile and WriteFile, ReadFile is a generic API call that can be used
with afile or any device whose driver supports the function.

To read a report, the application declares a buffer to hold the data and calls
ReadFile. The buffer size should equal the size reported in the InputReport-
ByteLength property of the HIDP_CAPS structure returned by
HidP_GetCaps.

Visual C++
Thisisthe function's declaration:

BOOL ReadFi | e(
HANDLE hFil e,
LPVA D | pBuffer,
DWORD nNunber Of Byt esToRead,
LPDWORD | pNumber Of Byt esRead,
LPOVERLAPPED | pQver | apped

)

Thisisthe codeto call the function:
Result = ReadFile

381

Chapter 16

(ReadHandl e,

| nput Report,

Capabi lities. | nput ReportBytelLength,
&Byt esRead,

NULL) ;

Visual Basic
Thisisthe function's declaration:

Public Declare Function ReadFile Lib
"kernel 32" (ByVal hFile As Long, ByRef
| pBuf fer As Byte, ByVal
nNunber Of Byt esToRead As Long, ByRef
| pNunmber Of Byt esRead As Long, ByVal
| pOver |l apped As Long)

As Long

The data read is in a Byte array that contains the report ID in the first byte
and the report data in the following bytes. This code creates and fills a Read

Buffer Byte array:

Di m Nunber Of Byt esRead As Long
"Allocate a buffer for the report.
Di m ReadBuffer() As Byte Dim
Nunber Of Byt esRead As Long

' The ReadBuffer array begins at O,
'so subtract 1 fromthe nunber of bytes to read.

ReDi m ReadBuf f er
(Capabilities.|nputReportByteLength - 1)
Thisis the code to cal the function:

Result = ReadFile
(H dDevi ce,

ReadBuffer (O,
CLng(Capabilities.|nput ReportBytelLength),

Nunber O Byt esRead, 0

ReadBuffer(O) is the first dement in the Byte array that will contain the
report. The parameter is passed ByRef, so the function passes the address of

the byte. CLng(Capabilities.InputReportBytelength) is the size of the input

382

Human Interface Devices: Host Application Example

report returned by HidP_GetCaps, converted to a Long to match the decla-
ration. NumberOfBytesRead will return the number of bytes the function
successfully read from the device.

Details

The hFile parameter is the handle returned by CreateFile. If the Result value
returned is non-zero, the function was successful. Byte 0 of the read buffer
contains the report ID, and the following bytes contain the report data read
from the device. If the interface supports only one Report ID, the ID doesn't
transmit on the bus, but it is aways present in the buffer returned by Read
File

A cdl to ReadFile doesn't initiate traffic on the bus. It just retrieves a report
that the host previoudy requested in one of its periodic interrupt IN trans-
fers, or if there are no unread reports, waits for the next scheduled transfer to
complete. The host begins requesting reports after enumeration, when the
HID driver is loaded. The driver stores the reports in a ring buffer. When
the buffer is full and a new report arrives, the oldest report is overwritten. A
call to ReadFile reads the oldest report in the buffer. Under Windows 98 SE
and later, the default buffer size is eight reports, and an application can set
the buffer size with the HidD_SetNuminputBuffers function.

If the application doesn't request reports as frequently as they're sent, some
will be lost. If you need to be absolutely sure not to lose a report, use Feature
reports instead. Also see the tips in Chapter 4 about performing time-critical
transfers

The Idle rate determines whether or not the device sends a report if its data
hasn't changed since the last transfer. During enumeration, Windows HID
driver attempts to set the Idle rate to O, which means that the HID won't
send a report unless the report data has changed. There is no API call that
enables applications to change the Idle rate. To pevent setting an Idle rate
of 0, the HID can return a Stall to the Set_Idle request. This informs the
hogt that the request isn't supported. Not al chips have hardware support
for the Idle rate, though support can be implemented with a timer in firm-
ware. Chapter 13 has more on the Idle rate.

383

Chapter 16

If Set_Idle isn't supported and the application wants to retrieve a report once
and only once, the firmware can be programmed to send a report only once.
After sending a report, the firmware can configure the endpoint to return
NAK in response to IN token packets. When the device has a new report to
send, the firmware can configure the endpoint to send the data. Otherwise,
the device will continue to send the same report every time the host polls the
endpoint, and the application is likedy to read the same report multiple
times.

Reading Reports without Blocking the Thread

There is one caution about using ReadFile to retrieve HID reports. ReadFile
is blocking cal. If an application cals ReadFile when the read buffer is
empty, the application's thread will hang until a report is available, or the
user closes the application with Control-Alt-Delete or removes the device
from the bus. There are three ways to prevent this from happening: be sure
the device aways has data to send, use overlapped ReadFiles with timeouts,
or call the ReadFilesin their own program thread.

To ensure that the device aways has data to send, you can write the firm-
ware so0 that the IN endpoint is aways enabled and ready to respond to a
request for data. If there is no new data to send, the device can send the
same data as last time, or it can return a vendor-defined code that indicates
that there is nothing new to report. Another approach requires cooperation
from the gpplication that accesses the device. Before each ReadFile, the
application can call WriteFile to send a report. The report can contain a venr
dor-defined item that tells the firmware to get ready to send data Then
when the application cdls ReadFile, the device's endpoint is enabled, with
data ready to transmit. These solutions aren't ideal, but they're workable.

A more elegant solution is to use ReadFiles overlapped option. In an over-
lapped read, the ReadFile returns immediately, even if the data isn't ready,
and the application can then use the WaitForSingleObject API function to
retrieve the data. The advantage of WaitForSingleObject is the ability to set
atimeout. If the data hasn't arrived when the timeout period has elapsed, the
function returns a code to indicate this and the application can use the Can

384

Human Interface Devices: Host Application Example

cello function to cancel the read operation. This approach works well if
reports are normally available without delay, but the application needs to
regain control if for some reason there is no report.

To use overlapped 1/0, CreateFile must pass an overlapped structure in the
dwFlagsAndAttributes parameter. The application aso calls the CreateEvent
function to create an event object that will be set to the signaled state when
the ReadFile operation completes. When the application calls ReadFile, it
passes a pointer to an overlapped structure whose hEvent parameter is a han
dle to the event object. The agpplication then cals WaitForSingleObject,
again passng the event handle dong with a timeout vaue in milliseconds.
The function returns when the read operation is complete or a timeout has
occurred.

Visual C++
Thisisthe code for doing an overlapped ReadFile:

/1 Declare an overl apped structure.
OVERLAPPED HI DOver | apped;

/1l Create an event object to signal conpletion
/1 of a ReadFile. hEvent Object = CreateEvent
(NULL,
TRE
TRE

/1 Assign values to the nenbers of the overl apped
/1l structure.

H DOrer | apped. hEvent = hEvent (bj ect ;

H DOver| apped. O f set = O;

H DOver| apped. O f set H gh = 0;

/!l btain a handle wth HALE FLAG OVERLAPPED
ReadHandl e=CreateFi | e
(det ai | Dat a- >Devi cePat h,
GENERI C_READ GENERI C_WRI TE,
FI LE_SHARE_READ FI LE_SHARE_WRI TE,
NULL,
OPEN_EXI STI NG,

385

Chapter 16

FI LE_FLAG_OVERLAPPED,
NULL) ;

/!l Read a report, passing a pointer to the
/'l overlapped structure. Result = ReadFile
(ReadHand! e,
| nput Report,
Capabilities. | nput ReportBytelLengt h,
&Byt esRead,
(LPOVERLAPPED) &HI DOver | apped);

/1 Wait for the ReadFile to complete or a timeout.
Result = Wit For Si ngl eObj ect

(hEvent (pj ect

5000) ;

Visual Basic
These are the declarations required to do an overlapped ReadFile:

Publ i c Type OVERLAPPED
Internal As Long
I nternal H gh As Long
Offset As Long
O fset High As Long
hEvent As Long

End Type

Publ i ¢ Const FILE_FLAG OVERLAPPED = &H40000000

Public Decl are Function CreateEvent
Li b "kernel 32"
Alias "CreateEvent A" (ByVal
SecurityAttributes As Long,
ByVal bManual Reset As Long,
ByVal blnitial State As Long,
ByVal | pNanme As String)

As Long

Publ i c Decl are Functi on ReadFil e

Lib "kernel 32" (ByVal hFile As
Long, ByRef |pBuffer As Byte,

386

Human Interface Devices: Host Application Example

ByVal nNunber Of Byt esToRead As Long,
ByRef | pNunber Of Byt esRead As Long,

ByRef | pOverl apped As OVERLAPPED)
As Long

Publ i ¢ Declare Function Wit ForSi ngl eObj ect
Lib "kernel 32" (ByVal hHandl e As Long,
ByVal dwM || iseconds As Long)

As Long
This the code to do an overlapped ReadFile:

Di m Event Obj ect As Long
Di m HI DOver | apped As OVERLAPPED

"Create an event object to signal conpletion
"of a ReadFile. Event(Object = CreateEvent
(08,
Tr ue,
Tr ue,

")

"Assign values to the nenbers of the overl apped
"structure.

H DOver| apped. Offset = 0

H DOver| apped. O fsetH gh = 0

H DOver | apped. hEvent = BEvent (bj ect

"otain a handl e using H LE ALAG OVER.APPED
ReadHandl e = GreateFi |l e

(Devi cePat hNane,

GENERI C_READ Or GENERI C_WRI TE,

(FI LE_SHARE_READ Or FI LE_SHARE_WRI TE),

0,

OPEN_EXI STI NG,

FI LE_FLAG_OVERLAPPED,

0

"Read a report, passing a pointer to the

"overl apped structure. Result = ReadFile
(ReadHand! e,

387

Chapter 16

ReadBuf f er (0),

CLng(Capabi lities.|nput ReportBytelLength},
Nunber Of Byt esRead, HI DOverl apped)

"Wait for the ReadFile to conplete or a timeout.
Result = Wit For Si ngl eObj ect

(Event (j ect,

5000)

ReadFileEx and WaitForSingleObjectEx offer another way to do overlapped
I/0. Instead of requiring the program thread to wait for a read operation to
complete or a timeout, ReadFileEx enables the caling thread to perform
other operations while it waits. A call to ReadFileEx passes a pointer to a
completion routine that executes when the read gperation completes.

Another option is to put the ReadFile cdls in a separate thread using Visua
C++, Delphi, or another compiler that supports multithreading.

Visual C++

This example shows one way to do ReadFiles in a separate thread. When the
HID interface has been identified, open a separate handle to use for reading:

ReadHandl e=Creat eFil e
(det ai | Dat a- >Devi cePat h,
GENERI C_READ| GENERI C_WRI TE,
FI LE_SHARE_READ| FI LE_SHARE_WRI TE,
NULL,
OPEN_EXI STI NG,
0, NULL);

Then create a thread for reading reports from the device:

Thr eadHandl e = CreateThread
(NULL,
0,
(LPTHREAD_START_ROUTI NE) St ati cl O Thread,
this, 0, &Threadl D);

388

Human Interface Devices: Host Application Example

StaticlO_Thread is a static member that accepts the "this' pointer and casts
it to a pointer to the ReadReport routine, which does the ReadFile. Here is
an example:

DWORD CUsbhi di ocDl g: : Staticl O Thread(LPVO D Par an

{

}

i f (Param!= NULL)

return ((CUsbhi di ocDl g*) Par an) - >ReadReport () ;
el se

return -1,

A ReadReport routine can then read reports continuously while the main
application thread can go on to other things.

DWORD W NAPI CUsbhi di ocDl g: : ReadReport ()

{

CStringByteToDisplay =" " ;
ULONG nput ReportLength = 0 ;

CStri ngMessageToDi spl ay = ;
ULONGResul t;

// Read a report fromthe buffer.

| nput Report Lengt h=
Capabi lities. | nput ReportBytelLengt h;

do

Result = ReadFile
(ReadHandl e,
| nput Report,
Capabi lities. | nput ReportBytelLength,
&Byt esRead, NULL);

if (Result == 0}
{
/1l The ReadFile failed, so close the handl e,
/1 display a nessage, and // set
Devi ceDet ected to FALSE.
Cl oseHandl e(ReadHandl e) ;
Di spl ayData("Can't read from device"};
Devi ceDet ect ed = FALSE;

389

Chapter 16

/1l Exit the loop if the device is no |onger detected
/1 or the user has clicked the close button. while
((DeviceDetected == TRUE) &&

(ApplicationActive == TRUE));
return O,

}

The application can read aretrieved report in the InputReport buffer.

Visual Basic

What about Visuad Basic's support for multi-threading? As of version 6,
applications can't use the CreateThread API function. Visual Basic dbes sup-
port multi-threading in ActiveX EXE servers. The server can continuously
attempt to read from the device, notifying an application when data has
been received, without blocking the application while it waits. For more
about ActiveX EXE servers, | recommend Dan Appleman's book Developing
ActiveX Componentsin Visual Basic.

Or you can write a multi-threaded DLL that performs the ReadFiles. Power-
Basic's PB/DLL compiler enables you to write a multi-threaded DLL in
Basic. PowerBasic's website (www.powerbasic.com) has a good tutoria on
multi-threaded programming.

Writing a Feature Report to the Device

To send a Feature report to a device, use the HidD_SetFeature function.
The call will send a Set_Feature request and report in a control transfer.

Visual C++

Thisis the function's declaration:

BOOLEAN

Hi dD_Set Feat ur e(
I N HANDLE Hi dDevi ceObj ect,
IN PVO D ReportBuffer,
I N ULONG Report Buf ferLength

Thisis the code to call the function:

390

Human Interface Devices: Host Application Example

Result = Hi dD_Set Feat ure (H dDevi ce,

SendBuf f er,
Capabi lities. Feat ureReport Byt eLengt h)

Visual Basic
Thisis the function's declaration:

Publ ic Declare Function Hi dD_Set Feat ure
Lib "hid.dll" (ByVal
Hi dDevi ceObj ect As Long,
ByRef ReportBuffer As Byte,
ByVal ReportBufferLength As Long) As
Long

Thisisthe code to call the function:
Result = HidD_SetFeature (HidDevice,

SendBuffer(0),
CL ng(Capabilities.FeatureReportBytel_ength))

Reading a Feature Report from a Device

To read a Feature report from a device, use the HidD_GetFeature APl func-
tion. The cal will send a Get_Feature request in a control transfer, with the
device returning the report in the data stage.

Visual C++
Thisis the function's declaration:

BOOLEAN
Hi dD_Cet Feat ur e(
I N HANDLE Hi dDevi ceCbj ect, OUT
PVA D ReportBuffer, I N ULONG
Report BufferLength);

Thisisthe code to call the function:

Result = Hi dD_Get Feature (H dDevi ce,
ReadBuf f er,
Capabi lities. Feat ureReport Byt eLengt h);

391

Chapter 16

Visual Basic
Thisisthe function's declaration:

Publ i c Declare Function Hi dD Get Feature
Lib "hid.dlIl" (ByVal
Hi dDevi ceObj ect As Long,
ByRef ReportBuffer As Byte,
ByVal ReportBufferLength As Long)
As Long

Thisisthe code to cal the function:

Result = Hi dD_Get Feat ure (H dDevi ce,
ReadBuffer(0) ,
CLng(Capabilities. FeatureReportBytelLength))

Closing Communications

When an application is finished communicating with a HID, it should free
the resources previoudy reserved for it. Three of the API functions used ear-
lier have complementary functions for freeing resources.

The declarations and calls are short. Each passes a single parameter obtained
from its complementary function. For each, a non-zero Result indicates suc-
cess. Be sure to include each of these in code that executes before the appli-
cation closes.

When an application is finished communicating with a device, it should call
CloseHandle, the complement to CreateFile. When an application is fin-
ished using the hDevinfo array returned by SetupDiGetClassDevs, it should
cal SetupDiDestroyDevicelnfoList. And when an application is finished
using the PreparsedData buffer returned by HidD_GetPreparsedData, it
should call HidD_FreePreparsedData.

Visual C++
These are the functions declarations:

BOOL Cl oseHandl e(
HANDLE hObj ect);

BOOL Set upDi DestroyDevi cel nf oLi st (

392

Human Interface Devices: Host Application Example

HDEVI NFO Devi cel nf oSet
)

BOOLEAN
Hi dD_Fr eePr epar sedDat a(
I N PHI DP_PREPARSED DATA Pr epar sedDat a

)
Thisisthe code to cal the functions:

Cl oseHandl e(Devi ceHandl e) ;
Set upDi DestroyDevi cel nf oLi st (hDevl nf o) ;
Hi dD_Fr eePr epar sedDat a(Prepar sedDat a) ;

Visual Basic
These are the functions declarations:

Public Decl are Function Cl oseHandl e
Li b "kernel 32"
(Byval hCbject As Long)

As Long

Publ i ¢ Decl are Function SetupDi DestroyDevi cel nfoLi st
Lib "setupapi.dll"
(ByVval DevicelnfoSet As Long)

As Long

Publ i ¢ Decl are Function Hi dD _FreePreparsedDat a
Lib "hid.dlI"
(ByRef PreparsedbData As Long)

As Long

Thisisthe code to call the functions;

Result = Cl oseHandl e
(H dDevi ce)

Result = Set upDi Dest royDevi cel nf oLi st
(Devi cel nfoSet)

Result = Hi dD_FreePreparsedDat a
(Prepar sedDat a)

393

Device Testing

1/

Device Testing

Users expect ingtdling and using USB peripheras to be easy, and the burden
is on the developer to make it so. The USB interface is complex, and misbe-
having software or firmware can make a peripherd irritating or impossible
to use. So don't skimp on testing.

The peripherd's firmware and the host's applications must of course know
what data to send and what to do with the data they receive. But that's not
dl. In addition, device inddlation should be as invisble as possble for
users. Users must be able to attach and remove a device at any time. And the
device should transfer data as efficiently as possible while co-existing peace-
fully with whatever other peripherals happen to be sharing the bus. Any-
thing short of this and users will look elsewhere for their products.

Fortunately, there are many tools that help in testing new peripheral designs.
This chapter introduces a variety of these, including the free software and
other resources available from the USB Implementers Forum and the proto-
col analyzers and other test equipment available from other sources. These
are in addition to the development boards and monitor programs available

394

Chapter 17

from chip vendors and described in Chapter 9. For electrical tests, Chapter
20 describes the test modes that al high-speed host controllers and devices
must support.

USB Check's Test Suite

USB Check is a suite of test applications for USB devices. You can view
descriptors, send control requests, view the results, and run further tests on
hubs, communication-class devices, and HID-class devices. USB Check is
available free from the USB Implementers Forum's website.

The software runs only under Windows 2000. This is because problems
with remote wake-up under Windows 98 made remote wake-up impossible
to test with a standard Windows 98 system. Passing the tests under Win-
dows 2000 indicates that the device will aso function properly under Win-
dows 98.

Detecting a Device

When you run USB Check, the software identifies the device to test by dis-
playing a window asking you to attach the device (or remove and re-attach if
it's already attached). When you do this, USB Check replaces the driver nor-
mally used by the device with its own driver, usbdiag.sys. Your device's nor-
mal listing in the Device Manager disappears and is replaced with a listing
under Other Detected Devices, described asaUSB Diagnostic Device. To get
this far in the test, the device has to be functional enough to respond to the
standard requests.

When you want to use the device in its intended way, you must close the
USB Check application and again remove and re-attach your device so Win-
dows can regtore the device's norma drivers. The device listing will aso
return to its proper location in the Device Manager's window.

The Tests

The first tests are the Device Framework tests, which cover materia in
Chapter 9 of the USB specification. The tests read the descriptors and send

395

Device Testing

standard requests. These tests are extremely useful as an initia check that
Windows is retrieving the expected information from your device.

To dart, it's interesting to view the descriptors for whatever USB peripheras
you may have on your system. Figure 17-1 shows a hub's descriptors, which
tell you severd things. The device descriptor identifies the device as a hub.
The configuration descriptor says that the hub may be self- or bus-powered
and that is draws no more than 100 milliamperes from the bus. The inter-
face descriptor says that the hub has one endpoint in addition to Endpoint
0. And the endpoint descriptor describes the hub's required interrupt end-
point, which has an interva of 255 milliseconds and a maximum packet size
of 1 byte.

In a similar way, you can use the tedts to retrieve descriptors from devices
you develop, to verify that Windows is reading the expected information
from the device. Once you have that much working, you can move on to the
other tests.

Liging 17-1 is a report for the complete set of Device Framework tests on a
custom HID. You can run individual tests, such as sending a
Get_Descriptor or Set_Interface request, or run all of the tests at once and
view the results. If your device supports remote wakeup, the test will ask you
to send a Remote Wakeup signd to the host. You can skip this test if you're
not set up to trigger a remote wakeup.

The other tests are for devices in specific classes, including hubs and HIDs.

HIDView

After running USB Check’s Device Framework tests on a HID-class device,
a window will appear advisng you to run the HIDView tests. Figure 17-2
shows the options for testing.

If you run al of the tests, you'll see a display like Figure 17-3's. From the
Full Test window you can aso run individual tests and view the results. Fig-
ure 17-4 shows the result of retrieving a device's report descriptor.

396

Chapter 17

Figure 17-1: These windows from USB Check show the contents of a hub's
descriptors.

397

Device Testing

Ciascnpar Tats

- Denice Dloncnpior

= Claas Diescripion

- Fepaon! Dieacrigior (0F)

- Rinpont Diescrgtor (TPearsej

Oipbanal Cammand Teats

- Gt idls Giet ide Comenand Mo Supporind howesss sol iequesd®
- el idle Sl ke Command "ol Supponiad, howser notreguinsd®
- Gt Frotocel Get Peotoeol Welua 112 (REPOIRT)

= St Protoroot

Ot Tosin
- Condguna dewacs
- Spar Cieft 4 Complisrce

1]
10 Tasts Camplatad
10 Tosts FALED: 10 Tests Passad 0 Tesk Skippoed

Figure 17-3: HIDView examines the device's report descriptors and sends other
requests related to HID functions.

398

Chapter 17

i 20)
dh(Ad)
Bh{ Gd)
Bk Bd)
A 10d)
Chi 12d)
Eh(14d)
10k { 16d)
12h { 18d)
14h | 20d)
16h | 22d)
18h{ 24d)
14h { 26d)
1Ch(284)
1Eh { 30d)
ok | 32d)
Z2h | 3d)
24k { M)
2Bk | 28d)
28k | A0d)

| an d2d)
2CH [44d)
ZEh [45d)
Mk 40ed)
.

Usnge Foge

Lsage
Collecton
Usage Page
Ugage Minimum
Lizage Maximim
Lescgical binimann
Losgical Maximum
Regpaort Coun
Rapoit Size
Input

Rapaort Courd
Repon Size
Ingart

sage Fage
Lizmce Mirimusn
Lbsaga Maamum
Fieport Counl
Fepon Size
Ot

Fiepor Count
Fepon Size
Cartpuat

Garenc Daskiop
Kirybosnd
Application
Keyhosrd

Faybosrd LelControl
Kiryhoand Fight GL|
o

1
i
1
{Vanable)
B

1
{Constan)
LEDs

Muim Lack
Soroll Lock
3

1

(Weriable)

1

B

(Congtant)

Kayboard

Fesarvad (no avartindi..
nlnn.-rl imn enssrt s

—

Figure 17-4: HIDView also enables you to examine your device's report
descriptor. This example shows a keyboard descriptor.

A Get Data from Device button displays the result of reading data from the
device, either one time or continuoudy. This enables you to test the ability
of the host to receive Input reports from the device.

When a HID passes the HIDView tests and you're able to read data from
the device, you're well on your way to having a functioning HID. On the
other hand, faling one or more tests gives an indication of where the prob-

lem lies.

399

Device Testing

DEVICE 00 Vid (0x0925) Pid (0x1234) Tests:

- Get Device Descriptor Passed.

Returned Device Descriptor:

0x12 0x01 0x10 0x01 0x00 0x00 0x00 0x08
0x25 0x09 0x34 0x12 0x01 0x00 0x01 0x02
0x00 0x01

Descriptor Fields:

bLength : 0x12

bDescriptorType : 0x01 (Dev. Descriptor)
bcdUSB : Ox0110(USB spec. 01.10)
bDeviceClass : 0x00 (ifc's specify own)
bDeviceSubClass : 0x00
bDeviceProtocol : 0x00
bMaxPacketSizeO :0x08

idVendor : 0x0925 (unknown)
idProduct :0x1234
bcdDevice : 0x0001 (release 00.01)

iManufacturer : 0x01

- Get String Descriptor 0 (Language ID's) Passed.

- Checking Language ID's Passed.

Language ID :0x0409

- Get String Descriptor Index 1, Language ID 0x0409 Passed.
USBC

iProduct : 0x02

Language ID :0x0409

- Get String Descriptor Index 2, Language ID 0x0409 Passed.
HD

iSerialNumber : 0x00

bNumConfigurations: 0x01 (1)

CONFIGURATION Index 0 Tests:

- Get Configuration Descriptor Passed. Configuration Value = 0x01

Configuration Descriptor: 0x09 0x02 0x22
0x00 0x01 0x01 0x00 0x80 0x32 0x09 0x04
0x00 0x00 0x01 0x03 0x00 0x00 0x00 0x09
0x21 0x00 0x01 0x00 0x01 0x22 0x34 0x00
0x07 0x05 0x81 0x03 0x06 0x00 Ox0a

Listing 17-1: (Sheet 1 of 3) USB Check's Device Framework test report shows
the result of the tests, which retrieve descriptors and send other control
requests. This report is for a custom HID.

400

Chapter 17

Get Configuration Descriptor with Transfer size 0x22 for Config# 0x0

Descriptor Fields:

bLength : 0x09
bDescriptorType : 0x02
wTotalLength : 0x0022 (34)

bNuminterfaces :0x01(1)

bConfigurationValue : 0x01

iConfiguration : 0x00

bmAttributes : 0x80 (bus powered)

MaxPower :0x32(100mA)

- Get Configuration Passed. Device Is Unconfigured

- Set Configuration Passed. Set To 0x01

- Get Configuration Passed. Returned 0x01.

- Unconfigure Device Passed. Set To 0x00

- Get Configuration Passed. Device Is Unconfigured

- Set Configuration Passed. Set To 0x01

- Get Configuration Passed. Returned 0x01.

- Check If Alt. Setting For Ifc 0 is 0 Passed. Single interface responded with STALL
INTERFACE 0x0 Tests:

INTERFACE Number 0x00, Alt. Setting 0x00 Tests:

bLength - 0x09

bDescriptorType : 0x04

binterfaceNumber : 0x00

bAlternateSetting : 0x00

bNumEndpoints : 0x01

binterfaceClass : 0x03 (USB specified device class)
binterfaceSubClass : 0x00

binterfaceProtocol: 0x00 (not vendor or class specific)
ilnterface : Ox00

- Set Interface Passed. Single interface responded with STALL

- Get Interface Passed. Single interface responded with STALL

Listing 17-1; (Sheet 2 of 3) USB Check's Device Framework test report shows
the result of the tests, which retrieve descriptors and send other control
requests. This report is for a custom HID.

401

Descriptor (Endpoint 0x00) Fields:

bLength :0x07

bDescriptorType : 0x05

bEndpointAddress : 0x81 (ep #1, IN)
bmAttributes : 0x03 (Transfer Type : Interrupt)
wMaxPacketSize : 0x0006

binterval :OxOA(10milliseconds)

ENDPOINT With Address 0x81 Tests:

- GetStatus Passed. Endpoint NOT Stalled
- Set Feature (STALL) Passed.

- GetStatus Passed. Set Stall Confirmed

- Clear Feature (STALL) Passed.

- GetStatus Passed. Clear Stall Confirmed

NonStandard Descriptor

Size: 0x09 Bytes
Type: 0x21
Data : 0x00 0x01 0x00 0x01 0x22 0x34 0x00

More DEVICE Tests For Current Configuration:

Device Testing

- Get Status Passed. Remote Wakeup Not Supported - Remote Wakeup Disabled,

Bus-Powered

00 Vid (0x0925) Pid (0x1234): All Selected Test(s) PASSED!
DEVICE IS CHAPTER 9 COMPLIANT bcdDevice: 0x0001

(release00.01)

Listing 17-1: (Sheet 3 of 3) USB Check's Device Framework test report shows
the result of the tests, which retrieve descriptors and send other control

requests. This report is for a custom HID.

Test Equipment

Test equipment for USB includes protocol analyzers to monitor bus traffic
and other devices for generating traffic and performing other tests.

402

Chapter 17 Protocol

Analyzers

The ultimate tool for USB development is a protocol andyzer. The anayzer
is a combination of hardware and software that enables you to view every
detail of the traffic on the bus. The analyzer does the work for you, collect-
ing the data you request, then decoding and displaying it in a variety of for-
mats. You can watch what happens during enumeration, detect and examine
protocol and signding errors, view the data being transferred during con-
trol, interrupt, bulk, and isochronous transfers, or focus on any aspect of a
communication that you want.

For developing a commercial product, a protocol anayzer is essential. For
experimenting and learning, you can do a lot with the tools provided by
chip vendors and the USB Implementers Forum's free utilities, but a proto-
col analyzer will make things much easer and will open your eyes to many
new things.

Protocol analyzers are complex instruments, and even though there are
many developers working on USB products, the market for anayzers is lim-
ited in comparison to, for example, the market for generic PCs. This means
that analyzers aren't cheap. But as with many other eectronic devices, prices
have come down as USB has become more popular and more vendors have
entered the market.

Sources for USB protocol analyzers include Catalyst Enterprises, Computer
Access Technology Corporation (CATC), Crescent Heart Software, Data
Trangt, FuturePlus, Hitex Development Tools, and QualityLogic.

Any analyzer should perform the basic tasks of decoding USB traffic and
displaying the results in useful formats. Not al anadyzers support USB 2.0.
The user interface may be viaa PC or alogic andyzer. An anayzer that con-
nects to a PC may use a USB, paralel-port, Ethernet, or |SA-board connec-
tion. If you own a generic logic anayzer, a USB anadyzer that connects to it
will probably be less expensive than other options. Crescent Heart Software's
analyzers connect to Tektronix analyzers, and FuturePlus's analyzers connect
to Agilent analyzers.

403

Device Testing

As an example of what you can do with a protocol anayzer, I'll describe
QualityLogic's USB Expert. Other andyzers have similar abilities, and new
and improved products are constantly being developed, so be sure to check
for the latest information when you're ready to buy.

Hardware

The USB Expert's hardware consists of two pieces. the main unit and the
probe (Figure 17-5). The main unit contains the buffer that stores the USB
traffic and an embedded PC to manage the storage and transferring of the
analyzer's data to a PC. The probe connects in series with the USB segment
to be monitored, with an additional parallel connection that carries the seg-
ment's data to the Expert's main unit for analyzing. The parallel connection

PC or
LAPTOP

USB EXPERT _

Figure 17-5: QualityLogic's USB Expert protocol analyzer collects USB data and
sends it to a PC over a TCP/IP connection. An application on the PC displays
the data in a variety of formats.

404

Chapter 17

enables the Expert to monitor the USB traffic without affecting it. The
probe also has a connector for hardware triggering and a manua trigger but-
ton.

The Expert communicates with a PC via a TCP/IP Network connection. To
use the Expert, you need a PC with an Ethernet interface configured for
TCP/IP An Ethernet interface is fast, and is inexpensive to add if your PC
doesn't aready have one. If the PC connects to a network, both the PC and
USB Expert can connect to the same 10 BaseT Ethernet hub. If the PC
doesn't have a network connection, the Expert can use the provided Direct-
Connect 10-BaseT cable to connect to the PC. The same PC that connects
to the Expert can serve as the host of the bus being tested. The TCP/IP
interface also enables remote testing.

Software

The USB Expert's software application enables you to begin and stop data
logging and view, save, and print the results.

Figure 17-6 shows the screen you use to begin capturing data. Data logging
can begin on detecting any of a number of event types. a particular USB
event (such as a Setup packet or STALL), a programmed trigger in an appli-
cation, or an externa signa. Or you can just start collecting data immedi-
ately. If you want to see what happens during enumeration, you can
configure the Expert to trigger on the first Setup packet sent to the devices
address, initiate data bgging, then attach the device. The Expert will begin
storing traffic on detecting the first Setup packet in the enumeration pro-
cess. If you want to see what happens when your application sends a Write-
File to the device's driver, you can add a call to the Expert's trigger function
just before caling WriteFile in your application. If you want to see if your
device is responding to any requests with STALL, you can trigger on this.

When the data collection is complete, you can view the results in any of a
number of formats. You can use filtering to display only the items you're
interested in. I'll mention only some of the available screens and reports.

405

Device Testing

#{Corriecing o Exiamal Caphee deavice.
| Commecisa w245 205,191

I
| Tran=feming caature deis
i3 Toia! acquisions:

Tolal evends:
Signaling enrors:
Analyrng packals
Taial packels.
: Packat arors:
i |Analyrng s ackans
| Tt ransachons:
Trens smors
Tatal dats
Buleding suvent stafistes
Buslding rensachon stalistics
LISE process compleed.

R E®"®

S8

L EEEEERE

Figure 17-6: The USB Expert gives you many options for triggering and
recording data.

The Transactions tab (Figure 17-7) displays each occurrence of the transac-
tion types you specify. Right-clicking on a transaction displays additiona
information about it. In a similar way, the Events and Data tabs display the
information formatted by event (including Idle, Reset, and Resume dates,
End-of -Packet signals, and errors) or focusing on the data transferred, rather
than on the events. You can search for invalid packets or other errors, then
see exactly where they occurred and view details about each error.

You can dso view al of the information that transferred in any control
request. Figure 17-8 shows a Set_Address request. The Expert decodes class-
specific requests, including those for hubs, HIDs, and printers. A Signal-
Layer display shows data as you would see it on a logic analyzer, and a
Transfer-Layer display shows all transactions associated with a transfer.

406

2178 Low speed Nonalie
WEieging ot acol 41191 Eads af aco# 41341

ey =0 DE 00 OL 9 00 0047

GRREELGRARERLORREREDD

rlllhuﬂkl

Figure 17-7: You can view each transaction by type, and right-click for more
information.

Other Test Equipment

Protocol analyzers are great for watching what happens on the bus. Also use-
ful is the ability to control bus traffic and signaling beyond what you can do
by accessing devices from applications. And there are instruments that can
do thisaswell.

One example is Catalyst Enterprises SBAE-10 protocol analyzer, which can
aso function as a host that generates traffic on the bus. Other instruments
from CATC and RPM Systems offer various combinations of capabilities
and may be used done or in combination with a protocol analyzer.

407

Device Testing

DE:pODE ACE

DL:0000 ACE

[Request Cormat:

Field D&aceiption Valid
Ddpr HOST_TO_BEV[L) TES
Type: STANDARD (0] TES
Bopr DEVICELD} YEE
bReque st SET_ADDRESI(S) YES
Addresa: QOOO3 YES
aaoon YES
00an YES

Sdi] aFeguestType

[Reguest [ommat and Cequedt data viokaTions: 0

Figure 17-8: This display of a Set_Address request shows that the host
assigned an address of 03h to the device.

CATC Traffic Generator

CATC's Traffic Generator is an example of an instrument that offers precise
contra over bus traffic and events. You control the Traffic Generator via a
parale-port connection to a PC running the Traffic Generator software.

The Traffic Generator enables you to generate both legal and illegal mes
sages and bus conditions. You can control the state of individud bits and the
bit width. Some of the illegal bus conditions you can generate are bad PID,
bad CRC, bad bit stuffing, short Idle, short Single-Ended-Zero time, nar-
row bits, and clock jitter.

408

Chapter 17

Configunng Faal]

Diate — Address: k2 EndPoint Dl
0000 1B OO 00 DO 00 00
Dala - Addmess 002 EndPoint (el
0000 00 00 60 00 00 00

Diorten — Ardceess §a? EndPairt Chdl
000016 00 @0 D0 00 00

Dala = Addesss k2 EndFoint D01
0600 1616 O 00 60 00

==== Endpairt 2 Descrigior ===-=-
‘blength = Dud]?
bDezcrigtorType » [ah (5 = ENDPOINTY
bEndpairtdddrass = Qefi2

Enciooint 2 1M
hrudsibutes = (i3

Figure 17-9: RPM Systems' Root 1 Test Adapter and TapRoot software enable
you to generate bus traffic and perform other tests.

Root 1 Test Adapter

RPM Systems Root 1 USB Functiona Verification Adapter performs many
of the functions of a host and root hub. When you connect a device to the
Root 1, the Root 1 enumerates the device and can initiate other traffic and
perform various tests. Figure 17-9 shows the TapRoot application, which

409

Device Testing

enables you to monitor and control the Root 1's bus using an RS-232 @n-
nection.

TapRoot enables you to view the descriptors retrieved during enumeration,
specify requests to send, and view the results. You can suspend, resume, and
reset the bus. Y ou can control the bus voltage and measure bus current.

Rootscript is a Visual C++ agpplication that enables you to write scripts to
generate traffic on the Root 1's bus. A script can initiate control, bulk, inter-
rupt, or isochronous transfers. A script can loop to repeat a test or series of
tests.

Testing and Logos

The USB Implementers Forum and Microsoft offer testing opportunities
for developers of USB devices and their host software. Passing the tests can
earn a product the right to display the USB Logo or the Microsoft Windows
Logo. Thisin turn gives users confidence that the device is thoroughly
tested and reliable.

The USB Implementers Forum Compliance Program

One advantage USB has that other interfaces don't have is that the develop-
ers of the specification didn't stop with the release of the specification docu
ment. The USB Implementers Forum remains involved in helping
developers design and test USB products. I've aready mentioned that the
Forum's website has documents and tools, including USB Check, available
to everyone. In addition, joining the Implementers Forum gives you access
to resources that will help ensure that your product complies with the spec-
fication and causes no problems for users.

For a thorough testing of a product under a variety of conditions, Forum
members can enroll a device in the Implementers Forum's Compliance Pro-
gram. When a device meets the program's criteria, the Forum deems it to
have "reasonable measures of acceptability” and adds it to its Integrators List
of compliant devices. On recelving a signed license agreement and payment,
the Forum authorizes the device to display the USB Logo.

410

Chapter 17

The programs two criteria are checklists and compliance testing.

Checklists

The checklists contain questions relating to your product and its behavior.
Filling out the appropriate checklists is the firgd sep in achieving compli-
ance. Y ou do this step on your own.

There are checklists for vendors of peripherals, hubs, systems with USB
hosts, and cables. Some products require multiple checklists. I'll focus on
periphera testing.

The Peripheral checklist is several pages of questions about your device.
They cover mechanica design, device states and signals, and operating volt-
ages and power consumption. You should be able to answer yes to every-
thing. Accompanying each question is a reference to a page in the
specification where you can find more information.

The checklists are available from the Forum's website.

Compliance Testing

When you can answer yes to everything on the checklists that apply to your
product, you're ready for compliance testing. The USB Implementers
Forum sponsors compliance workshops that enable you to test your device
with a variety of hardware. Every workshop has many vendors and products
available. You can schedule private tests with vendors of host hardware. And
you can participate in one of the Implementers Forum's Plugfests, where as
many vendors as possible connect their devices to a single host to find out if
al can co-exist peacefully. The Forum also authorizes some private labs to
perform compliance tests.

Before attending a workshop, the Forum recommends performing the tests
as fully as possible on your own. The Compliance Test Procedure document
has detailed descriptions of the tests, which cover responding to standard
requests, power consumption and distribution, signa quality, and interoper-
ability.

The interoperability tests are where you emulate the user's experience using
your product on a system with a variety of other USB peripherals attached

411

Device Testing

and in use with a variety of software. The goal is "an enjoyable end-user
experience." These tests are important!

The Compliance Test Procedure document spells out what should be self-
evident: your device should function without ever causng a device-not-
detected error or a system crash, hang, or reboot.

The following are the minimal dtuations that you must test for a low- or
full-speed device. In each case, the specified actions shouldn't interfere with
the operation of the device being tested or any other attached devices.

The device must pass the tests not only on a bus with just your device, but
also on a bus that connects a variety of hubs and other common peripherals.
The Forum's website lists devices that are verified to have no interopability
problems of their own. The Guidelines document cdls this topology the
Gold Tree. The minimum configuration includes your device plus four
hubs, a disk drive, a camera, a keyboard, and a mouse. A low- or full-speed
device is tested with both UHCI and OHCI host controllers.

Using an OHCI host controller:

« With the system powered, attach the device to the fifth hub in series,
using a 5-meter or captive cable. The operating system must identify the
device and load the appropriate drivers. Rebooting should not be
required.

» Ingtal any application software the device uses. Rebooting should not be
required. The device should demonstrate its intended operation. For
example, a printer would print documents sent to it, a keyboard would
send keystrokes in aformat the operating system understands, and a
camera would transfer images to the host.

» Suspend and resume. The device, device driver, and application software
must operate normally after resuming from the Suspend state.

» |If remote wakeup is supported, suspend and initiate a remote wakeup
event. The device, device driver, and application software must operate
normally after the remote wakeup.

Using a UHCI host controller:

412

Chapter 17

¢ With the system powered, attach the device to the fifth hub in series,
using a 5-meter or captive cable. The operating system must identify the
device and load the appropriate drivers. Rebooting should not be
required.

» Each device in the Gold Tree must operate while other devices are oper
aing.

» With the system powered, detach and re-attach the device. The device,
device driver, and application software must operate normally after
re-attaching.

» With the system powered, detach the device and attach it to a different
port. The device, device driver, and application software must operate
normally after re-attaching.

* Warmboot: click Start > Shutdown > Restart. The device, device driver,
and application software must operate after the reboot.

e Cold boot: click Start > Shutdown > Shutdown and turn the PC back
on. The device, device driver, and application software must operate after
powering up.

The Compliance Test Procedure document has more specifics about these

tests.

If your device has one or more isochronous endpoints, you must aso test
what happens when the host can't configure a device because there isn't
enough bandwidth for the requested pipe. When the device can't be config-
ured, it must inform the user of what has happened and advise the user to
stop using other devices that use isochronous transfers in order to enable the
device to be configured.

For this test, you can use the Bandwidth Load Application available from
the Implementers Forum. The application requires a dummy device that
will receive isochronous OUT data. The device doesn't have to have any iso-
chronous endpoints. The application uses a replacement driver hat config-
ures the device with isochronous endpoints and causes the data to be sent.
Because there are no handshake packets for the device to return, it doesn't
matter if the device never sees the data.

413

Device Testing

CERTIFIED

TM & © 2000 USBIF All rights reserved. TM & ©2000 USBIE All rights reserved.

Figure 17-10: Devices that pass compliance testing can display the USB Logo.
The logo indicates if the device supports high speed.

If your device supports a boot interface, you must test this as well, to ensure,
for example, that a keyboard with a boot interface will work with BIOSes
that have keyboard support.

The USB Logo

If your device passes Compliance testing, it's digible to display the officia
USB Logo. There are two logos, one for low-and full-speed devices and one
for high-speed-capable devices (Figure 17-10). To qudify for the logo, a
high-speed device must also be fully functiona at full speed. To use the logo,
you must sign the USB-IF Trademark License Agreement. If you're not a
member of the Implementers Forum, you also must pay a logo administra-

tion fee of $1500 every two years. The logo is different than the USB icon
described in Chapter 21.

Windows Hardware Quality Labs Testing

For devices that will attach to Windows PCs, Microsoft provides Windows
Hardware Quality Labs (WHQL) testing. These tests qualify devices to dis-
play a Microsoft Windows logo and to be included in Microsoft's Hardware
Compatibility List (HCL) of devices that have been shown to be compatible
with Windows. The device's driver may dso be included in the Microsoft
Windows Driver Library.

414

Chapter 17

Microsoft provides test kits for hardware and device drivers. You can dowr
load the kits that apply to your device and run the tests. When you believe
your device can pass al tests, you submit a test package to an authorized
testing Site. The test package contains the device, any driver and related files,
signed agreements, test logs, and fees. If your device passes, your device and
marketing materias can display the Microsoft Windows L ogo.

You can find more information and downloads relating to WHQL at www.
mi crosoft.convhwitest.

Driver Signing

Beginning with Windows 98, Microsoft began supporting and promoting
digital sgning to improve the quality of device drivers and to provide a way
of controlling whether untested drivers can be installed.

To qudify for dgning, a driver must pass WHQL testing. A signed driver
has a catalog (CAT) file containing a digital signature provided by Microsoft
and INF file that references the catalog file. The signature enables Windows
to detect if adriver file has been modified since it passed WHQL testing.

For specified device classes, Windows looks for a signature when using an
INF file to install hardware. When an INF file specifies an unsigned driver,
operating-system settings control whether Windows blocks ingtallation, or
ingtals the driver with awarning, or ingalls with no warning.

Each INF file has its own CAT file. A single INF file can support multiple
devices. A change in an INF file, to support a new Product ID or version
number for example, invaidates the CAT file and requires new testing, even
if the driver is unchanged.

The support for driver signing has been enhanced with each edition of Win-
dows. For many common device classes, Windows 2000s default setting
warns the user when it detects the installation of a device with an unsigned
driver. You can change the default policy in the Control Panel, under System
> Hardware.

415

Hubs: the Link between Devices and the Host

13

Hubs:
the Link between
Devices and the Host

Every USB device must connect to a hub. As Chapter 2 explained, a hub is
an intelligent device that provides attachment points for devices and mart+
ages each device's connection to the bus. Devices that plug directly into a
PC connect to the root hub. Other devices connect to external hubs down
stream from the root hub.

A hub's two main jobs are managing its devices connections and passing
traffic to and from the host. Managing the connections includes helping to
get newly attached devices up and communicating and blocking communi-
cations from misbehaving devices so they don't interfere with other devices
use of the bus. The hub's role in passing traffic to and from the host depends
on the speed of the host, device, and the hubs between them. A hub may

416

Chapter 18

B
Bt
L
.'M .
- +l
= agl
g l downstream
", ports

. upstream
= 4 por

Figure 18-1: A hub has one upstream port and one or more downstream ports.
(Photo of Peracom hub courtesy of B & B Electronics.)

just repeat what it receives or it may convert the traffic to a different speed
and manage the transaction with the device.

This chapter presents essentials about hub communications. You don't need
to know every detail about hubs in order to design a USB periphera, but
some understanding of what the hub must do will help understanding how
your device communicates with the host.

Hub Basics

Each external hub has one port, or atachment point, that connects in the
upstream direction (toward the host) (Figure 18-1). This upstream port may
connect directly to the host's oot hub, or it may connect to a downstream
port on another external hub. Each hub aso has one or more ports down-
stream from the host. Most downstream ports have a connector for attach
ing a cable. An exception is a hub that is part of a compound device whose
ports connect to functions embedded in the device. Hubs with one, two,
four, and seven downstream ports are common. A hub may be self-powered

417

Hubs: the Link between Devices and the Host

or bus-powered. As Chapter 19 explains, bus-powered hubs are limited
because you can't attach high-power devices to them.

Every externa hub has a hub repeater and a hub controller. (Figure 18-2).
The hub repeater is responsible for passing USB traffic between the host's
root hub or another upstream hub and whatever downstream devices are
attached and enabled. The hub controller manages the communications
between the host and the hub repeater. State machines contain the logic to
respond to events at the hub repeater and upstream and downstream ports.
A 2.0 hub adso has one or more transaction trandators and routing logic that
enable low- and full-speed devices to communicate on a high-speed bus.

The host's root hub is a specia case. The host controller performs many of
the functions performed by the hub repeater and hub controller in an exter-
na hub, so a root hub may contain little more than routing logic and down-
stream ports.

The Hub Repeater

The hub repeater re-transmits, or repedats, the packets it receives, sending
them on their way either upstream or downstream with minima changes.
The hub repeater also detects when a device is attached and removed, estab-
lishes the connection of a device to the bus, detects bus faults such as over-
current conditions, and manages power to the device.

The hub repeater in a 2.0 hub has two modes of operation, depending on
the upstream bus speed. When the hub connects upstream to a full-speed.
bus segment, the repeater functions as a low- and full-speed repeater. When
the hub connects upstream to a high-speed bus segment, the repeater func-
tions as a high-speed repeater. The repeaters in 1.x hubs always function as
low- and full-speed repeaters.

The Low- and Full-speed Repeater

The hub repester in a 1.x hub handles low- and full-speed traffic. A 2.0 hub
also uses this type of repeater when its upstream port connects to a

418

Chapter 18

UPSTHEAM-FAC| WG PORT
STATE MALHINE

HUB EEPFEATER

i
RE TS LOW/FULL - SPEED
'ru'..ﬂn: OH & LOW/FULL-
BPEED BUB

HUB STATE MACH|HES

CONTALR
HEEW
T THE M

oGIcC TG
0 EVEWTE
L]

HUE CORTROLLER

RAMAGES COFFUNICAT | DNE
BETWEEM THE HGET ARD
THE HJB CONTEOLLER

1.5 HUB

UFETREAR- Fl'.l'.J'lﬁ PORT
ARD STATE FACH] WE

e
Tl'hh"?!ﬁﬂ.lm HUB REFEATER , D ITATE RACHINES
RIS SRR ¢
SRLL TAIM LEGIC T
HANAGES TRAMBACT 10NS 4PEED BUS REPEATA e
WITH LEW/PLLL -3 PEE WIGN-SPEED TRAFE IC ON A g EVENTS

0
QEVISES O A WIGH-sPeED HIGH-3PEED BUS AT THe

HUE CONTROLLER

MANAGES COMPUND CAT EONE
BETWIEN THE OS
THE WA COMTROLLER

ROUT |HG LOGIC

CONWGCTS DOWWETRRAM FORTE To THE TRANEACTI
TRANSLATOR OR THE M@ REPE
THE DEVICE SPEED AND UPSTREAM BUS §PEED.

.8 HUB

Figure 18-2: A 2.0 hub contains one or more transaction translators and routing
logic that enable a hub on a high-speed bus to communicate with low- and full-
speed devices. In a 1 .x hub, the hub repeater is routed directly to the

downstream ports.

419

Hubs: the Link between Devices and the Host

full-speed bus. In this case, the 2.0 hub doesn't send or receive high-speed
traffic but instead functions identically to a 1.x hub.

A 1x hub repeats al low- and full-speed packets received from the host
(including data that has passed through one or more additiona hubs) to al
enabled, full-speed, downstream ports. Enabled ports include dl ports with
attached devices that are ready to receive communications from the hub.
Exceptions would include a device that the host controller has stopped com-
municating with due to errors or other problems, a device in the Suspend
state, or a device that isn't yet ready to communicate because it has just been
attached or isin the process of exiting the Suspend state.

The hub repeater doesn't trandate or process traffic to or from full-speed
ports in any way. It just regenerates the edges of the signa transitions and
passes them on.

Low-speed devices never see full-speed traffic. A 1.x hub repeats only
low-speed packets to low-speed devices. The hub identifies a low-speed
packet by the PRE packet identifier that precedes it. The hub repeats the
low-speed packets, and only these packets, to any enabled low-gpeed devices.
The hub aso repeats low-speed packets to its full-speed downstream ports,
because a full-speed port may connect to a hub that in turn connects to a
low-speed device. To give the hubs time to make their low-speed ports ready
to receive data, the host alds a delay of at least four full-speed bit widths
between the PRE packet and the low-speed packet.

Compared to full speed, low-speed traffic varies not only in speed, but also
in edge rate and polarity. In transmitting to a low-speed device, the repeater
converts received full-speed transitions to the slower edge rate required by
the low-speed device. In receiving data from a low-speed device, the repeater
converts received low-speed transitions to the faster edge rate used by
full-speed devices. Low-speed traffic also uses an inverted polarity compared
to full speed, so the repeater inverts al data sent to and received from a
low-speed device. Chapter 20 has more on the signa polarities, and Chapter
21 has more about edge rates.

420

Chapter 18

The High-speed Repeater

A 2.0 hub uses a high-speed repeater when the hub's upstream port connects
to a high-speed bus segment. When this is the case, the hub sends and
receives all upstream traffic at high speed, even if the traffic is from or to a
low- or full-speed device. The path that traffic takes through a hub with a
high-speed repeater depends on the speeds of the attached devices. Routing
logic in the hub determines whether or not traffic to or from a downstream
port passes through a transaction trandator.

Unlike the low- and full-speed repeater, a high-speed repeater re-clocks
received data to minimize accumulated jitter. In other words, instead of just
repeating received trangtions, a high-speed repeater extracts the data and
uses its own locd clock to time the transitions when retransmitting. The
edge rate and polarity are unchanged. An dagticity buffer alows for small
differences between the two clock frequencies. When the buffer is haf full,
the received data begins to be clocked out.

High-speed devices don't use the transaction trandator. Traffic is routed
from the receiving port on the hub, through the high-speed repeater, to the
hub's transmitting port.

For traffic to and from low- and full-speed devices, the high-speed repeater
communicates with the transaction trandator that manages the transactions
with the devices. Traffic received from upstream is routed to the high-speed
repeater, then passes through the transaction trandator, which communi-
cates at the appropriate speed with the downstream ports. In the other direc-
tion, traffic from low- and full-speed devices is routed to the transaction
trandator, which processes the received data and takes appropriate action.
The following section has more about the transaction trandator.

The Transaction Translator

Every 2.0 hub must have a transaction trandator to manage communica-
tions with low- and full-speed devices. The transaction trandator communi-
cates upstream at high speed but enables 1 .x devices to communicate at low
and full speedsin exactly the same way as they do with 1.x hosts.

421

Hubs: the Link between Devices and the Host

HIGH-SPEED BuUS
}T

HIGH-SPEED HANDLER

—

‘ ¥ 1/ |

P, Y R o | 1 . WL
|

BUFFER FOR | BUFFER FOR BUFFER FOR [ADD T | OMAL
[SQCHRONDUS 1 SQTHR ONOUS BULK AND CUNT”ﬂLl BUFFERI(S) FCR
AND INTERRUPT | AMD IMTERRUPT IMN . AND QUT | BU AMD CONTROL
START-SFLIT COMPLETE-SFLIT TEANSALT IONS [N AND OUT
TRANSACT IONS | TRANSACT IONS TRANSACT] OMS

T e _q& T — T

N | L b ~ _ \/,-_

LOW- ANMD FULL-SPEED HANDLER
Jr
LOW/FULL -SPEED BUS
Figure 18-3: A transaction translator contains a high-speed handler for
upstream traffic, buffers for storing information in split transactions, and a low-
and full-speed handler for downstream traffic to low- and full-speed devices.

The transaction trandator frees bus time by enabling other bus communica-
tions to occur while a device is completing a low- or full-speed transaction.
It can also enable low- and full-speed devices to use more bandwidth than
they would have on a shared 1.x bus.

The transaction translator contains three sections (Figure 18-3). The
high-speed handler communicates with the host at high speed. The
low/full-speed handler communicates with devices a low and full speeds.
Buffers store information in split transactions with low- and full-speed
devices.

As Chapter 3 explained, when a 2.0 host on a high-speed bus wants to com-
municate with a low- or full-speed device, the host initiates a start-plit
transaction with the 2.0 hub that is nearest the device and communicating
upstream a high speed. One or more dart-split transactions contain the
information the hub needs to complete the transaction with the device. The
transaction trandator stores the information received from the host and
completes the start-split transaction with the host.

422

Chapter 18

On completing a dart-split transaction, the hub performs the function of a
host controller in carrying out the transaction with the device. The transac-
tion trandator initiates the transaction in the token phase, sends data or
stores returned data or status information as needed in the data phase, and
sends or receives a status code as needed in the handshake phase. The hub
uses low or full speed, as appropriate, in its communications with the device.

After the hub has had time to exchange data with the device, in dl transac-
tions except isochronous OUTS, the host initiates one or more complete-
split transactions to retrieve the returned information in the transaction
trandator's buffer. The hub performs these transactions at high speed.

Because the hub acts as a host controller in managing transactions, 1.X
devices share 1 .x bandwidth only with devices that use the same transaction
trandlator. So if two full-speed 1.x devices each connect to their own 2.0
hubs on a high-speed bus, each can use al of the full-speed bandwidth it
wants. When the hub converts to high speed, the 1.x communications will
use little of the high-speed bandwidth.

A hub can have one transaction trandator for al ports, or it can have a trans-
lator for each port that connects to a low- or full-speed device. Each transac-
tion trandator has to have a least four buffers. one for interrupt and
isochronous start-split transactions, one for interrupt and isochronous com-
plete-split transactions, and two for control and bulk transfers.

The Hub Controller

The hub controller manages communications between the host and the
hub. This includes enumeration along with other communications and
actions due to events at downstream ports.

As it does for al devices, the host enumerates a newly detected hub to find
out its abilities. The hub descriptor retrieved during enumeration tells the
host how many ports the hub has. After enumerating the hub, the host
requests the hub to tell it whether there are any devices attached and if so,
the host enumerates these as well.

423

Hubs: the Link between Devices and the Host

The host finds out if a device is attached to a port by sending the hub-class
request Get_Port_Status. This is smilar to a Get_Status request, but sent to
a hub with a port number in the Index field. The hub returns two 16-hit
values that indicate whether a device is attached as well as other informa-
tion, such as whether the device is low power or in the Suspend state.

The hub controller is also responsible for disabling any port that was respon-
sible for loss of bus activity or babble. Loss of bus activity occurs when a
packet doesn't end with the expected End-of-Packet signal. Babble occurs
when a device continues to transmit beyond the End-of -Packet signal.

In addition to Endpoint O, which al devices must have for control transfers,
hubs must have a Status Change endpoint configured for interrupt IN
transfers. The host polls this endpoint to find out if there have been any
changes at the hub. On each poll, the hub controller returns either a NAK if
there have been no changes, or data that indicates a specific port or the hub
itself as the source of the change. If there is a change, the host sends requests
to find out more about the change and to take whatever action is needed.
For example, if the hub reports the attachment of a new device, the host
attempts to enumerate it.

Speed

An externa 2.0 hub's downstream ports must support al three speeds. The
EHCI host-controller specification says that a host must aso support al
speeds except for the unusual situation where every port has a permanently
attached high-speed device. Because an EHCI controller supports high
speed only, to support low and full speeds, a 2.0 host must have a compar+
ion 1 .x host controller in addition to its high-speed host controller.

In the upstream direction, if a 2.0 hub's upstream segment is high speed, the
hub communicates a high speed. Otherwise, it communicates a low and
full speeds.

A 1x hub's upstream port must support low- and full-speed communica
tions. All downstream ports with connectors must support both low- and
full-speed communications. 1.x hubs never support high speed.

424

Chapter 18

Filtering Traffic according to Speed

Low-speed devices aren't capable of receiving full-speed data, so hubs don't
repeat full-speed traffic to low-speed devices. This is necessary because a
low-speed device would try to interpret the full-speed traffic as low-speed
data and might even mistakenly see what it thinks is valid data. Full- or
high-speed data on a low-speed cable would aso cause radiated electromag-
netic interference (EMI). In the other direction, hubs receive and repeat any
low-speed data upstream.

Low- and full-speed devices aren't capable of receiving high-speed data, so
2.0 hubs don't repeat high-speed traffic to these devices, including 1.x hubs.

Keeping Devices from Entering the Suspend State

Start-of-Frame packets keep full- and high-speed devices from entering the
Suspend state on an otherwise idle bus. When there is no data on a
full-speed bus, the host continues to send a Start-of-Frame packet once per
frame, and all hubs pass these packets on to their full-speed devices. When
there is no data on a high-speed bus, the host continues to send a Sat-
of-Frame packet once per microframe, and al hubs pass these packets on to
their high-speed devices.

A full-speed device that connects to a 2.0 hub that communicates upstream
at high speed will also receive a Start-of -Frame once per frame.

Low-speed devices don't see the Start-of-Frame packets. Instead, at least
once per frame, hubs must send their low-speed devices a low-speed
End-of-Packet (EOF) signa (defined in Chapter 20). This functions as a
keep-dlive signa that keeps a device from entering the Suspend state on a

bus with no low-speed activity. Chapter 19 has more on how hubs manage
the Suspend state.

Detecting Device Speed

On attachment, every device must support either low or full speed. A hub
detects whether an attached device islow or full speed by detecting which

425

Hubs

USEB
TRANSCE [VER

T
r"I i
HOST OR HUB 215K .
PORT _ |
|
= 3 |
OF _1___ |
¢15K
USB !
| TRANSCE I VER 1 |
‘ D- '-—I"— - I__
215K |

Figure 18-4: The device's port h

HOST OR HUB
PORT s |
i |

: the Link between Devices and the Host

FULL-SPEED
DEVICE

FORT

O+

) USE
i TRANSCEIVYER

18- e
LOW-5PEED
DEVICE
PORT

as a stronger pull-up than the hub's. The location

of the pull-up tells the hub whether the device is low- or full-speed. High-speed
devices are full speed at attachment.

sgnd line is more pogtive on an idle line. Figure 18-4 illustrates. As Chap-
ter 5 explained, the hub has a 15-kilohm pull-down resistor on each of the
port's two signal ines, D+ and D-. A newly attached device has a 1.5-kilohm
pull-up resstor on D+ for a full-speed device or D- for a low-speed device.
When a device is attached to a port, the device's pull-up is stronger than the
hub's pull-down, so the line with the pull-up is pulled high. When the volt-
age on one of the lines is more postive than the hub's logic-high input
threshold, the hub assumes a device is attached, and detects the speed by

which lineitis.

426

Chapter 18

How

After detecting a full-speed device, a 2.0 hub determines whether the device
supports high speed by using the high-speed detection handshake. The
handshake occurs during the Reset state that the hub initiates during enu-
meration. When the handshake succeeds, the device removes its pull-up and
communications are at high speed. A 1 .x hub ignores the attempt to hand-
shake, and the fallure of the handshake informs the device that it must use
full speed. Chapter 20 has more details about the handshake.

Many Hubs in Series?

USB was designed as a desktop bus. It's not intended for long-distance links.
But that hasn't stopped people from wondering just how far a USB periph-
era can be from its host.

The specification doesn't give a maximum length for cable segments, but
the maximum alowed propagation delay limits the length to about 5 meters
for full and high speed and 3 meters for low speed. You can increase the dis-
tance between a device and its host by using a series of hubs, each with a 5
meter cable.

But how many hubs in series can you use? The mumber of hubs you can
connect in series is limited by the electrica properties of the hubs and cables
and the resulting delays in propagating signals adong the cable and through a
hub. The limit is five hubs in series, with each hub and the fina device each
using a 5meter cable. This means that a device can be 30 meters (96 feet)
from its host. If the device is low speed, the limit is 28 meters because the
device's cable can be no more than 3 meters. Chapter 21 has more about
extending the distance between a USB device and its host.

The Hub Class

Hubs are members of the Hub class, which is the only class defined in the
main USB specification. Each hub supports the standard descriptors as well
as descriptors that are specific to hubs.

427

Hubs: the Link between Devices and the Host

Hub Descriptors

A 1x hub has a series of five descriptors. device, hub class, configuration,
interface, and endpoint. A 2.0 hub has more descriptors because it must
support al speeds, and because it may offer a choice of using ane or multi-
ple transaction trandators.

A 20 hub's descriptors include the device qudifier descriptor and the
other_speed configuration descriptor required for all high-speed-capable
devices. The device_qualifier descriptor contains an aternate value for bDe-
viceProtocol in the device descriptor. The hub uses the aternate value when
it switches between high and full speeds.

The other_speed configuration_descriptor tells the number of interfaces
supported by the configuration not currently in use, and & followed by the
descriptors for that configuration. A configuration that supports multiple
transaction trandators has two interface descriptors. one for use with a single
transaction trandator and an aternate setting for use with multiple transac-
tion trandators. The binterfaceProtocal field specifies whether an interface
setting supports one or multiple transaction trandators.

Hub Values for the Standard Descriptors

The specification assigns class-specific values for some parameters in a hub's
device, and interface descriptors. It also specifies the contents of the end-
point descriptor for the hub's status-change endpoint:

Device Descriptor
bDeviceClass = HUB_CLASSCODE (09H)
bDeviceSubClass =0

bDeviceProtocol = O for low/full speed, 1 for high speed when the
hub supports a single transaction trandator, 2 for high speed when
the hub supports multiple transaction trandators

These fields a so apply to the Device_Qualifier_Descriptor in 2.0 hubs.

Interface Descriptor

bNumENndpaints=1

428

Chapter-18

binterfaceClass = HUB_CLASSCODE (09H)
blnterfaceSubClass = 0

blnterfaceProtocol = 0 for a low/full speed hub or a high-speed hub
that supports only a single transaction trandator. For a hub that sup-
ports single and multiple transaction trandators, 1 indicates a single
transaction trandator, and 2 indicates multiple transaction tranda-
tors.

Endpoint Descriptor (for Status Change Endpoint)
bEndpointAddress = Implementation-dependent; Bit 7: Direction =

wMaxPacketSize = Implementation-dependent
bmAttributes = Transfer Type = Interrupt
binterval = FFh for full speed, OCh for high speed (Maximum

alowable interval)
The Hub Descriptor

Each hub must aso have a hub-class descriptor. The hub descriptor contains
the following fields:

Identifying the Descriptor
bDesd_ength. The number of bytes in the descriptor.
bDescriptor Type. Hub Descriptor, 29h.

Hub Description
bNbrPorts The number of downstream ports the hub supports.
wHubChar acterigtics:

Bits 1 and O specify the power-switching mode. 00=Ganged; al ports are
powered together. 01=Ports are powered individudly. 1X: used only on 1.0
hubs with no power switching.

Bit 2 indicates whether the hub is part of a compound device (1) or not (0).

429

Hubs: the Link between Devices and the Host

Bits 4 and 3 are the Overcurrent Protection mode. 00 = Globa protection
and reporting. 01=Protection and reporting for each port. 1X = No protec-
tion and reporting (for bus-powered hubs only).

Bits 6 and 5 are the Transaction Trandator Think Time. These hits indicate
the maximum number of full-speed bit times required between transactions
on a low- or full-speed downstream bus. 00 = 8; 01 = 16; 10 = 24; 11= 32.
Appliesto 2.0 hubs only.

Bit 7 indicates whether the hub supports Port Indicators (1) or not (0).
Appliesto 2.0 hubs only.

Bits 8 through 15 are reserved.

bPwrOn2PwrGood. The maximum delay between beginning the
power-on sequence on a port and when power is good on the port. The
vaueisin units of 2 milliseconds. (Set to 100 for a 200-millisecond delay.)

bHubContrCurrent. The maximum current required by the Hub Control-
ler's eectronics only, in milliamperes.

DeviceRemovable. Indicates whether the device(s) attached to the hub are
removable (0) or not (1). The number of bits in this vaue equas the num-
ber of the highest port with an attached device + 1. Bit O is reserved. Bit 1 is
for Port 1, bit 2 isfor Port 2, and so on up.

PortPower CtrIMask. All bits should be 1s. This field is only for compatibil-
ity with 1.0 software. Each port has one bit, and the field should be padded
with additiona 1s o that the field's Size in bitsis a multiple of 8.

Hub-class Requests

All hubs accept or return data for seven of the USB's eleven standard
requests. Some 2.0 hubs support an additional request. Of the other
requests, one is optional and the other two are undefined for hubs. Like al
devices, hubs must return STALL for unsupported requests.

Hubs respond in the standard way to Clear Feature, Get Configuration,
Get_Descriptor, Get_Status, Set_Address, Set Configuration, and
Set_Feature requests. Set_Descriptor is optional and should return STALL if

430

Chapter 18

Table 18-1: The 2.0 hub class has 12 class-specific requests, while the 1.x hub
class has 9. Many are hub-specific variants of USB's standard requests.

Specific [USB bRequest [Daa Vdwe [index |Daa Data
Request Versions source Lexgth |(inthe
(bytes) |Daa
(Daa stage)
stage)
Clear Hub |4l Clear_ [none festure |0 0 none
Feature Feature
Clear Port |4l Clear_ |nore festure | port 0 none
Feature Feature
Clear TT [200nly [Clear TT |{nore deice |[TT port |0 none
Buffer _Buffer address,
endpant #
Get Bus 1x oy Get_State |Hub 0 port 1 per-port
State bus state
Get Hub dl Get Hub descriptor{O or descriptor |descriptor
Descriptor Descriptor type& language |[length
index ID
Get Hub Sta-|dl Get_ Hub 0 0 4 hub status
tus Status and
change
indicators
Get Port al Get_ Hub 0 port 4 port status
Status Status and
change
indicators
Get TT State{2.0 only [Get TT |hub TT flags |port TT state, |TT state
State length
Reset TT [20o0nly |Reset TT |none 0 port 0 none
Set Hub al Set_ |host descriptor|0 or descriptor | descriptor
Descriptor Descriptor type& |language |length length
(optional) index ID
Set Hub al Set_ none feature |0 0 none
Feature Feature
Set Port dl Set_ none feature |port 0 none
Feature Feature
StopTT 20o0nly |Stop TT |none 0 port 0 none

431

Hubs: the Link between Devices and the Host

Table 18-2: The host can monitor and control Status bits in a hub using
Get_Hub_Status, Set Hub_Feature, and Clear_Hub_Feature.

Fied Bit Status I ndicator Meaning, with O statefirs, followed by
1 state.
HubSaus |0 HUB_LOCAL POWER Local power supply is good/not active.
1 HUB OVER CURRENT An over-current condition exists/does not
exist.
215 |reserved Returns O when read.
Hub Change |0 C HUB LOCAL_POWER Local power status has not changed/
changed.
1 C HUB OVER CURRENT Over-current status has not changed/
changed.
215 |reserved Returns O when read.

not supported. Only 2.0 hubs that support multiple transaction trandators
support Get_Interface and Set_Interface. A hub can't have an isochronous
endpoint, so Synch_Frame is undefined.

The hub class defines eight hub-specific requests that build on the standard
requests with hub-specific values. For example, a Get Status reguest
directed to a hub with an Index vaue of 0 causes the hub to return a vaue in
a Data packet indicating whether the hub is using an externa power supply
and whether an over-current condition exigts.

Table 18-1 shows the hub-specific requests. One request from the 1.x speci-
fication, Get_Bus State, isn't included in the 2.0 spec. This request enables
the host to read the states of D+ and D- at a specified port on the hub.

The host uses many of the hub-specific requests to monitor and control the
dtatus of the hub and its ports. Get Hub Status reads status bits in a hub.
Set Hub Feature and Clear Hub Feature set and clear status bits in a hub.
Table 18-2 shows the bits and their meanings. In a smilar way,
Get_Port_Status, Set Port Feature, and Clear Port_Feature enable the host
to read and control status bits for a selected port in a hub. Table 18-3 shows
the bits and their meanings.

In 2.0 hubs, Set Port Feature can place a port in one of five Test Modes.
Chapter 20 has more about these modes.

432

Chapter 18

Table 18-3: The host can monitor and control Status bits at a port using
Get_Port_Status, Set_Port_Feature, and Clear_Port_Feature.

Fed Bit Status | ndicator Meaning, with O state first, followed by
1 state.
Port Status |0 PORT_CONNECTION A device is not present/present.
1 PORT_ENABLE The port is disabled/enabled.
2 PORT_SUSPEND The port is not/is in the Suspend state.
3 PORT OVERCURRENT An over-current condition exists/does not
N exist.
4 PORT_RESET The hub is not/is asserting Reset at the
port.
5-7 reserved Returns O when read.
8 PORT_POWER The port is/isnot in the Powered Off
state.
9 PORT _LOW_SPEED The attached deviceisfull or high
speed/low speed.
10 PORT HIGH SPEED The attached deviceisfull speed/high
speed. (2.0 hubs only)
11 PORT TEST The port is not/isin the Port Test mode.
N (2.0 hubs only)
12 PORT_NDICATOR Port indicator displaysdefault/software
controlled colors. (2.0 hubs only)
1315 |reserved Returns 0 when read.
Port Status |0 C_PORT_CONNECTION Connect status has not changed/changed.
Change 7 C PORT ENABLE A Port Error condition does not/does
exist.
2 C _PORT_SUSFEND Resume signaling is not/is complete.
3 C PORT OVERCURRENT |Theover-current condition has not/has
changed.
4 C PORT RESET Reset processing is not/is complete.
515 |reserved Returns 0 when read.

The four new requests n the 2.0 spec al relate to controlling and trouble-
shooting the transaction trandator (TT). The requests enable the host to
clear a buffer in the TT, stop the TT, retrieve the state of a stopped TT using
avendor-specific format, and restart the TT by resetting it.

433

Hubs: the Link between Devices and the Host

Port indicators

The 2.0 specification defines optiond indicators to indicate port status to
the user. Many hubs have status LEDs. The 2.0 specification assigns star+
dard meanings to the LEDsS colors and blinking property. Bit 7 in the
wHubCharacterigtics field in the hub descriptor indicates whether a hub has
port indicators.

Each downstream port on a hub can have an indicator, which can be either a
sngle bi-color green/famber LED or a separate LED for each color. The
indicator tells the state of the hub's port, not the attached device. These are

the meanings of the indicators to the user:
Green: fully operational
Amber: error condition
Blinking off/green: software attention required
Blinking off/amber: hardware attention required
Off: not operational

434

Managing Power

19

Managing Power

One very convenient feature of USB is the ability for peripherals to draw
power from the bus. Many devices can be entirely bus powered. But drawing
power from the bus dso carries the responsbility to live within the limits of
avalable power, including entering the low-power Suspend state when
required.

This chapter will help you decide whether or not your design can use bus
power. And whether your design is bus-powered or self-powered, you'll find
out how to ensure that your design follows the specification's requirements
for power management and conservation.

Powering Options

Inside a typica PC is a power supply with amperes to spare. Many USB
peripheras can take advantage of this existing capability rather than having
to provide their own redundant supplies.

435

Chapter 19

The ability to draw power from the same cable that carries data to and from
the PC has several advantages. From the user's point of view, it eiminates
the need for an electrical outlet near the periphera and makes the periphera
smdler and lighter. From the manufacturer's point of view, it makes periph-
erals cheaper to manufacture. A bus-powered device can aso save energy,
because power supplies in PCs use efficient switching regulators rather than
the cheap linear regulators in the "wadl bugs' that many peripherds provide
in place of an interna supply. (But most salf-powered hubs use wall bugs.)

Before USB, most peripherals used the PC's RS-232 seria and printer ports.
Neither of these includes a power-supply line. The ability to use bus power
is so compelling that the designers of some peripheras that connect to these
ports use schemes that borrow the small amount of current available fom
unused data or control outputs in the interface. With a super-efficient regu-
lator, you can get a few milliamperes from a seria or paralel port to power a
device. Another approach used by some peripherals is to kludge onto the
keyboard connector, which does have access to the PC's power supply. With
USB, you don't have to resort to these tricks.

Voltages

The nomina voltage between the VBUS and GND wires in a USB cable is
5V, but the actua value can be alittle more or quite a bit less. A device that's
using bus power must be able to handle the variations and till comply with
the specification.

These are the minimum and maximum voltages allowed a a hub's down-
stream ports.

Hub Type [Minimum Voltage |Maximum Voltage
High Power|4.75 5.25
Low Power|4.4 5.25

To dlow for cable and other losses, devices should be able to function with
supply voltages a few tenths of a volt less than the minimum available at the
hub's connector. In addition, transient conditions can cause the voltage a a
low-power hub's port to drop briefly to as low as 4.07V.

436

Managing Power

If components in the device need a higher voltage, the device can contain a
step-up switching regulator. Most USB controller chips require a +5V or
+3.3V supply. Components that use 3.3V are handy because the device can
use an inexpensive, low-dropout linear regulator to obtain 3.3V.

Which Peripherals Can Use Bus Power?

Not every periphera can take advantage of bus power. Although USB can
provide generous amounts of current in comparison to other interfaces, the
current available from the PC's power supply or an external hub does have
limits. Figure 19-1's chart will help you decide whether a device can use bus
power.

Advances in semiconductor technology have reduced the power required by
electronic devices. This is good news for designers of bus-powered devices.
Thanks to CMOS processes used in chip manufacturing, lower supply volt-

ages for components, and power-conserving modes in CPUs, you can do a
lot with 100 milliamperes.

A periphera that requires up to 100 milliamperes can be bus powered and
will work when attached to any host or hub. A periphera that requires up to
500 milliamperes can use bus power with limitations. not every battery-
powered computer and no bus-powered hub supports peripherals that draw
more than 100 milliamperes from the bus.

Of course, some devices need to function when they're not attached to the
hogt at al. A digital camera is an example. These will need their own sup-
plies. Self power can use batteries or power from a wall socket. To save bat-
tery power without requiring users to plug in a supply, a device can be
designed to be bus-powered when connected to the bus and self-powered
otherwise.

A device in the Suspend state can draw very little current from the bus, so

some devices will need their own supplies to enable operating when the host
has put the device in the Suspend state.

437

Chapter 19

wihen not attoched to the bus?

Does the device need fo function '

Mo Yes
_ }, Self power
reguired
Does the device drow mora than 500
millomperes?
Mo Yes
. Self power
~ requinad

millarmperas?

Does the device draw more than 100 ‘

Mo Yes
|
J/
Bus power Ok

Does the device nead to be able fo
operate from all battery-powered
computens and bus-powerned hulbs?

e [Yas

4
Bus power COK Self power reguired

Figure 19-1: Not every device can use bus power alone. A bus-powered device
must also meet the specification's limits for Suspend current.

Power Needs

The specification defines a low-power device as one that draws up to 100
milliamperes from the bus, and a high-power device as one that draws up to
500 milliamperes from the bus. A sdf-powered device has its own power
supply and can draw as much power as its supply is capable of .

On power-up, any device can draw up to 100 milliamperes from the bus
until the device is configured. This enables salf-powered devices to be enu-

438

Managing Power

merated even if the user hasn't yet attached or switched on an externa sup-
Ay.

A high-power device can't draw more than 100 milliamperes until the host
has sad it's OK to do so. This typically happens during enumeration. After
retrieving a configuration descriptor, the host examines the amount of cur-
rent requested in MaxPower, and if the current is available, it sends a
Set Configuration request specifying the configuration. So a high-power
device must be able to enumerate at low power.

A sdf-powered device may aso draw up to 100 milliamperes from the bus at
any time. This enables the device's USB interface to function when the
device's power supply is off, so the host can detect and enumerate the device.
Otherwise, if a device's pull-up is bus-powered but the rest of the interface is
sdf-powered, the host will detect the device but won't be able to communi-
cate with it.

These limits are absolute maximums, not averages. And remember that the
buss power-supply voltage can be as high as 5.25V, which may result in
greater current consumption. A device never provides upstream power. Even
the pull-up resistor must remain unpowered until VBUS is present. So a sdlf-
powered device must have a connection to VBUS to detect the presence of
bus power even if the device never usesit.

Informing the Host

During enumeration, the host learns whether the device is sdf powered or
bus powered and the maximum current the device will draw from the bus.
As Chapter 5 explained, each device's configuration descriptor holds a Max-
Power value that gecifies the maximum bus current the device requires. All
hubs have over-current protection that prevents excessive current from flow-
ing to adevice.

If you connect a high-power device to a low-power hub, Windows will dis-
play a message informing you that the hub doesn't have enough power avail-
able and offering assistance. If the bus has alow-power device connected to a

439

Chapter 19

158 Hub Power Exceed ey

; (sl HID-compliant device
= Q Ganaral purposa LISB Hub (4 ports)

Unused Fort
Unused Port
Uruaed FPort

Figure 19-2: Windows wams users when they connect a high-power device to a
low-power hub, and helps them find an alternate connection.

high-power port, Windows will recommend swapping the device with the
high-power device (Figure 19-2).

A device can support both bus-powered and self-powered options, using self
power when available and bus power (possibly with limited ahilities) other-
wise. When the power source changes, the host must re-enumerate the hub.
To enable forcing a re-enumeration, power to the device's bus pull-up resistor
may be controlled by a FET. Switching the FET off briefly, then back on,
smulates a disconnect and re-connect. If the device doesn't have this feature,
users will need to remove the device from the bus before attaching or
removing the power supply. The device reports its use of bus or self power in
response to a Get_Status (Device) request from the host.

440

Managing Power

Hub Power

Powering options for hubs are smilar to those for other devices, but hubs
have some speciad consderations. A hub must aso control power to its
devices and monitor power consumption, taking action when the devices are
using too much current and presenting a safety hazard.

Power Sources

Like other devices, al hubs except the root hub are self-powered or bus-
powered. The root hub gets its power from the host.

If the host uses AC power from a wall socket or another external source, the
root hub must be high power and capable of supplying 500 milliamperes to
each port on the hub. If the host is battery-powered, the hub may supply
either 500 or 100 milliamperes to each port on the hub. If it supplies 100
milliamperes, the hub is defined as alow-power hub.

Bus-powered hubs are limited. All of a bus-powered hub's downstream
devices must be low power. This is because the hub can draw no more than
500 milliamperes and the hub itsdf will use some of this, leaving less han
500 milliamperes for al attached devices combined. Many peripherals can
function with 100 milliamperes or less. If you connect two bus-powered
hubs in series, the upstream hub can guarantee no more that 100 milliam-
peres to each downstream port, and hat doesn't leave enough current to
power a second hub that also has one or more downstream ports, each
requiring 100 milliamperes.

An exception is a bus-powered compound device, which consists of a hub
and one or more downstream, non-removable devices. In this case, the hub's
configuration descriptor can report the maximum power required by the
hub dectronics plus its non-removable device(s). The configuration descrip-
tors for the non-removable device(s) report that they are self-powered, with
MaxPower equa to zero. The hub descriptor indicates whether a hub's ports
are removable.

Like other high-power, bus-powered devices, a bus-powered hub can draw
up to 100 milliamperes until it's configured, and up to 500 milliamperes

441

Chapter 19

after being configured. During configuration, the hub must manage the
available current so that its devices and the hub combined don't exceed the
allowed current. A possible use for a bus-powered hub would be a hub with
an embedded keyboard and pointing device. The keyboard and mouse use
little power, so the hub can easily use bus power.

Like other sdlf-powered devices, a self-powered hub may also draw up to
100 milliamperes from the bus so the hub interface can continue to func-
tion when the hub's power supply is off. If the hub's power is from an exter-
nal source, such as AC power from a wall socket, the hub is full power and
must be capable of supplying 500 milliamperes to each port on the hub. If
the hub uses battery power, the hub may supply 500 or 100 milliamperes to
each port on the hub. Because of the confusion that can result when
high-power devices are attached to low-power hubs, Microsoft and Intel's
PC 2001 System Design Guide requires most hubs to be self powered. The
exceptions are hubs that are integrated into keyboards or mobile systems.

Over-current Protection

As a safety precaution, hubs must be able to detect an over-current condi-
tion, which occurs when the current used by the total of all devices attached
to the hub exceeds a preset value. When the port circuits on a hub detect an
over-current condition, they limit the current at the port and the hub
informs the host of the problem. Windows warns the user when a device
exceeds the current limits of its hub port (Figure 19-3).

The specification doesn't name a vaue to trigger the over-current actions,
but it must be less than 5 amperes. To alow for transient currents, the over-
current value should be greater than the tota of the maximum alowed
currents for the devices. In the worst case, seven high-power, bus-powered
downstream devices can legaly draw up to 3.5 amperes. So a supply for a
sdf-powered hub with up to seven downstream ports would provide much
less than 5 amperes at dl times unless something goes very wrong.

The specification dlows a device to draw larger inrush currents when it
attaches to the bus. However, this current is typically provided by the stored

442

Managing Power

| Hub Carrend Limil Excaeded

= e USE Root Hub (2 pots)
! g HID-compliant device
B

General purpose USE Hub (4 ports)
Linussad Font
Linused For
Unknown U3HE Device
Unusad Port

Figure 19-3: When a device exceeds the current limit of its hub's port, Windows
warns the user and offers assistance.

energy in a capacitor that is downstream from the over-current protection
circuits.

Power Switching

A bus-powered hub must have circuits that can provide and cut off power to
its downstream ports. A single switch may control al ports, or the ports may
switch individualy. The PC 2001 System Design Guide requires the ports on
bus-powered hubs to be individually power switchable. A self-powered hub
must support switching to the Powered Off state, and may also support
power switching to its downstream ports.

443

Chapter 19

Saving Power

The USB's Suspend state ensures that a device doesn't consume power from
the bus when the host has no reason to communicate with it. A device enters
the Suspend state when there is no activity on the bus for a time, or when
the host sends a request to suspend to the device's hub.

The amount of current that a suspended device can draw is limited to a few
milliamperes if it's high power and supports remote wakeup, and much less
if not. A device that needs to function even when the host has ceased com-
municating may need to be sef-powered. However, many peripheral con-
trollers can shut down, consuming very little power, and ill detect when
there is activity requiring attention on an 1/0 pin.

Global and Selective Suspends

Most suspends are global, where the host stops communicating with the
entire bus. When a PC detects no activity for a period of time, the PC enters
a low-power state and stops sending Start-of-Frame packets on the bus.
When a full-or high-speed device detects that no Start-of-Frame packet has
arrived for 3 milliseconds, it enters the Suspend state. Low-speed devices do
the same when they haven't received a low-speed keep-dive sgnd for 3 mil-
liseconds.

A host may aso suspend an individual device by sending a Set_Port_Feature
request to the device's hub with the Index field set to the port number and
the Value field set to Port Suspend. (See Chapter 18.) This instructs the
hub to stop sending any traffic, including Start-of-Frames or low-speed
keep-dlives, to the named port. The specification defines this as a selective
suspend.

Current Limits for Suspended Devices

A low-power device can draw no more than 500 microamperes from the bus
when in the Suspend state. This is very little current, and it includes the cur-
rent through the device's bus pull-up resistor. As Figure 19-4 shows, the

444

Managing Power

25K/ -5%

I
£
&
:], D+ (FULL SPEED) OR D- (LOW SPEED)
DEVICE €— :

_[o
173 TO 2538 MICROAMPERES ‘ § :

Figure 19-4: The allowed bus current in the Suspend state includes the current

through the device's pull-up.
pull-up current flows from the devices pull-up supply, which must be
between 3.0 and 3.6V, through the 1.5-kilohm pullup and the hub's
15-kilohm pull-down, to ground. In the worst case, with a pull-up voltage
of 3.6V and resistors that are 5% less than their nomina values, the pull-up
current is 230 microamperes, leaving just 270 microamperes for everything
else.

High-speed devices, which don't use pull-ups in norma communications,
must switch to full speed and use a pull-up when entering the Suspend state.
So high-speed devices have the same restriction on available current.

A high-power device that supports remote wakeup and whose
remote-wakeup feature has been enabled by the host can draw up to 2.5 mil-
liamperes from the bus. This aso includes current through the pull-up resis-
tor. Every device connects as low power, so every device should be able to
meet the 500-microampere limit if the host suspends the device before con-
figuring it as high power with remote wakeup enabled.

The limits are averages over intervals of up to 1 second, so brief peak cur-
rents can be greater. For example, a flashing LED that draws 20 milliam+
peres for one tenth of each second draws an average of 2 milliamperes per
second.

A device should begin to enter the Suspend state after its bus segment has
been in the Idle state for 3 milliseconds. The device must be in the Suspend
state after its bus segment has been in the Idle state for 10 milliseconds.

445

Chapter 19

When USB 2.0 was released, the document USB Feature Specification: Inter-
face Power Management was under development. This document describes a
protocol for managing power at the interface level instead of just the device
level, to enable more precise and effective power conservation.

Resuming Communications

When a device is in the Suspend state, two actions can cause it to enter the
Resume state and restart communications. Any activity on the bus will cause
the device to enter the Resume state. And if the device's remote wakeup fea
ture is enabled by the hogt, the device itself may request a resume at any
time.

To resume, the host places the bus in the Resume state (the K state, defined
in Chapter 20) for at least 20 milliseconds. The host follows the Resume
with a low-speed End-of-Packet signal. (Some hosts incorrectly send the
End-of -Packet after just afew hundred microseconds.) The host then
resumes sending Start-of-Frame packets and any other communications
requested by the device driver.

A device causes a Resume by driving its upstream bus segment in the
Resume state for between 1 and 15 milliseconds. The device then places its
drivers in a high-impedance state to enable receiving traffic from its
upstream hub. A device may send the Resume at any time on a suspended
bus, as long as the bus has been suspended for at least 5 milliseconds. The
host controller software must alow al devices a least 10 milliseconds to
recover from a Resume.

Monitoring the bus to determine whether to enter the Suspend state may
require firmware support. The resume signding is normaly handled by the
device's SIE and requires no firmware support.

On some early Intel host controllers, a suspended root port didn't respond
correctly to a remote wakeup. In addition, using remote wake-up requires
work-arounds under Windows 98 Gold, Windows 98 SE, and Windows
Me. With these operating systems, the device may wake up properly, but the
device's driver isn't made aware of it, SO communications can't resume. A
white paper from Intd titled Understanding WDM Power Management by

446

Managing Power

Kosta Koeman details the problem and solutions. In short, a device using
these operating systems shouldn't place itself in the Suspend state unless the
host requests it, and the device driver requires extra code to ensure that the
wake-up completes successfully. This isn't a problem under Windows 2000.
The white paper is available from the USB Implementers Forum's website.

447

Signals and Encoding

20

Signhals and Encoding

You can design a USB peripheral without knowing al of the details about
how the data is encoded on the bus. But understanding something about
these helps in understanding USB's abilities and limits.

This chapter presents the essentials of the USB's encoding and data formats.
The specification has the details. Another good source for detailed informa-
tion on the low-level signaling is the book Universal Serial Bus Architecture
by Don Anderson and Dave Dzatko.

Bus States

The specification defines several bus states that correspond either to signal
voltages on the bus or conditions that these voltages signify. Different seg
ments on a bus may be in different states at the same time. For example, in
response to a request from the host, a hub might place one of its down
stream ports in the Reset state while its other ports are in the Idle state.
Low/full speed and high speed each have different defined bus states,
though with many similarities.

448

Chapter 20

Low- and Full-speed Bus States

Low and full speed support the same bus dtates, though some are defined
differently depending on the speed.

Differential 1 and Differential O

When transferring data, the two states on the bus are Differentia 1 and Dif-
ferentia 0. A Differential 1 exists when D+ is a logic high and D- isalogic
low. A Differential 0 exists when D+ is a logic low and D- is a logic high.
Chapter 21 has details about the voltages that define logic low and high.

The Differential 1 s and Os don't trandate directly into 1 s and Os in the bytes

being transmitted, but instead indicate either a change in logic level, no
change in logic level, or a bit stuff, as explained later in this chapter.

Single-Ended Zero

The Single-Ended-Zero state occurs when both D+ and D are logic low.
The bus uses the SingleEnded-Zero state when entering the End-of-Packet,
Disconnect, and Reset states.

Single-Ended One

The complement of the Single-Ended Zero is the Single-Ended One. This
occurs when both D+ and D- are logic high. This is an invdid bus state and
should never occur.

Data J and K States

In addition to the Differential 1 and O states, which are defined by voltages
on the lines, USB aso defines two Data bus gates, J and K. These are
defined by whether the bus state is Differential 1 or O and whether the cable
segment is low or full speed:

Bus State Data State

Low Speed Full Speed
Differential 0|J K
Differential 1 |K J

449

Signals and Encoding

Defining the J and K dates in this way makes it possible to use one termi-
nology to describe an event or logic state even though the voltages on low-
and full-speed lines differ. For example, a Start-of-Packet state exists when
the bus changes from Idle to the K state. On a full-speed segment, this
means that D- becomes more postive than D+, while on a low-speed seg
ment, it means that D+ becomes more positive than D-.

ldle

In the Idle state, no drivers are active. On a full-speed line, D+ is more posi-
tive, while on a low-speed line, D- is more positive. Shortly after device
atachment, the hub determines whether a device is low or full speed by
checking the voltages on the Idle bus.

Resume

When a device is in the Suspend state, the Data K state signifies a resume
from the state.

Start-of-Packet

The Start-of-Packet bus state exists when the lines change from the Idle state
to the K data state. Every transmitted low- or full-speed packet begins with a
Start of Packet.

End-of-Packet

The End-of-Packet state exists when a receiver has been in the Sin-ge-
Ended-Zero state for at least one bit time, followed by a Data J state for at
least one bit time. A receiver may optiondly define a shorter minimum
time for the Data J state. At the driver, the Single-Ended Zero is approxi-
mately two bit widths. Every transmitted low- or full-speed packet ends with
an End of Packet.

Disconnect State

A downgtream port is in the Disconnect state when a Single-Ended Zero has
lasted for at least 2.5 microseconds.

450

Chapter 20

Connect

A downstream port enters the Connect state when the bus has been in the
Idle state for at least 2.5 microseconds and no more than 2.0 milliseconds.

Reset State

When a Single-Ended Zero has lasted for 10 milliseconds, the device must
be in the Reset state. A device may enter the Reset state after the Single-
Ended Zero has lasted for as little as 2.5 microseconds. A full-speed
device that is capable of high-speed communications performs the
high-speed handshake during the Reset state.

When a device exits the Reset state, it must be operating at its correct speed
and must respond to communications directed to the default address (00h).

High-speed Bus States

Many of the high-speed bus states are similar to those for low and full speed.
A few are unique to hgh speed, and some low- and full-speed bus states
have no equivaent a high speed.

High-speed Differential 1 and Differential O

The two bus states that exist when transferring high-speed data are
High-speed Differential 1 and High-speed Differential 0. As with low and
full speeds, a High-speed Differential 1 exists when D+ is a logic high and
D- is alogic low, and a High-speed Differential 0 exists when D+ is a logic
low and D is a logic high. The voltage requirements differ a high speed,
however, and high speed has additional requirements for AC differentia lev-
ds

451

Signals and Encoding

High-speed Data J and K States

The definitions for High-speed Data J and K states are identical to those for
full-speed Jand K:

Bus State Data State,

High Speed

Differential 0 |K

Differential 1 [J

Chirp J and Chirp K

The Chirp J and Chirp K bus dtates are present only during the high-speed
detection handshake. This occurs when a 2.0 hub has placed a downstream
bus segment in the Reset state. Chirp J and K are defined as DC differential
voltages. In a Chirp J, D+ is more podtive, and in a Chirp K, D is more
positive.

A high-speed device must use full speed when it first attaches to the bus.
The high-speed detection handshake enables a high-speed device to tell a
2.0 hub that it supports high speed and then to trangition to high-speed
communications.

As Chapter 5 explained, shortly after detecting device attachment, a device's
hub places a device's port and bus segment in the Reset state. When a high-
speed-capable device detects the Reset, it sends a Chirp K to the hub for 1
to 7 milliseconds. A 2.0 hub that is communicating upstream a high speed
detects the Chirp K and in response, sends an aternating sequence of Chirp
Ks and Js. The sequence continues until shortly before the Reset state ends.
At the end of Reset, the hub places the port in the High-speed Enabled
State.

On detecting the Chirp K and J sequence, the device disconnects its ful-
speed pull-up, enables its high-speed terminations, and enters the high-
speed Default state.

A 1.x hub ignores the device's Chirp K. When the device doesn't see the
answering sequence, it knows that it must remain at full speed.

452

Chapter 20

High-speed Squelch
The High-speed Squelch state indicates an invalid signa. High-speed receiv-

ers must include circuits that detect the Squelch state, indicated by a differ-
ential bus voltage of 100 millivolts or less.

High-speed Idle

In the High-speed Idle state, no high-speed drivers are active and the
low/full-speed drivers assert Single-Ended Zeroes. Both D+ and D- are
between -10 and +10 millivolts.

Start of High-speed Packet

The Start-of-High-speed-Packet (HSSOP) state exists when a segment
changes from the High-speed Idle state to the High-speed Data K or J state.
Every high-speed packet begins with a Start of High-speed Packet.

End of High-speed Packet

The End-of-High-speed-Packet (HSEOP) bus state exists when the bus
changes from the High-speed Data K or J state to the High-speed Idle state.
Every high-speed packet ends with an End of High-speed Packet.

High-speed Disconnect

Removing a high-speed device from the bus aso removes the high-speed line
terminations at the device. This causes the differential voltage at the hub to
double. A differentid voltage of 625 millivolts or more indicates the
High-speed Disconnect state. A 2.0 hub contains circuits that detect this
voltage.

Data Encoding

All data on the bus is encoded. The encoding format, caled Non-Return to
Zero Inverted (NRZI) with bit stuffing, ensures that the receiver remains syn-
chronized with the transmitter without the overhead of sending a separate
clock signa or Start and Stop bits with each byte.

453

Signals and Encoding

DATA TO SEND 2 le1 @1 0@1110

WEPE X e 1 |

Uwé?|'Frc3ﬁ:ﬁ. IDLE | | [1 |

NO BIT STUFE

REQUIRE

DATA TO SEND @ L1 1 LT 190

DATA SENT ' ' Tl

(NRZI ENCODED IDLE | | L

WITH BIT STUFF) 1111 1¢€¢11ee
BIT STUFF

Figure 20-1: In NRZI encoding, a 0 causes a change and a 1 causes no change.
Bit stuffing adds a O after six consecutive 1s.

If you use an oscilloscope or logic andlyzer to view USB data on the bus,
you'll find that unlike other interfaces, reading the bits isn't as easy as match-
ing voltage levelsto logic levels.

Instead of defining logic Os and 1s as voltages, USB defines logic 0 as a volt-
age change, and logic 1 as a voltage that remains the same. Figure 20-1
shows an example. Each logic O results in a change from the previous state.
Each logic 1 results in no change in the voltages. The bits transmit least-9g-
nificant-bit (LSB) firgt.

Fortunately, the USB hardware does dl of the encoding and decoding auto-
matically, so device developers and programmers don't have to worry about
it. The encoded data makes it difficult to interpret the data on an oscillo-

scope or logic andyzer, but the solution is to use a protocol anayzer that
decodes the data for you.

454

Chapter 20

Staying Synchronized

When two devices exchange data, the receiving device needs a way to know
when each bit is avalable to be read. With RS-232, the transmitter and
receiver each have their own clock reference, and both must agree on a hit
rate for exchanging data. Each transmitted word begins with a transition
from the Idle state to a Start bit. The receiver synchronizes to this transition
and then uses timing circuits and the agreed-on bit rate to read each hit in
the middle of each bit time. The Stop bit returns the link to the Idle state so
the next Start bit can be detected.

If the transmitter's and receiver's clocks differ by up to a few percent, the
receiver will gill be able to read ten or eleven bits before the timing gets so
far off that bits are misread. Each new transmitted word has a Start bit that
resynchronizes the clocks.

But adding a Start and Stop bit to each data byte adds 25 percent overhead.
A 9600-bps link with 8 data bits and one Start and Stop bit transmits only
7680 data bits (960 bytes) per second.

Another approach used by SPI, FC, and Microwire interfaces is to send a
clock signa aong with the data. The protocol defines when to read the bits,
either on detecting a rising or faling edge or a high or low logic level. Send-
ing a clock requires an extra signa line, however, and a noise glitch on the
clock line can cause misread data.

NRZI requires no Start and Stop bits or clock line. Instead, USB uses two
other techniques to remain synchronized: bit stuffing and SYNC fields.
Each adds some overhead to each transaction, but the amount is minimal
with larger packets.

Bit Stuffing

Bit stuffing is required because the receiver synchronizes on transtions. If
the data is all Os, there are plenty of transitions. But if the data contains a
long string of 1 s, the lack of transitions could cause the receiver to get out of
sync.

455

Signals and Encoding

If data has six consecutive 1s, the transmitter stuffs, or inserts, a O (repre-
sented by a trangition) after the sixth 1. This ensures at least one transition
for every seven hit widths. The receiver detects and discards any bit that fol-
lows six consecutive 1s.

Considering just the data bytes, there are only three values with six consecu
tive 1s:

00111111
01111110
11111100

Bit stuffing can increase the number of transmitted bits by up to 17 percent.
In practice the average is much less. The bit-stuffing overhead for random
dataisjust 0.8 percent, or one Stuff bit per 125 data hits.

SYNC Field

Bit stuffing aone isn't enough to ensure that the transmitting and receiving
clocks in a transfer are synchronized. Because devices and the host don't
share a dock, the receiving device has no way of knowing exactly when a
tranamitting device will send a transition that marks the beginning of a new
packet. A single transition isn't enough to ensure that the receiver will
remain synchronized for the duration of a packet.

To keep things synchronized, each packet begins with a SYNC fied to
enable the recelving device to dign, or synchronize, its clock to the transmit-
ted data. For low and full speeds, the SYNC pattern is eight bits:
KJIKIKIKK. The transition from te Idle to the first K serves as a sort of
Start bit that indicates the arrival of a new packet. There's one SYNC field
per packet, rather than a Start bit for each byte.

For high speed, the SYNC pattern is 32 hits: fifteen KJ repetitions, followed
by KK. A high-speed hub repeating a packet can drop up to four bits from
the beginning of the sync field, so a SYNC field repeated by the fifth exter-
nal hub series can be as short as 12 bits.

The dternating Ks and Js provide the transitions for synchronizing, and the
fina two Ks mark the end of the field. By the end of the SYNC pattern, the

456

Chapter 20

recelving device can determine precisely when each of the remaining bits in
the packet will arrive. The price to pay for synchronizing is the addition of 8
to 32 bit times to each packet. This means that large packets are much more
efficient than smaller ones.

End of Packet

An End-of-Packet signal returns the bus to the Idle state in preparation for
the next SYNC field. The End-of-Packet signd is different for low/full and
high speed.

The low- or full-speed End of Packet is a Single-Ended-Zero that lasts for
two bit widths.

At high speed, it's more complicated. High-speed receivers treat any bit-stuff
error as an End of Packet, so the End of High-speed Packet must cause a hit-
stuff error.

For dl high-speed packets except Start-of-Frame packets, the End of
High-speed Packet is an encoded byte of 01111111, without bit stuffing. If
the preceding bit was a J, the End of High-speed Packet is KKKKKKKK.
Theinitid O causes the first bit to be a change of state from J to K, and the
following 1s mean that the rest of the bits don't change. If the preceding bit
was a K, the End of High-speed Packet is JJJJJJJJ. The initial O causes the
first bit to be a change of state from K to J, and the following 1s mean that
the rest of the bits don't change. In either case, a sequence of seven bits with-
out a transition causes a bit stuff error.

In high-speed Start-of-Frame packets, the End of High-speed Packet is 40
bits. This dlows a hub time to detect the doubled differential voltage that
indicates that a device has been removed from the bus. The encoded byte
begins with a zero, followed by 39 ones, which results in an End of
High-speed Packet consisting of 40 Js or 40 Ks. As with low and full speeds,
thisresultsin a bit-stuff error that the receiver treats as an End of Packet.

Timing Accuracy

A tradeoff of speed is more stringent timing requirements. USB's high speed
has the most critical timing, followed by full and low speeds.

457

Signals and Encoding

Devices typicaly derive their timing from a crystal. Many factors can affect a
crystd's frequency, including initial accuracy, capacitive loading, aging of the
crystal, supply voltage, and temperature. Crystal accuracy is often gecified
as parts per million (ppm), which is the maximum number of cycles the
crystal may vary in the time required for 1 million cycles at the rated fre-
quency.

High speed's bit rate of 480 Megabits per second can vary no more than
0.05 percent, or 500 pm. Full speed's bit rate of 480 Megahits per second
can vary no more than 0.25 percent, or 2500 ppm. Low speed's bit rate can
vary up to 1.5%, or 15,000 ppm. Low-speed devices can use inexpensive
ceramic resonators rather than quartz crystals. Low speed's greater tolerance
means that low-speed devices can use less expensive components and cables,
though the need for dower edge rates actually increases the manufacturing
cost of low-speed chips.

The data rate at the host or a 2.0 hub must be within 0.05%, o 500 ppm,
of the specified rate at al speeds. The frame intervals must be accurate as
well, a 1 millisecond +500 nanoseconds per frame or 125.0 £+62.5 micro-
seconds per microframe. To maintain this accuracy, hubs must be able to
adjust their frame intervals to match the host's. Each hub has its own timing
source and synchronizes its transmissions to the host's
Start-of -(micro) Frame signals.

The specification dso defines limits for data jitter, or small variations in the
timing of the individua bit transitions. The limits dlow smdl differences in

the rise and fal times of the drivers as well as clock jitter and other random
noise.

Packet Format

As Chapter 3 explained, all USB data travels in packets, which are blocks of
information with a defined format. The packets in turn contain fields, with
each field type holding a particular type of information. The field types are
SYNC, PID, address, endpoint, frame number, data, and CRC. Table 20-1
lists the fields and their purposes.

458

Chapter 20

Table 20-1: All USB traffic is in packets. Packets are made up of fields. The field
type determines its contents.

Name Size (bits) Packet Types Purpose
SYNC 8 al Start-of-packet and
synchronization
PID 8 al Identify the packet
type
Address 7 IN, OUT, Setup Identify the function
address
Endpoint 4 IN, OUT, Setup I dentify the endpoint
Frame Number 11 SOF I dentify the frame
Data 0108192 (1024 bytes) |DataO, Datal Data
for 2.0 hardware; 0 to
8184 (1023 bytes) for 1
X hardware
CRC 5o0r 16 IN, OUT, Setup, Detect errors
DataO, Datal
SYNC Field

Each packet begins with an 8-bit SYNC field, as described earlier. The
SYNC Field serves as the Start-of-Packet delimiter. This field may transmit
only on an Idle bus.

Packet Identifier Field

The packet identifier field (PID) is 8 bits. Bits O through 3 identify the type
of packet and bits 4 through 7 are the one's complement of these bits, for
usein error checking.

There are 16 defined PID codes for token, data, handshake and special
packets. Chapter 3 introduced these codes. The lower two bits identify the
PID type, and the upper two bits identify the specific PID.

459

Signals and Encoding

Address Field

The address field is seven bits that identify the function that the host is com-
municating with. The function is a device (which may be a hub), or a spe-
cific function in a compound device.

Endpoint Field

The endpoint field is four bits that identify an endpoint number within a
function. A low-speed function can have no more than 3 endpoint numbers.
A full- or high-speed function can have up to 16 numbers.

Frame Number Field

The frame-number field is eleven bits that identify the specific frame. The
hogt sends this field in the Start-of-Frame packet that begins each frame or
microframe. The number rolls over to 0 a 7FFh. A full-speed host main-
tains an 11 -bit counter that increments once per frame. A high-speed host
maintains a 14-bit counter that increments once per microframe. Only bits
3-13 of the microframe counter transmit in the frame number fidd, so the
frame number increments once per frame, with eght microframes in
sequence having the same frame number.

Data Field

The data field may range from O to 1024 bytes, depending on the transfer
type, the amount of data in the transaction, and the USB version. 1.x
devices support data fields of up to 1023 bytes.

CRC Fields

The CRC fidld is 5 bits for address and endpoint fields and 16 bits for data
fields. The bits are used in error-checking. The transmitting hardware
inserts the CRC bits and te receiving hardware does the required cacula-
tions; there's no need for program code to do it.

460

Chapter 20

Inter-packet Delay

USB carries data from multiple sources, in both directions, on one pair of
wires. Data can travel in just one direction at a time. To ensure that the pre-
vious transmitting device has had time to switch off its driver, the bus
requires a brief delay between the end of one packet and the beginning of
the next packet in a transaction. This delay time is limited, however, and
devices must be able to switch directions quickly.

The specification defines the delays differently for low/full and high speed.
The delays are handled by the hardware and require no support in code.

Test Modes

For use in compliance tegting, the 2.0 specification adds five new test modes
that al host controllers, hubs, and high-speed-capable devices must support.

Entering and Exiting Test Modes

An upstreamfacing port enters a test mode in response to a Set Feature
request with TEST_MODE in the wVaue fiddd. A downstream-facing port
enters a test mode in response to the hub-class request Set Port Feature
with PORT_TEST in the wVaue field. In both cases, the windex field con-
tains the port number and the test number. All downstream ports on a hub
with a port to be tested must be in the suspended, disabled, or disconnected
state.

An upstream-facing port exits the test mode when the device powers down
and back up. A downstream-facing port exits the test mode when the hub is
reset.

The Modes
These are the five test modes:

Test SEO_NAK
Value. 01h.

461

Signals and Encoding

Action. The transceiver enters and remains in high-speed receive mode.
Upstream-facing ports respond to IN token packets with NAK.

Purpose. Test output impedance, low-level output voltage, and loading
characteristics. Test device squelch-level circuits. Provide a stimulus-
response test for basic functional testing.

Test J

Value. 02h.

Action. The transceiver enters and remains in the High-speed Data J state.
Purpose. Test the high output drive level on D+.

Test K

Value. 03h.

Action. The transceiver enters and remains in the High-speed Data K state.
Purpose. Test the high output drive level on D-.

Test Packet
Value. 04h.
Action. Repetitively transmit the test packet defined by the specification.

Purpose. Test rise and fal times, eye pattern, jitter, and other dynamic
waveform specifications.

Test_Force Enable
Value. 05h.

Action. Enable downstream-facing hub ports in high-speed mode. Packets
arriving at the upstream-facing port are repeated at the port being tested.
The disconnect-detect bit can be polled while varying the loading on the

port.
Purpose. Measure the disconnect-detection threshold.

462

Chapter 20

Other Values
Test-mode values 06h through 3Fh are reserved for future standard tests.
Vaue COh through FFh are available for vendor-defined tests. All other val

ues are reserved.

463

The Electrical Interface

21

The Electrical Interface

All of the protocols and program code in the world are no use if the signals
don't make it down the cable in good shape. The electrica interface plays an
important part in making USB areliable way to transfer information.

From a practica point of view, if you're usng compliant cables and compo-
nents, you don't need to know much about the electrica interface. You can
just use the products you have and trust that the hardware designers have
done their job. But if you're designing USB transceivers or cables,
printed-circuit boards with USB interfaces, or a protocol analyzer that must
unobtrusively monitor the bus, you do need to understand the electrica
interface and how it appliesto your project.

This chapter presents the essentials about the electrical interface of the
USB's drivers and receivers and details about the cables that carry the sig-
nals.

464

Chapter 21

Transceivers and Signals

The electrical properties of the signals carried by a USB cable vary depend-
ing on the speed of the cable segment. Low-, full-, and high-speed signaling
each have a different edge rate, which is a measure of the rise and fall times
or amount of time required for an output to switch. The transceivers and
supporting circuits that produce and detect the bus signals aso vary depend-

ing on speed.

At any speed, the components that connect to a USB cable must be able to
withstand the shorting of any line to any other line or the cable shield with-
out component damage.

Cable Segments

A cable segment is a single physica cable that connects a device (which may
be a hub) to an upstream hub (which may be the root hub at the host). The
speed, edge rate, and polarity of the data in a segment depend on whether
the segment is low, full, or high speed. Figure 21-1 illustrates.

Low-speed segments exist only between low-speed devices and their hubs. A
low-speed segment carries only low-speed data, using low-speed's edge rate
and inverted polarity compared to full speed.

A full-speed segment exists when the downstream device is full speed. The
upstream device may be a 1.x or 2.0 hub. When the downstream device is a
hub, the segment may also carry data to and from low-speed devices that are
downstream from that hub. When this is the case, the low-speed data on the
full-speed segment uses low-speed's bit rate but full speed's polarity and edge
rate. The hub that connects to the low-speed device converts between low
and full speed's polarity and edge rates. Full-speed segments never carry
high-speed data. If a high-speed-capable device connectsto a 1 .x hub, com-
munications are a full speed. High-speed devices must at least respond to
enumeration requests at full speed.

High-speed segments exist only where the upstream device is a 2.0 hub and
the downstream device is high speed. When the downstream device is a hub,
the segment may aso carry data to and from low- and full-speed devices that

465

LOW- AND
FLILL - SPFEED
DEVICES

LOW- AND
FULL -SPEED
DEVICES

PEV

LOW-3PEED
DEVICE

The Electrical Interface

l.X DR 2.8 HUB

FULL - SPEED
DEVICE

HIGH-&PEED
DEVICE

LOW-3PEED SECHENT

FULL=-SFEED SEGHENT

—TO

1.% DR 2.8 HUB

TO

| . ¥ HUB

HIGH-5PEED DEYICES MUST ENUMERATE AT

DEVICE

FULL-SPEED SEGHENT

_Tn

FULL SPEED

‘ H1GH- 5 PEED

HIGH-5PEED SEGMENT

L —— e

Sl =

1.¥ I:}FI.?.B HUB

1o
FULL-SPEED SEGMENT
AMY LOW- SPEED DATA USES LOW SPEED'S BIT RATE AND
FULL SPEED'S POLARITY AND EDGE RATE
[——y 2.8 HUB |.X HUB
[+— i
= o EULL-3PEED SEGMENT
ANY LOW- SPEED DATA USES LOW SPEED'S EBIT RATE AND
FULL SPEED'S POLARITY AMD EDGE RATE
I__:l—___“ 2.9 HUB 7.9 HUB
T = Td

HIGH-SPEED SEGHENT

ANY LOW- DR FULL-SPEED DATA TRAVELS AT HIGH SPEED

Figure 21-1: The speed of data in a segment depends on the capabilities of the
device and its upstream hub.

HOST

HOST

HOST

HosT

HOET

HOST

HOST

are downstream from that hub. The data in the high-speed segment travels
a high speed, and the transaction trandator in a downstream hub converts
between low or full speed and high speed as needed.

On attachment, al devices must communicate at low or full speed. When
possible, a high-speed-capable device trangtions from full to high speed dur-
ing the high-speed handshake.

466

Chapter 21

i
/

"—,'I 5
DATA SENT BY A LOW-SPEED DEYICE TO 1T% HUB USES
LOW-SPEED 'S POLARITY AMD SLOWER EDGE RATE

N L)

THE SAME DATA AT A |.X HUB'S UPSTREAM-FACIMNG
PORT TRAVELS AT LOWN SPEED BUT USES
FULL-SPEED 'S POLARITY AND FASTER EDGE RATE

Figure 21-2: A 1.x hub converts between low- and full-speed's polarities and
edge rates. (Not drawn to scale)

Low- and Full-speed Transceivers

The transceiver for low and full speeds has a smpler design compared to the
transceiver for high speed.

Low- and Full-speed Differences

Low-speed data differs electricaly from full speed in three ways. The bit rate
is dower, a 1.5 Megabits per second compared to 12 Megabits per second
for full speed. Low speed traffic's polarity is inverted compared to full speed.
And low speed has a dower edge rate compared to full speed. Figure 21-2
illustrates. The dower edge rate reduces reflected voltages on the line and
makes it possible to use cables that have less shielding and are thus cheaper
to make and physicaly more flexible.

The transceiver's hardware doesn't care about the signal polarity. It just
transmits and receives whatever logic levels are at its inputs. A transceiver
that is fast enough for full speed can aso support low speed, but a driver
that supports both speeds must be able to switch between the two edge rates.

The Circuits

Figure 21-3 shows the circuits inside a Philips PDIUSB11 USB transceiver
for low- and full-speed communications. The chip converts between low-

467

The Electrical Interface

SPEED —— ee=—f1o
VMO - 1 = - B}
vV Pe "
PO YMO RESUL
e B g a0 SEQ
RCY —= @ 1 LOGIC @
! e | B LOGIC 1
| 1 UNDEF INED
Kl _::"'.--.-'" T
a4 }7 VP VM RESULT
et SE®
0 | oW SPEEL
| @ FULL SPEED
| | ERROR

Figure 21-3: Philips' PDIUSBP11 transceiver includes a differential driver and
receiver as well as two single-ended receivers for detecting bus speed and
Single-Ended Zeros.

and full-speed voltages on the bus and TTL logic levels. Any low- or full-
speed USB controller chip contains smilar circuits.

The transceiver contains the differential driver and receiver required to send
and receive data on the bus. When transmitting data, the driver has two out-
puts that are 180 degrees out of phase. When one adtput is high, the other
is low. The receiver detects the voltage difference between the lines. This
type of interface called a balanced line.

Other interfaces that use balanced lines, such as RS-485, define logic levels
strictly as the difference between the voltages on the two lines, with no refer-
ence to a signal ground (though the interface does require a common
ground for the small amount of return current due to component mis-
matches). An interface whose inputs are defined as the difference between
two inputs is a differential interface. USB differs because it specifies absolute
voltages in addition to the required voltage difference.

The differential receiver's output can interface directly to a TTL-compatible
input.

The differential driver has four T TL-compatible inputs. When *OE isa
logic high, the driver is disabled and the transceiver can receive data When
*OE isalogic low, the driver is enabled. When the driver is enabled, the

468

Chapter 21

VPO and VMO inputs together determine the output's state, as shown by
the truth table in the figure. The Speed input determines the edge rate of the
driver's outpuit.

The chip adso has two single-ended receivers that detect the D+ and D- volt-
ages with reference to signal ground. The logic states of the receivers out-
puts indicate whether the bus is low or full speed or whether the bus is in the
Sngle-Ended-Zero state.

Figure 21-4 shows a cable segment for low- and full-speed communications.
The drivers output impedances plus a 36-ohm series resistor at each drivers
output act as source terminations that reduce reflected voltages when the
outputs switch. The series resistors may be on or off chip. The 1.5-kilohm
pull-up resistor on D+ or D- at the downstream device enables the upstream
hub to detect the device's speed. The upstream hub has 15-kilohm
pull-down resistors on D+ and D-.

High-speed Transceivers

A high-speed device must support control requests at full speed, so it must
contain transceivers to support both full and high speeds and the logic to
switch between them. A high-speed-capable device's upstream transceivers
aren't alowed to support low speed. In a 2.0 hub, the downstream transceiv-
ers at ports with user-accessible connectors must support al three speeds.

Why 480 Megabits per Second?

High speed's rate of 480 Megabits per second was chosen for several reasons.
The frequency is dow enough to alow using existing cables and connectors.
Components can use CMOS processes and don't require the advanced com-
pensation used in high-speed digita signal processors. Tests of high-speed
drivers showed 20 to 30 percent jitter at 480 Megabits per second. Because
receivers can be designed to tolerate 40 percent jitter, this speed leaves a
good margin of error. And 480 is an even multiple of 12, so the same crys-
tals can be used for full and high speed.

469

FULL-UF EMNABLE
DATA DRIYER INPUT

A=

LOW-5PEED
DRIVER

RECE IVER OUTPUT —-(:{"]

DRIVER OUTPUT ENABLE

DATA

P- TWISTED PAIR

i
il SK
3, 3¥

3 INGLE-ENDED D+ <]

RECE IVER BUTPUT

51 NGLE -ENDED D-
RECE IVER DUTPUT

LOW-S5PEED TRAMSCEIVER

——

'5':j_ -1

AT THE DEVICE' 5 UPSTREAM-FACING FORT

PULL -UP EMABLE

L=
i

_:ﬁ

The Electrical Interface

DATA DRIVER INPUT

F5 EDGE HODE SET
DRIVER l'.'ILI‘I'PUT EHAELE

LOWSFULL -SPEED
DRIVER

_‘_F,:l —=—— DATA RECEIVER QUTFUT

LGW/FULL - SPEED
RECEIVYER

PO W

5 IMGLE -EMDED DO+
RECE IVER QUTPUT

3IMGLE-EM

DED D-
..}_ RECE IVER OUTPUT

LOW/FULL-SPEED TRAWSCE | YER

AT THE HUB S DOWNSTREAH-FACING PORT

BATA DR IVER INPUT

DATA DRIVER |NPUT j’f:— iy
DRIYER QUTPUT ERNABLE
FULL - SPEED
CDRIYER

DATA RECEIVER SUTPUT —=" |

THISTED PAIR

FULL - SFEED
RECE | VER

LE-ENPED D~
IWER QUTPUT

EULL-SPEED TRAMSCEIYER
AT THE DEYICE'S UPSTREAMM-FACIHD

_{J__..

15K

PORT

b;’f:ﬂ;')fi_ _MM\:F;]\]:

FS EDGE MO
ORI VER :q_er..lT r-»uu- E

LOWAFULL - $PEED
DRAVER

| = DATA RECEIVER DUTPUT
LOWSFULL - SPEED
RECE | VER

LS e

[S INGLE-EHDED D-

SIMNGLE - ENDED I+
RETCE IYER DUTPUT

| RECEIYER CRITFUT

i

LOW/FULL -SPEED TRAMSTE | YER

AT THE HUE'S DOWMSTREAM-FACING PORT

Figure 21-4: The downstream-facing ports on a 1 .x hub must support both low
and full speeds (except for ports with embedded or permanently attached
devices). A device's upstream-facing port normally supports just one speed.

The use of separate drivers for high speed makes it easy to add high speed to
the existing interface. Current-mode drivers were chosen because they're

fast.

470

Chapter 21
FULL/ HI GH- SPEED TRANSCEI VER

AT THE DEVI CE' S UPSTREAM FACI NG PORT

[PULL-UP REMOVED

PULL-UP ENABLE
HE CURRENT SQURCE EMABLE _ p

HS DRIVE ENABLE — = T
H5 DATA DRIVER |NPUT i _L_ |
HIGH-5PEED

CURRENT DRIVER

F5 DATA DRIVER [NPUT e — A —
ASSERT SINGLE-ENDED-@ —Arom—an

Fs DRIYER OUTPUT EMABLE —'l
FULL - 5PEED
DRIVER

S T e
WS RECEIVER OUTPUT —=_ [~ |
HIGH- 5 PEED
RECE IVER

i
F$ RECEIVER OUTPUT —<_ [~ B
LOW/FULL - 5PEED

RECEIVER

.
SOUELCH _E"x.l

TRAMSMISS 10N
ENMVELOPE DETECTOR

}—

SINGLE - ENDED D+ _
RECEIVER QUTPUT

S INGLE-ENDED D e |
RECEIVER OUTPUT —

- TWISTED PAIR

Figure 21-5: The
upstream-facing port on a
high-speed device must
also support full speed
communications.

The Circuits

Figure 21-5 shows the
upstream-facing transceiver
circuits in a high-speed-capable
device, and Figure 21-6 shows
the same for the downstream-
facing circuitsin a 2.0 hub.

High speed requires its own
drivers, so a high-speed device
must contain two sets of drivers.

For receiving, a transceiver may

use a single receiver to handle all supported speeds, or it may have separate

receivers for high speed.

471

The Electrical Interface

H5 CURRENT SOURCE EMABLE

[
1o pEvicE XX XXX

H5 DRIVE EMABLE

TWISTED PAIR D-

r

==

HiGH-5PEED
CURRENT DR]VER

HS DATA DRIVER [WPUT

L5/FS DATA DRIVER |MNPUT

T:>- — LS/FS RECEIVER QUTPUT

ASSERT 5 IMNGLE-EMDED-R

FS EDGE MODE SET

— L3/F5 DRIVER QUTPUT ENABLE

LOW/FULL -5 PEED
BRIVER

jj,}— H5 RECEIVER QUTPUT

HIGH-SFEED
RECE IVER

L_}'— SQUELCH

LOW/FULL - 5PEED
RECE | VER

TRANSMTSS5 [ON
ENVELOPE DETECTOR

| WG
e

| > HIGH-SPEED DISCONNECT

D1SCONNECT ION
ENVELOPE DETECTOR
SINGLE -EMDED [+
IVER OUTPUT

SINGLE-EMDED D-

Lsﬂi ilﬁﬁ

D“‘— RECEIVER OUTPUT

FULL/HIGH/LOW-SPEED TRANSCEIVER
AT THE HUEB 3 DOWNSTREAM-FACING PORT

Figure 21-6: The downstream-facing ports on 2.0 hubs must support all three
speeds (except for ports with embedded or permanently attached devices).

472

Chapter 21

When a high-speed driver sends data, a current source drives one line with
the other line a ground. The current source may be active al the time or
only when transmitting. A current source that is active al the time is easier
to design but consumes more power. The specification requires devices to
meet the amplitude and timing requirements beginning with the very first
symbol in a packet. This complicates the design of a current source that is
active only when transmitting. If the driver instead keeps its current source
active al the time, it can direct the current to ground when not transmitting
on the bus.

In a high-speed-capable transceiver, the output impedance of the full-speed
drivers has tighter tolerance compared to full-speed only drivers (45 ohms
+10%, compared to 36 ohms £22%). The change is required because the
high-speed bus uses the full-speed drivers as electrical terminations on the
cable. Full-speed drivers that aren't part of a high-speed transceiver don't
require a change in output impedance.

When the high-speed drivers are active, the full-speed drivers bring both
data lines low (the Single-ended-Zero state). Each driver and its series resis-
tor then function as a 45-ohm termination to ground. Because there is a
driver at each end of the cable segment, there is a termination at both the
source and the load. This double termination quiets the line more effectively
than the source-only series terminations in full-speed segments. Using the
full-speed drivers as terminations means no extra components are required.

The specification provides eye-pattern templates that show the required
high-speed transmitter outputs and receiver sensitivity. High-speed receivers
must aso meet new specifications that require the use of a differentid time-
domain reflectometer (TDR) to measure impedance characteristics.

All high-speed receivers must include a differentia envelope detector to
detect the Squelch (invalid signd) state, indicated by a differentia bus volt-
age of 100 millivolts or less. The downstream ports on al 2.0 hubs must also
include a high-speed disconnect detector that detects when a device has
been removed from the bus.

473

The Electrical Interface

Other new responghilities for high-speed-capable devices include managing
the switch from full to high speed, and handling new protocols for entering
and exiting the Suspend and Reset states.

Switching Speeds

In a low- or full-speed device, a 1.5-kilohm pull-up on one of the signa
lines indicates device speed. When a low- or full-speed device is attached or
removed from the bus, the voltage change due to the pull-up informs the
hub of the change. High-speed devices always attach at full speed, so the
hub detects attachment in the same way.

As Chapter 20 explained, the switch to high speed occurs after the device
has been detected, during the Reset sent by the hub. A high-speed-capable
device must support the high-speed handshake that informs the hub that
the device is capable of high speed, and switches to high speed when poss-
ble. When switching to high speed, the device removes its pull-up from the
bus.

Detecting Removal of a High-speed Device

A 2.0 hub must adso detect the removal of a high-speed device. Because at
high speed the device has no pull-up, the hub has to use a different method
to detect device remova. When a device is removed from the bus, its differ-
entia terminations are removed. This causes the differentia voltage at the
hub's port to double. When the hub detects the doubled voltage, it knows
the device has been removed.

The hub detects the voltage by measuring the differential bus voltage during
the extended End of High-speed Packet (HSEOP) in each high-speed
Start-of -Frame Packet (HSSOP). A differential voltage of at least 625 milli-
volts indicates a disconnect.

Suspending and Resuming at High Speed

As Chapter 19 explained, devices must enter the low-power Suspend state
when the bus has been in the Idle state for at least 3 and no more than 10
milliseconds. When the bus has been idle for 3 milliseconds, a high-speed
device switches to full speed. The device then checks the state of the

474

Chapter 21

full-speed bus to determine whether the host is requesting a Suspend or
Reset. If the bus state is Single-Ended Zero, the host is requesting a Reset, so
the device prepares for the high-speed-detect handshake. If the bus state is
Idle, the device enters the Suspend state. The device must return to high
speed on exiting the Suspend state.

Signal Voltages

Chapter 20 introduced USB's bus states. The voltages that define the states
vary depending on the speed of the cable segment. In any case, the differ-
ence between the minimum transmitted and received voltages means that a
signd can have some noise or attenuation and the receiver will till see the
correct logic level.

Low and Full Speeds

Table 21-1 shows the driver output voltages for low/full and high speeds. At
low and full speeds, a Differentiad 1 exists at the driver when the D+ output
is at least 2.8V and the D- output is no greater than 0.3V, referenced to the
driver's sgna ground. A differential O exists at the driver when D- is at least
2.8V and D+ is no greater than 0.3V, referenced to the driver's signal
ground.

At alow- or full-speed receiver, a differential 1 exists when D+ is at least 2V,
referenced to the receiver's signa ground, and the difference between D+
and D is greater than 200 millivolts. A differentia O exists when D is at
least 2V, referenced to the receiver's signa ground, and the difference
between D- and D+ is greater than 200 millivolts. However, a receiver may
optionaly have less stringent definitions that require only a differentia volt-

age greater than 200 millivolts, ignoring the requirement for one line to be
at least 2V

High Speed

At high speed, a differential 1 exigts a the driver when the D+ output is at
least 0.36V and the D- output is no greater than 0.01V, referenced to the

475

The Electrical Interface

Table 21-1: High speed requires different drivers and has different output

specifications, compared to low and full speed. The receiver specifications differ
aswell.

Parameter Low/Full Speed (V) High Speed (V)

Vout low minimum 0 -0.010

Vout low maximum 03 0.010

Vout high minimum 28 0.360V

Vout high maximum 36 0.440v

Vinlow maximum 0.8 Limits are defined by the

Vin high minimum 20 ey‘*P"?‘“eT” templatesin the
specification

driver's signal ground. A differential O exists at the driver when D- is at least
0.36V and D+ is no greater than 0.01V, referenced to the driver's signal
ground.

At a high-speed receiver, the nput must meet the requirements shown in the
eye-pattern templates in the specification. The eye patterns specify maxi-
mum and minimum voltages, rise and fal times, maximum jitter in a trans-
mitted signd, and the maximum jitter a recever must tolerate. The
specification has details about how to make the measurements.

Cables

The USB gspecification includes detailed requirements for cables. The
requirements help to ensure that any compliant cable will be able to carry
the buss fast digital signals without resulting in errors due to noise in the
cable or large amounts of noise radiating from the cable.

Conductors

USB cables have four conductors: VBUS, GND, D+ and D-.

VBUS isthe +5V supply.
GND isthe ground reference for VBUS as well asfor D+ and D-. D+ and D-
are the differential signal pair. Chapter 19 described the voltage and current
limits for VBUS.

476

Chapter 21

The USB icon embossed on the plug connector identifies a USB cable (Fig-
ure 21-7). (Don't confuse the icon with the USB Logo described in Chapter
17.) PCs and hubs may also use the icon to identify their USB connectors. A
"+" added to the icon indicates USB 2.0 performance at a downstream-fac-

ing port.
Cables to be used in full- or high-speed segments have different require-

ments from those for low-speed segments. Table 21-2 compares the two
cable types.

The 2.0 specification tightened the requirements for low-speed cables. A
1.1-compliant low-speed cable required no shielding at al. A 2.0-compliant
low-speed cable must have the same inner shield and drain wire required for
full speed. The specification also recommends, but doesn't require, a
braided outer shield and a twisted pair for data, as on full- and high-speed
cables.

Both full-and high-speed cables use the same cables. When the 2.0 specifica
tion was under development, an Engineering Change Notice (ECN) to the
1.x gpecification added new requirements to ensure that full-speed cables
would also work at high speed. The 2.0 specification also uses these require-

Figure 21-7: The USB icon identifies a USB cable and also indicates the top
surface of the plug when attached.

477

The Electrical Interface

Table 21-2: The requirements for cables and related components differ for

full/high speed and low speed.

Specification Low Speed Full/High Speed
Maximum length (meters) 3 5

Inner shield and drain wire required? yes (new in USB 2.0) |yes

Braided outer shield required? no, but recommended | yes

Twisted pair required? no, but recommended | yes
Common-mode impedance (ohms) not specified 0+30%
Differential Characteristic impedance (ohms)| not specified 90

Cable skew (picoseconds) <100

Wiregauge (AWGH) 28 or lower

DC resistance, plug shell to plug shell (ohms)| 0.6

Cable delay

18 nanosecs. (oneway)

5.2 nanoseconds/meter

Pull-up location at the device

D-

D+

Detachable cable OK?

no

yes

Captive cable OK?

yes

merits. They describe what was typically found in compliant full-speed
cables, so most providers with compliant cables had no changes to make.

In a full/high-speed cable, the signal wires must have a differential character-
istic impedance of 90 ohms. This value is a measure of the input impedance
of an infinite, open line and determines the initial current on the lines when
the outputs switch. The charecteristic impedance for a low-speed cable isn't
defined because the slower edge rates mean that the initial current doesn't
affect the logic states seen by the receiver.

The specification lists requirements for the cable's conductors, shielding,
and insulation. These are the magjor requirements for full/high-speed cables:

Data wires. twisted pair, #28 AWG. Power and ground:
non-twisted, #20 to #28 AWG. Drain wire: stranded,
tinned copper wire, #28 AWG Inner shield: aluminum
metallized polyester Outer shield: braided, tinned

copper

478

Chapter 21

Figure 21-8: The series-A plug (top) is on the upstream end of the cable and
mates with a series-A receptacle on a hub or the host. The series-B plug
(bottom) is on the downstream end of the cable and mates with a series-B
receptacle on the device.

The specification also lists requirements for the cable's durability and perfor-
mance.

A low-speed device can use a full-speed cable if the cable meets al of the
low-speed cable requirements. These include not using the standard A or B
connector at the device end and a maximum length of 3 meters.

479

The Electrical Interface

Figure 21-9: The mini-B connector was added as an option in response to

comments that the original series-B connector was too bulky for some devices.

(photo courtesy of Tyco Electronics)

Connectors

The 2.0 specification describes two connector types: series A for the
upstream end of the cable and series B for the downstream end (Figure
21-8). The series-B connectors were bulky for some devices, so an Engineer-
ing Change Notice to the 2.0 specification added an option for new mini-B
connectors (Figure 21-9). A mini-B receptacle is less than half the height of
a series-B receptacle. You can use the mini-B connectors anywhere you can
use the series-B connectors. Every cable must have a series-A connector, but

not all cables require a series-B or mini-B connector.

A typica hub will have a series-B receptacle at its upstream port. The recep-
tacle accepts the series-B plug on a cable that connects to the root hub or
another upstream hub. A hub with external, downstream ports will also have
one or more series-A receptacles. These accept the series-A plugs on cables

that connect to devices or other downstream hubs.

480

Chapter 21

The connectors are keyed so you can't plug them in upsidedown. The signa
connections are recessed dightly to ensure that the power lines connect first
when a cable is attached. The receptacle should be mounted so the icon on
the plug is visible when attached.

All of the connectors have connections for the buss two signa wires, the
VBUS supply, and ground. The mini-B connector has an additiona 1D pin.
Devices that support the USB On-The-Go specification will use the ID pin
to identify a device's default mode (host or function). The specification gives
the following pin and color assignments for the cable and connectors:

SHiessABpn |Min-Bpn Conductor Cable Wire
1 VBUS (+5V) red
2 D- white
3 D+ green
5 GND black
4 ID not connected
shield drain wire

Detachable and Captive Cables

The specification defines cables as being either detachable or captive. From
the names, you might think that a detachable cable is one you can remove,
while a captive cable is permanently attached to its downstream device. But
in fact, a captive cable can be removable as long as its downstream connector
isnot the standard series-B or series-A type.

A detachable cable must be full/high speed, with a seriessA plug for the
upstream connection and a series-B or mini-B plug for the downstream con-
nection. The generic USB cables offered by various vendors are of this type.
A captive cable may be low- or full/high-speed. The upstream end has a
series-A plug. For the downstream connection, the cable can be permanently
attached, or it can be removable with a non-standard connector type. The
non-standard connector doesn't have to be hot pluggable, but the seriesA
connector must be hot pluggable. Requiring low-speed cables to be captive
eliminates the msshility of usng a low-speed cable in a full- or high-speed
segment.

481

The Electrical Interface

Cable Length

Version 1.0 of the USB specification gave maximum lengths for cable seg-
ments. A full-speed segment could be up to 5 meters and a low-speed =g
ment could be up to 3 meters. Version 1.1 dropped the length limits in favor
of a discussion of characterigtics that limit a cabl€'s ability to meet the inter-
face's timing and voltage requirements. On full- and high-speed cables, the
limits are due to signa attenuation, cable propagation delay (the amount of
time it takes for a signal to travel from driver to receiver), and the voltage
drops on the VBUS and GND wires. On low-speed cables, the length is lim-
ited by the rise and fal times of the signds, the capacitive load presented by
the segment, and the voltage drops on the VBUS and GND wires.

The origind limits of 3 and 5 meters are ill good genera guideines. A
2.0-compliant 5meter full-speed cable will also work at high speed. Cables
of these lengths that meet the specifications are readily available. Chapter 19
explained how the length limits translate to a maximum distance of 30
meters between a host and its peripheral, assuming the use of five hubs and
six 5-meter cable segments.

The USB specification prohibits extenson cables, which would extend the
length of a segment by adding a second cable in series. An extension cable
for the upstream side of a cable would have a series A plug on one end and a
series-A receptacle on the other, while an extension cable for the down-
stream side would have a series-B plug and receptacle.

Prohibiting extension cables diminates the temptation to stretch a segment
beyond the interface's physica limits. Extension cables are available, but just
because you @n buy one doesn't mean that it's a good idea or that it will
work. Instead, buy a single cable of the length you need, and add hubs as
necessary.

There is an exception: an active extenson cable contains a hub, a down
stream port, and a cable. This will work fine, because it contains the
required hub.

An option for longer distances is to use a standard USB cable that connects
to adevice that translates between USB and RS-485 or another interface

482

Chapter 21

designed for use over long distances. The remote device would then need to
support the long-distance interface, rather than USB.

Ensuring Signal Quality

The specifications for drivers, receivers, and cable design ensure that virtu-
aly all data transfers occur without errors. Requirements that help to ensure
signd quality include the use of baanced lines and shielded cables, twisted
pairs required for full/high-speed cables, and slower edge rates required for
low-speed drivers.

Sources of Noise

Noise can enter a wire in many ways, including by conductive, common-
impedance, magnetic, capacitive, and electromagnetic coupling. If a noise
voltage is large enough, and if it's present when the receiver is attempting to
detect a transmitted bit, the noise can cause the receiver to misread the
received logic level. Very large noise voltages can damage components.

Conductive and common-impedance coupling require ohmic contact
between the signa wire and the wire that is the source of the noise. Conduc-
tive coupling occurs when a wire brings noise from another source into a cir-
cuit. For example, a noisy power-supply line carries noise into the circuit it
powers. Common-impedance coupling occurs when two circuits share a
wire, such as a ground return.

The other types of noise coupling result from interactions ketween the elec-
tric and magnetic fields of the wires themselves and signas that couple into
the wires from outside sources, including other wiresin the interface.

Capacitive and inductive coupling can cause crosstalk, where signals on one
wire enter another wire. Capacitive coupling, aso called dectric coupling,
occurs when two wires carry charges at different potentials, resulting in an
electric field between the wires. The strength of the field, and of the result-
ing capacitive coupling, varies with the distance between the wires. Induc-
tive, or magnetic, coupling occurs because current in a wire causes the wire

483

The Electrical Interface

to emanate a magnetic field. When the magnetic fields of two wires overlap,
the energy in each wire's field induces a current in the other wire.

When wires are greater then 116 wavelength apart, the captive and inductive
coupling is considered together as electromagnetic coupling. An example of
electromagnetic coupling is when a wire acts as a recelving antenna for radio
waves.

Balanced Lines

One way that USB eliminates noise is with the balanced lines that carry the
buss differential signals. Balanced lines are eectrically quiet. Any noise that
couples into the interface is likely to couple equaly into both signa wires.
Because the receiver detects only the difference between the two wires volt-
ages, any noise that is common to both cancels out.

In contragt, in the unbaanced, single-ended lines used by RS-232 and other
interfaces, the receiver detects the difference between a signal wire and a
ground line shared by other circuits. The ground line is likely to be carrying
noise from a number of sources, and the recelver sees this noise when it
detects the difference between the signal voltage and ground.

Twisted Pairs

In a full/high-speed USB cable, the two signa wires must form a twisted
pair. Twisted pairs are recommended, but not required, for low-speed cables.
A twisted pair is two insulated conductors that spiral around each other with
a twist every few inches (Figure 21-10). The twisting reduces noise in two
ways. by reducing the amount of noise in the wires and by canceling what-
ever noise does enter the wires. Twisting is most effective at eliminating low-
frequency, magnetically coupled signals such as 60-Hz power-line noise.

Twisting reduces noise by minimizing the area between the conductors. The
magnetic field that emanates from a circuit is proportional to the area
between the conductors. Twisting the conductors around each other reduces
the total area between them. The tighter the twists, the smaller the area.

484

Chapter 21

Figure 21 -10: A full/high-speed USB cable contains a twisted pair for data, plus
VBUS and GND lines, plus aluminum metallized polyester and braided copper
shields.

Reducing the area shrinks the magnetic field emanating from the wires and
thus reduces the amount of noise coupling into the field.

A twisted pair tends to cancel any noise that does enters the wires because
the conductors swap physical positions with each twist. Any roise that mag-
netically couples into the wires reverses polarity with each twist. The result is
that the noise present in one twist is cancelled by a nearly equal, opposite
noise signa in the next twist. Of course, the twists aren't perfectly uniform,
so the canceling isn't perfect, but noise is much reduced.

Shielding

Meta shieding prevents noise from entering or emanating from a cable.
Shielding is most effective at blocking noise due to capacitive, eectromag
netic, and high-frequency magnetic coupling.

485

The Electrical Interface

The 2.0 specification requires both low-speed and full/high-speed cables to
be shielded, though the requirements differ.

In a full/high-speed cable, an aduminum metdlized polyester shield sur-
rounds the four conductors. Surrounding this is an outer shield of braided,
tinned copper wire. Between the shields and contacting both is a copper
drain wire. The outside layer is a polyvinyl chloride jacket. The shield termi-
nates at the connector plug.

A low-speed cable has the same requirements except that the braided outer
shield is recommended but not required. The 1.x specification required no
shidding for low-speed cables on the premise that the dower rise and fall
times made shielding unnecessary. The shielding requirement was added in
2.0 not because the USB interface is noisy in itsdlf, but because the cables
are likely to attach to computers that are noisy internaly. Shielding helps to
keep the cable from radiating this noise and helps the cable pass FCC tests.
The downside is that 2.0-compliant low-speed cables are more expensive to
make and physicaly lessflexible.

The specification leaves the grounding details to the user, with the advice
that the grounding method must be consistent with accepted industry prac-
tices and regulations with respect to safety, electromagnetic interference
(EMI), radio-frequency interference (RFI), and electrostatic discharge
(ESD). In a typica design, the shield is AC-coupled to a loca ground refer-
ence at each end, using a 0.01-microfarad ceramic capacitor between the
shield and ground.

Edge Rates

Low speed's slower data rate enables the drivers to use slower edge rates, or
rise and fal times, that reduce both the reflected voltages seen by receivers
and the noise that emanates from the cable.

When a digital output switches, a mismatch between the lin€'s characteristic
impedance and the load presented by the receiver can cause reflected volt-
ages that affect the voltage at the receiver. If the reflections are large enough
and lagt long enough, the receiver may misread a transmitted bit.

486

Chapter 21

In low-speed cables, the dower edge rate ensures that any reflections have
died out by the time the output has finished switching. The dow edge rate
also means that the signals contain less high-frequency energy and thus the
noise emanated by the cablesis less.

Isolation

Gavanic isolation can be useful in preventing electrical noise and power
surges from coupling into a circuit. Circuits that are gavanically isolated
from each other have no ohmic connection. Typical methods of isolation
include using a transformer that transfers power by magnetic coupling and
optoisolators that transfer digital signals by optical coupling.

USB is designed as a desktop bus and should require no additiona protec-
tion in typical environments. USB's timing requirements and use of a single
pair of wires for both directions make it difficult to completely isolate a USB
device from its host. It is feasible, however, to isolate the circuits that the
periphera contraler connects to, using conventiona methods. For example,
in a motor controller with a USB interface, the motor and control circuits
may be isolated from the USB controller and bus.

487

Index

NOTE: Italicized page numbers refer to
illustrations or charts.

A

A-series connector. See series-A connector
Absolute | Relative bit, 322
Accept Device-Specific Command, 277
ACCESS.bus specification, 17
ACK (acknowledge) status code, 62—3
and cyclic redundancy check (CRC), 67
and data-toggle bits, 67—38
and endpoint interrupts, 198, 208
information provided by, 54
and mode changes, 186, 187, 188, 189
and NAK code, 114
not returned after transfer's final data
packet, 77
reporting status of control transfers,
65-6
in split transactions, 59
used with NYET, 64-5
when receiving data from host, 213,
214,311,312,313
when sending data to host, 212, 321
with wireless links, 286
address field, 458 advantages
of USB
for developers, 7-11
for usars 3—7
AMD, 149
API (application programmer's interface)
functions
aternative to, 341—8

Index

calling functions, 354 calling with
Visua Basic, 345—2 calling with Visual
C++, 343-51 CloseHandl e function,
339, 392-9 declarationsfor, 346—4
exchanging datawith HID, 338, 339
FormatM essage function, 355—2 freeing
resources, 392—9 functions and
subroutines, 352 getting capabilities of
values, 377 getting device's capabilities,
375—3 getting pointer to buffer with
device

capabilities, 374—1
HidD_FreePreparsedData function,

3309, 341, 392-9
HidD_GetAttributes function, 354,

3729
HidD_GetPreparsedData function,

339,341,374-1,377
HidP_GetButtonCaps function, 341,

377 HidP_GetCaps function,
3309, 341,

375-3 HidP_GetValueCaps
function, 341,

377
initiating transfers, 50 moving datain
memory, 354-1 obtaining GUID for
HID Class, 360-7 passing and
returning structures, 353 passing nulls,
351 problems with, 229 providing
DLL'sname, 352 purpose of, 228

488

Index

reading data
feature report, 391-8 input
report, 381-90 vendor and
product IDs, 372-9 without
blocking application's
thread, 384-6
RtIMoveMemory function, 354—1
SetupDiDestroyDevicelnfoList func-
tion, 339, 373, 392-9 variables for
passing, 349-7 string,
352 types, 348-5
viewing errors, 355—2
writing data
feature report, 390—7 output report,
378—7 application communications, 41
application programmer's interface func-
tions. See API application-specific
integrated circuit
(ASIC), 141
Array | Variable bit, 321-8 ASCI| hex
format, 176 ASIC (application-specific
integrated circuit), 141
assemblers, 35, 171-4
assembler codes, 173-7
usng, 175—9
assembly programming, 172—5
Atmel, 149 Attached state, 99
attaching devices
with Device Manager, 254—62 with
USBView, 356-4 audio
HID interface for, 290 transfer
type used for, 48 audio
applications, 279—4 audio
drivers, 273, 274

automatic configuration, 3

B

B-series connector. See series-B onnector
babble, 424
background of USB, 16-20
balanced lines, 466, 482
bAlternatel nterface field, 134
bandwidth, 423

alocating, 71

for bulk transfers, 78, 80

for control transfers, 75—7, 78

enabling devices to use more, 421, 423

ensuring enough, 46—7, 81, 85—7

increasing, 24

insufficient, 88, 413

for interrupt endpoint, 81

for interrupt transfers, 88

isochronous, 88-89, 116

for isochronous transactions, 87

request from device driver, 29

saving, 306

transfers with most guaranteed, 34
Bandwidth Load Application, 413
BCLIDE development environment, 178-

1 benefits

of USB

for developers, 7—11

for usars, 3—7
blnterfaceClass field, 277, 279
binterface field, 134
blnterfaceProtocol field, 277
blnterfaceSubClass field, 277, 279
binterval endpoint descriptor, 113—5
Bit Field | Buffered Bytes hit, 323
bNumConfigurations, 103, 104, 106
boot interfaces, 294-297, 414 Brown-
Out reset, 202, 203 BSQUARE, 23,
247-249, 250 buffer descriptors, 164

489

buffers, 142-4
bugs, 14
debugging tools, 152-4, 154, 220-6
displaying errors, 355—2
fixes for, 15 bulk
endpoints, 242, 277
data speed, 116—8
transaction scheduling, 242
bulk transfers, 47, 48, 64, 77
application types used with, 48
availability, 77
bandwidth for, 78, 80
and bulk-only transport, 277
and Control/bulk/interrupt (CBI)
transport, 277
datasize, 78
detecting and handling errors, 80
finding out if device ready to receive, 64
limitations, 57
maximum possible rate, 77
NET2888 endpoint numbers, 165
and NYET code, 64
purpose of, 47
speed, 34, 78-80
split transactions in, 59-60
stages of, 52
structure, 78
viewing data during, 403
and Windows Device Developer's Kit
(DDK), 246
and WIinRT for USB, 249 bulkusb.sys
driver, 246 bus-class drivers, 237, 241 bus
drivers, 229, 233, 235, 236, 237 buses
bandwidth, 88-89
bus reset, 202, 203-6
controlling traffic on, 407—7
data encoding on, 451—5
determining if has been idle, 199—3

Index

drawing power from, 435—8 for hubs,
441-50 power -conservation, 444—4
host's duties toward, 28 loss of activity,
425 managing data on, 41—2 monitoring
traffic on, 403—4, 409—7 of NET2888
chips, 150, 164 for PDIUSBD11/12
chips, 167-9 speed of, 6-7, 33-4, 43-4,
54, 55, 150 ACCESS.bus, 17 controller
support for, 141 detecting, 466, 467
and hubs, 43 IEEE-139%4 (FireWire)
versus USB,
19-20
limitation of, 13
and transaction types and phases, 59
USB 1.x,43USB 2.0, 19,26-8,43
SPI, 193 suspending and resuming
when idle,
472-2

topology of, 23—5bus

states, 447-60 ByRef

parameter, 349-7 Byte

Count hits, 188 Byvd

parameter, 349—7

C

cables
cable segments, 463—3
captive, 479
conductors, 474—6
connectors, 478—8
and delays, 476
detachable, 479
Direct-Connect 10-BaseT, 405
ease of connection, 5—6
electrical propertiesof signals carried by,

490

Index

463
extending, 13
flexible, 156
length of, 13, 156, 427, 480-90
for low- and full-speed communica
tions, 467, 468
noise reduction, 484-4
PC-to-PC, 286
requirements for, 474
setting up Development Board, 219
shielding, 483-3
twisted pairs, 482—2
cameras, selecting device classesfor, 278—3
Capture Timer Data Register, 197 Capture
Timers Configuration Register,
196
Capture Timers Status Register, 197
CATC, 403, 408 CBI
(Control/bulk/interrupt) transport,
277
C compilers, 159, 178-1 central-
processing unit (CPU), 142—4
Centronics interface, 5, 16 challenges
of USB
for developers, 14-5
for users, 11—4 chips,
10-1, 141, 170
See also Cypress enCoRe chips; Cypress
EZ-USB series controller chips;
NET2888 controller chips
buffers, 142-4
central-processing unit (CPU), 142-4
compatible with existing chip families,
148-50
costs, 155, 456
Cypress Semiconductor's AN2720SC,
286
data memory, 145
debugging tools provided with, 152
designed for USB, 147, 148

detecting communications directed to,
30-1 development boards
provided with,
152-4
development of
architecture choices, 146—52 chip
documentation, 151 debugging tools,
152—05 driver choices, 151—3 project
needs, 155-7 sample firmware, 151
and drivers, 151-3 elements of, 141-7
FTDI's FT8U232AM USB UART,
282-8
important features, 146—8 input and
output (I /O) pins, 146 Intel
StrongARM series, 168 Microchip's
PIC series, 163—5 National
Semiconductor's USBN9603,
166-8 Philips
Semiconductors
PDIUSBD11/12, 167-9
power required, 437 program
memory, 143—6 registers, 145-7
sample firmware provided with, 151
selecting, 170
and software, ability to upgrade, 155-7
speed of, 155
that interface to external microcontrol-
ler, 149-2
transfer type support, 155 USB
port in, 141-3 Chirp J state, 96,
450 Chirp K state, 96, 450 Chk
INF script, 268 circuits
application-specific integrated circuit
(ASIC), 141

491

designing and developing, 37 class
descriptors, 296 ClassGUID key, 264
Classinstall section, of INF files, 264-9
Class key, 264
class-specific descriptors, 273
Clear_Feature requests, 127, 135, 136
Clock Configuration Register, 195, 201,
204
clock, external, 204 CloseHandle
function, 339, 392-9 CMOS input
thresholds, 191
CM_Request_Device_Eject function, 358
Collection and End Collection tags, 323—
30
Collection (Application) item, 301
command descriptor blocks, 276
Common Class specification, 272
Compag, 17 compilers
C compilers, 159, 178-1
Visua C++, 344-1 complete-split
(CSPLIT) transactions, 59,
60
components, USB, 23
composite devices, 27, 109
assigning device drivers for, 98, 99
interface descriptors, 110 compound
devices, 27, 417, 429, 441 Computer
Access Technology Corporation, 403, 408
computer requirements, 22-3
CompuWare Numega, 250
conductors, 474-6
configuration, 98-99, 109-3
See also control transfers
automatic, 3
of bit asinput, 191
bNumConfigurations, 104, 106
Capture Timer Data Registers, 197

Index

Capture Timers Configuration Register,
196
Capture Timers Status Register, 197
Clock Configuration Register, 195, 204
configuration communications, 40—1
configuration descriptors, 101, 102,
107-10, 117
power data, 439, 441
requests for, 97-9
of Cypress enCoRe debugger, 221, 222
Endpoint O to recelve datain OUT
transaction, 312—38 endpoint to
receive report data, 310
Get_Configuration request, 108, 110,
127,13
HidD_GetConfiguration function, 340
HidD_SetConfiguraion function, 340
input buffers to receive reports, 343
interface descriptors, 109—3 and
isochronous data, 89, 116, 413
Other_Speed_Configuration Descrip-
tor, 109, 110, 117,428
Set_Configuration regquest, 63, 98,121,
127, 131,439 transfer type used
for, 48 Configure Target/Emulator
window, 221 Connect bus state, 449
connections
See also cables; connectors
arrangement of, 23—5, 26
ease of, 5-6
endpointsto hosts, 46—7
pardle
for Traffic Generator, 408 for
USB Expert, 404-2 PC-to-
PC, 286
of peripherals while system on, 6
wireless, 286-1
connectors, 478—8. See also cables
Control/bulk/interrupt (CBI) transport,

492

Index

277 control
endpoints, 45
binterval endpoint descriptor, 113—05 data
size, 74 and STALL, 64 controller chips,
10-1, 141
See also Cypress enCoRe chips, Cypress
EZ-USB series controller chips;
NET2888 controller chips buffers,
142-4
central-processing unit (CPU), 142—4
compatible with existing chip families,
148-50
Cypress EZ-USB series, 158-64 data
memory, 145 debugging tools provided
with, 152 designed for USB, 147, 148
development boards provided with,
152-4
development of
architecture choices, 146—52 chip
documentation, 151 debugging tools,
152-5 driver choices, 151—3 project
needs, 155-7 sample firmware, 151
and drivers, 151-3 elements of, 141—7
important features, 146-8 input and
output (I /O) pins, 146 Intel
StrongARM series, 168 Microchip's
PIC series, 163-5 National
Semiconductor's USBN9603,
166-8 Philips
Semiconductors
PDIUSBD11/12, 167-9 power
required, 437 program memory, 143—6
registers, 145-7 sample firmware
provided with, 151

selecting, 170

and software, ability to upgrade, 155—7

speed of, 155

that interface to external microcontrol-
ler, 149-2

transfer type support, 155 USB
port, 141-3 control transfers,
63—4

application types used with, 48
avaladlity, 70—2 bandwidth for,
75-7, 78 brief overview, 47 and
bulk-only transport, 277 choosing
chip for, 155 control Read
transfers
amount of data returned by device,
75
datatravel, 71, 73
detecting and handling errors, 77
reporting status of, 65—6
control Write transfers, 65
data size, 74-6
detecting and handling errors, 77
endpoint for, 44-5, 167
Get_Feature request in, 391—8
and message pipes, 49 and
multiple transactions, 42 and
NYET code, 64 reporting status
of, 65-6 requests for, 127
class-specific, 139
Clear_Feature, 136
Get_Configuration, 108, 110, 127,
132
Get_Descriptor, 97, 121-3, 127,
129
Get_lIdle, 302, 305
Get_Interface, 127, 134
Get_Protocol, 302, 307
Get_Report, 302, 303, 310, 325,

493

378, 378
Get_Status, 137
Set_Address, 97, 127, 128, 185-8
Set_Configuration, 63, 98, 121,
127, 131, 439 Set_Descriptor, 127,
130 Set_Feature, 127, 135, 189, 390-
7 Set_ldle, 302, 306 Set Interface,
127, 133 Set_Protocol, 302,308
Set_Report, 302, 304, 311-9, 378
Synch_Frame, 127, 138 vendor-
specific, 139 speed, 75-7
split transactions in, 59—60
stages of, 52
Data stage, 121-4 handling
errors, 125-7 Setup stage, 119-2
Status stage, 123-6 and STALL,
63-4 structure, 71—5 costs, 7
chips, 155,456
circuit boards, 153-5
PROM versus EPROM memory types,
144
CPU (central-processing unit), 142-4
CRC. See cyclic redundancy check CRC
field, 458 CreateFile, 370-371 Crescent
Heart Software, 403 CSPLIT (complete-
split) transactions, 59,
60
CY 3654 Development Kit, 216
CY DB debugger, 220-6
Platform board, 217-1 setting
up, 219 cyasm.exe assembler,
172 cyasm test.asm command,
175

Index

cyclic redundancy check (CRC), 66-7, 458

CRC fields, 458 errors with, 381

size, purpose, and packet type, 457
Cypress enCoRe chips, 206

CY 3654 Development Kit, 216

CYDB debugger, 220-6 Platform

board, 217-1 setting up, 219

firmware duties, 216
endpoint O interrupts, 208—2 handling
interrupt transfers, 215 receiving datafrom
host, 212—8 sending data to the host,
209—4 hardware duties, 207 PROM
Programming, 223-9 Cypress EZ-USB
series controller chips,

185-92
advantages/disadvantages, 158—64, 171
Assembler, 171-4
assembly codes, 173-7
programming basics of, 172—5
programming in C for, 178-1
using, 175—9 chip architecture,
180—7 CPU status, control, and
clocking,

201-7

interrupt service routines, 197—201 1/0
interfaces, 190-7 power management,
205 timer functions, 195-9 USB
communications, 185-92 Cypress
Semiconductor's AN2720SC chips, 286

D

Dan Appleman 's Win32 APl Puzze Book
and Tutorial for Visual Basic Pro-

grammers, 346
DATAO status code, 54, 67, 68, 69, 457

494

Index

DATAI status code, 54, 67, 68, 69, 457
DATAZ status code, 54, 68, 69
Data | Constant bit, 321
data encoding. See encoding, data
datafield, 458
Data J bus state, 449-9
See also High-speed Data J bus state
DataK bus state, 447-7, 450
See also High-speed Data K bus state
data memory, 145 data packets
genera information, 119-2, 122, 124
maximum size, 46, 74—6
Data Stack Pointer (DSP), 185
Data stage, 121-4
of Control Read transfer, handling
errors, 77
number of data bytesin, 120-2, 127,
431
reporting the status of control transfers
in, 65—6
size of data packet in, 74
structure of, 71 data-toggle hits,
67—9 Data Transit, 403 Default
Control Pipe, 46, 75, 126 delays, 476
cable, 476
external clock, 204
and host software capabilities, 90
inter-packet, 459
and interrupt transfers, 80—2
between packets, 57
use of NAKcode, 76
and Windows multi-tasking, 90—2
Ddimiter item, 336 descriptors, 441
in 2.0-compliant devices, 115-8
brief overview, 37
buffer, 164

class, 296
class-specific, 273
command descriptor blocks, 276
configuration, 101, 102, 107-10
power data, 439, 441
requests for, 97-9 data size
information, 74, 78, 97 device,
102-6
data size information, 97
reading, 97 device _qudifier,
100,101, 102, 105-7,
428
endpoint, 46, 82, 112-5, 296
firmware requirements, 293
Get_Descriptor, 97, 121-3, 127, 129
Get Hub Descriptor, 431 Globa
items, 324-1
converting raw data, 329—8
describing data's size and format,
332-9
describing data's use, 326-5
identifying report, 325-2 HID,
294-297 HID class descriptor, 297-4
HidD_GetPhysical Descriptor, 341
hub, 423, 427-7, 433 hub-class, 273
hub values for standard, 428-6
interface, 109-3
bAlternatel nterface field, 134
blnterfaceClass field, 277, 279
binterface field, 134
bInterfaceProtocal field, 277
blnterfaceSubClass field, 277, 279
protocol field, 296
subclass field, 291
interface_power, 101-102
keyboard, 296 Local items,
333-42 Long items, 319

495

Main items
Collection and End Collection tags,
323-30 Input, Output, and
Feature items,
319-9
mouse boot, 296
other_speed configuration, 109
padding, 336 physical, 336
predefined values, 318 report, 293,
299-6, 315-2 creating, 316—3
testing, 316-3 report descriptors,
299-6 retrieving, 400—9
Set_Descriptor request, 127, 130
Set Hub Descriptor, 431 Short
items, 318-5 string, 114—6
viewing, 356, 395, 397, 398, 410
Designator Index item, 335
Designator Minimum and Maximum
item, 335
DestinationDirs section, of INF files, 266
DeVaSys Embedded Systems 12C/10
board, 153-5 Developing
ActiveX Components in Visual
Basic, 390
development process, 35—8 Device Class
Definition for Human Interface
Devices, 290 device
classes, 271, 279—4
See also human interface device (HID)
dass
selecting
for audio applications, 279-4 for
cameras, 278—3 for devices that
transfer data at moderate speeds,
280—5 for joystick, 276

Index

for keyboard, 276
for mass storage devices, 276—2
for mouse, 276
for PC-to-PC connections, 286
for Point-of-sale (POS) devices, 284
for printers, 278
for replacing non-standard parallel
port devices, 284-90 for
scanners, 278—3 for upgrading RS-
228 devices, 281-
8
for wireless links, 286—1
uses of, 272-9
Device Class Soecification for Device Firm-
ware Upgrade, 156 device descriptors,
102—6 data size information, 97 reading,
97
Device Developer's Kit (DDK), 245-50
DeviceloControl request, 239, 240
Device Manager, 94 See also INF files
attaching devices, 254-62 device and class
installers, 252 device listings, 254—62
purpose of, 251—6 removed devices,
viewing, 254 system registry, 253-8
viewing, 93, 252 device _qualifier
descriptor, 100, 101, 102,
105-7,428
devices
See also device classes; drivers, device;
endpoints, device; enumeration;
human interface device (HID) class;
human interface devices ability to
upgrade, 155 address of, 42, 97, 185-8
attaching
with Device Manager, 254—62

496

Index

with USBView, 356-4 capabilities
of, 89 defined, 27 detecting, 28-9
device address, 30—1 device descriptors,
102—6, 428 device _qualifier descriptor,
100, 101,

102, 105-7, 428 dual-speed,
116—8 endpoints, 44-7 interrupt-
service routine, 46 keeping from
entering the suspend

state, 425
removal of, 99

detecting, 472

with USBView, 356-4

viewing in Device Manager, 254
role in communication flow, 240 speed
of

detecting, 425-4

support for, 33—4
testing

with CATC Traffic Generator, 408

detecting devices, 395

Device Framework tests, 395-3

and driver signing, 415

help of USB Implementers Forum

Compliance Program, 410—21

HIDView tests, 296-9

with protocol analyzers, 403—4

with Root 1 Test Adapter, 409-7

test modes, 459-70

and USB Logo use, 414

Windows Hardware Quality Labs

(WHQL) testing, 414-2 types

Direct-Connect 10-BaseT cables, 405
DirectX, 276, 341-8 disadvantages of
USB
for developers, 14-5
for users, 11—4
Disconnect bus state, 450
See also High-speed Disconnect bus
state
distance limits, 13, 427, 480-90
double buffers, 143 driver
models, 233-8
communication flow, 237—7
layered, 234-41
Win32 Driver Model, 233
drivers, bus-class, 237, 241
drivers, device, 227-2, 231

See also device classes; enumeration; INF

files

assigning for composite devices, 98, 99

and bandwidth, 88-89

bus-class driver, 237, 241

bus drivers, 229, 233, 235, 236, 237

capabilities of, 89-1

choosing, 151-3, 244-9

communication flow, 231—7, 240—05,
243-8

control codes defined by, 240

custom, writing, 245—54

device classes, 271, 272—9

driver signing, 415

HID, retrieving input reports, 326

how Windows selects, 251—62

of, 230 Differential 0 bus state, 448, inclusion with operating systems, 9-10
449 initiation of transfer by, 50
See also High-speed Differential 1 and O insulating applications from details,

Differential 1 bus state, 448, 449 228-3
See also High-speed Differential 1 and 0 kernel-mode drivers, 233
layered, 234-41

obtaining, 230

497

operating system support, 15
reguesting bandwidth from, 29
and symbolic links, 242
transfer requests, 50
VxDs (virtual device drivers), 237, 241
WDM drivers, 237-8
drivers, host-controller, 240
brief overview, 241
role of, 246-7
drivers, hub
role of, 245
root-hub driver, 241
DriverWorks, 254 drvdata.bin
files, 256 drvidx.hin files, 256
DSP (Data Stack Pointer), 187
dual-speed devices, 117-8

E

ease of use, 3-6
edge rates, 493-4
EEPROM (electrically erasable PROM),
145-6
EHCI, 246-7, 431
EIA/TIA-232 interface. See RS-232 inter-
face electrica interface
See also cables; transceivers ensuring
signal quality, 490-4 voltages, 482-3
electrically erasable PROM (EEPROM),
145-6
encoding, data, 460-1
staying synchronized, 462—4
timing accuracy, 464—5 enCoRe
chips, 173-229
advantages/disadvantages, 173
Assembler, 173-4
assembly codes, 175-7
programming basics of, 174—5

Index

programming in C for, 180-1
usng, 177—9chip architecture,
182-7 CPU status, control, and
clocking,
203-7
CY 3654 Development Kit, 219
CY DB debugger, 223-6 Platform
board, 220-1 setting up, 222
firmware duties, 219
endpoint O interrupts, 211-2 handling
interrupt transfers, 218 receiving data
from host, 215—8 sending datato the host,
212—4 hardware duties, 210 interrupt
service routines, 199—203 1/O interfaces,
192-7 power management, 207 PROM
Programming, 226-9 timer functions,
197—9 USB communications, 187—92
Start-of-High-speed-Packet bus state, 462
End-of-Packet (EOP) bus state, 459 End-
of-Packet (EOP) signal, 55, 431, 454,
450, 464
Endpoint O interrupts, 211,213, 215
endpoint descriptors, 46, 102, 103, 108,
113-5,307
and interrupt transfers speed, 83 for
status change endpoint, 436 endpoint
field, 467 endpoints, device, 44-6,
64-5 See also enumeration address of,
151 bulk, 78-81
data speed, 117-8 transaction
scheduling, 246 and bus
bandwidth, 89-90 connecting to
host, 46—7 control, 45, 71-78

498

Index

blnterval endpoint descriptor, 114—
5adSTALL,
4
Cypress enCoRe, 158-9
endpoint buffers, 185, 186
Endpoint Counter Register, 190
endpoint interrupts, 200, 211—2
Endpoint Mode Register, 188-90,
9
endpoint status and control, 190
interrupt transfers, 218 receiving
datafrom host, 215—8 sending data
to host, 212—4
Cypress EZ-USB, 159, 160, 161
data size, 75, 79-81, 87
data speed, 88, 89
defining number and type of, 276, 277
endpoint field, 436
halting, 136
and HID-class devices, 294-5, 296
high-bandwidth, 83, 88
Intel StrongARM, 169
and interface descriptors, 110, 112
interrupt, 81-84
and data speed, 114, 118
MaxPacketSize field, 118
and STALL status code, 64
isochronous, 85—88
and audio applications, 283—4
and bus bandwidth, 89—90
MaxPacketSize field, 118 and
NAK, 63 optional abilities,
117
maximum date-transfer rate per, 77
maximum latency, 83
Microchip PIC 16C7x5, 165
National Semiconductor's USBN9603,
166, 168
NetChip NET2888, 166-7
number and type needed, 156

and NYET, 64-5
Philips Semiconductors
PDIUSBD11/12, 169
requesting status of features of, 138
reguesting to disable feature on, 137
requesting to enable feature on, 137
setting and reporting synchronization
frame of, 139
specifying synchronization type, 87
and STALL, 63, 64 Enhanced Host
Controller Interface, 246-
7,431
enumeration, 93-5
See also descriptors
brief overview, 37
and Cypress EZ-USB, 161, 163
device removal, 100
enumeration steps, 95-100
hub enumeration, 100
and isochronous bandwidth, 90
re-enumeration, 163, 448
viewing enumerated devices, 260 EOP.
See End-of -Packet EPROM (erasable
programmable ROM),
145, 146
ERR code, 56, 65 error-
checking, 66-9
in control transfers, 78, 126in
Data stage, 124 in Setup
stage, 122 in Status stage,
126
data-toggle bits, 67-9
by device, 31
error-checking bits, 51, 66—7
HID Descriptor Tool, 322, 334
by host, 29
InfCatReady application, 272
in interrupt transfers, 84
in isochronous transfers, 88—9
Packet IDs (PIDs), 67

499

reporting errors, 56

USB Expert, 413
errors, 464

See also error-checking

bit-stuff, 464

in bulk transfers, 81

CRC Error, 387

with cyclic redundancy check (CRC),

387

elimination of, 7

GetL astError, 369, 372

Logica Minimum and Logica Maxi-

mum, 334

viewing, 361-2
Ethernet interface

comparison with other interfaces, 4

use with USB Expert, 412 expanding
number of ports, 5 external clock, delays,
206 External Clock Resume Delay bit,
206 External Oscillator Enable bit, 206
EZ-USB series controller chips, 159-164
ezush.sys driver, 242

F

Feature item, 327
Feature report, 298, 307, 314-316
fees
licensing, 15, 16—7 USB Implementers
Forum, 104, 421 FIFOs (first in, first out
buffers), 143 Fire Wire interface. See
|EEE-1394 firmware, Cypress enCoRe
CY 3654 Development Kit, 219
CYDB debugger, 223-6
Platform board, 220-1 setting
up, 222 duties of, 219
endpoint O interrupts, 211—2
handling interrupt transfers, 218

Index

receiving data from host, 215—8
sending data to host, 212-5
PROM programming, 226—9
firmware, HID, 298
HID-specific requests, 306—13
identifying device as HID, 299-306
ordering of descriptorsin, 302
requirements, 298
transferring data, 314—9 first in, first
out buffers (FIFOs), 143 Flash EPROM
(erasable programmable
ROM), 145, 146
flexibility of USB, 89
FormatM essage function, 361—2
frame number field, 467 frames,
29, 42
See also Start-of -Frame packets
datasizein, 87
frame interval, 465
frame-number field, 467
in interrupt transactions, 60-1
in isochronous transfers, 85—7
multiple, 57
number of transactions in, 69
setting and reporting endpoint's syn-
chronization frame, 139
stages of control transfersin, 246
Start-of-Frame packets, 42 FTDI's
FT8U232AM USB UART chips,
286-8
functional talls, 64
function, defined, 25
FuturePlus, 410

G
gavanic isolation, 494 general-purpose
1/0 (GPIO) interrupts,

200
Geninf gpplicetion, 272
Get_Configuration request, 109,111, 128,

500

Index

133 Get_Descriptor request,
98, 122-3, 128,

130
Get Hub Descriptor, 438
Get_Hub_Status, 439 Get_Idle request,
307, 310 Get_Interface request, 128, 135
Get Max LUN request, 140
Get_Port_Status request, 96-7, 100, 126,

140,431,435
Get_Protocol request, 307, 312
Get_Report request, 307, 308, 315, 331,

384
Get_Status request, 138 Global Interrupt
Enable Register, 199 Global items
descriptor, 330—1 converting raw data,
335-8 describing data's size and format,
338-

9
describing data's use, 332-5 identifying
the report, 331—2 globally unique
identifier (GUID), 242,

268, 345,347, 366-7 GPIB
(genera-purpose interface bus), 4,

16, 17
GPIB interface. See IEEE-488 GPIO
(genera-purpose |/O) interrupt

bits, 207 GPIO (general-
purpose I/O) Interrupt

Enable Register, 194 GPIO
(genera-purpose 1/0) Interrupt

Polarity Register, 194 GPIO
(genera-purpose I/0) interrupts,

200
GPIO (general-purpose |/O) pins, 194
GUID. See globaly unique identifier
guidgen program, 242

H
HALT instruction, 204

handles, 50, 242, 345, 347, 376-7
hFile parameter, 386, 389, 391
HidDeviceObject parameter, 379, 380
invalid handle error, 363 handshake
packets, 51, 52, 53, 54, 56—7
See also handshaking
and bit toggling, 67, 68
in bulk transfers, 81
in control transfers, 65-6, 78 in
Data stage, 123-4 in Setup
stage, 122 in Status stage, 125—
6 when device doesn't receive,
78

and data speed, 59

in interrupt transfers, 84

and isochronous transfers, 86

location, source, and contents of, 63

NAK codein, 62

status codes in, 62—4

and wireless connections, 290

handshake phases, 52, 53, 59

handshaking, 62-5
See also handshake packets; handshake

phases

high-speed, 434, 459, 481
hardware

See also handshaking

bugsin, 15

HID interface requirements, 296—7

requirements, 22—3

support for, 11—3, 22

USB host-controller, 12

Windows Hardware Quality Labs Testing,

421-2 Hardware List Not Updated After

Installing

New.inf File, 274

Hewlett-Packard, 17 HID. See

human interface device HID

class descriptor, 302-4 HID

descriptor, 299-302

501

HID Descriptor Tool, 322-3 hiddev.inf
file, 271 HidD_FreePreparsedData
function, 345,

347, 398-9
HidD_GetAttributes function, 360, 378-9
HidD_GetConfiguration function, 346
HidD_GetFeature function, 397-8
HidD_GetPhysical Descriptor, 347
HidD_GetPreparsedData function, 345,

380-1,383
HidD_SetConfiguration function, 346
HidD_SetFeature function, 396-7
HidP_GetButtonCaps function, 347, 383
HidP_GetCaps function, 345, 347, 381,

381-3
HidP_GetVaueCaps function, 347, 383
HID Usage Tables, 295, 324 high-
bandwidth endpoint, 83, 88 High-speed
Data J bus state, 461 High-speed DataK
bus state, 461 High-speed Differentia 1
and 0, 460 High-speed Disconnect bus
state, 462 High-speed Idle bus state, 462
High-speed Squelch bus state, 460 history
of USB, 16-20 Hitex Development Tools,
410 host

See also enumeration; host controllers
connecting endpoints to, 46—7
defined, 23
duties of, 28-30, 42
how communicates. See drivers, device
how finds a device, 344
softwar e capabilities, 90—1
speed of, 43-4
viewing, 363 host-
controller drivers, 240
brief overview, 241
role of, 246-7
host controllers

Index

brief overview, 23
data flow management, 29
host controller drivers, 240
hub performing functions of, 429, 430
OHCI, 419
PC support for, 22
and transfer speed, 431 for
bulk transfers, 79 for
control transfers, 76 for
interrupt transfers, 83
UHCI, 419-20
viewing information about, 25.9 hot
pluggable feature, 6 HP Interface Bus
(HPIB), 16 HSEOP, 462 HSSOP, 462
hub class, 276, 434
hub-class descriptors, 277, 434-5
hub-class requests, 437—9
hub values for standard descriptors,
435-6
port indicators, 440—1 hub
controller, 430-1 hub descriptors,
430, 434-7, 440 hub drivers
role of, 245
root-hub driver, 241
hub repeater, 425-8
hubs, 423-5
See also hub class; hub drivers
bus-powered, 445
connections arrangement, 24
and data speed, 431—4 speed
conversion, 43, 57 support
for, 33
defined, 25
detecting devices, 96
detecting device speed, 96—7
enumerating, 100
establishing signal path between device

502

Index

and bus, 97
hub controller, 430-1
hub repeater, 425-8
over-current protection, 450—1
powering options for, 449—50
power switching, 451
purpose of, 25—7
resetting devices, 97
transaction translator, 428—30
viewing, 362, 363
voltage, 444 human interface
device (HID) class
abilities and limitations of, 294—5
brief overview, 293—4
Device Class Definition for Human
Interface Devices, 294-5
firmware regquirements, 298
hardware requirements, 296-7
HID class descriptor, 302-3
HID-specific requests, 306-8 Get_|dle
request, 307, 310 Get_Protocol
request, 307, 312 Get_Report
request, 307, 308, 315,
331,384
Set_ldle request, 307, 311
Set_Protocol request, 307, 313
Set_Report request, 307, 309, 316-
9,384
obtaining GUID for, 366-7
report descriptors, 304—6
transferring data, 314—9 human
interface device (HID) reports
Global item type, 330—1
converting raw data, 335-8
describing data's size and format,
338
describing data's use, 332—5
Report ID, 331-2 saving and
restoring, 339
Local item type, 339-42

Main item type, 325-30
structure of, 321-5

human interface devices (HID), communi-
cating with See also API functions;
reading data;

writing data

closing communications, 398-9 getting
array of structures with information
about HIDs, 367-8 getting capabilities
of values, 383 getting device
capabilities, 381-3 getting device
pathname, 372—6 getting handle for
device, 376—7 getting pointer to buffer
with device
capabilities, 380—1 host
communications, 344—8 identifying
each HID interface, 369—71 obtaining
GUID for HID Class, 366-7 reading
and writing data, 384 reading Vendor
and Product 1Ds, 378-9

| Cinterface, 17
12C/10 board, 154-5
Icon, USB, 486 Idle bus
state, 459, 462
See also High-speed Idle bus state
|EEE-1284 interface, 17 |IEEE-1394
(FireWire) interface
comparison with other interfaces, 4
speed of, 20
versus USB, 19-20 |EEE-488 (GPIB)
interface, 4, 16, 17 |EEE (Institute of
Electrical and Electronics Engineers), 17
iMac computers, USB support, 9
Implementers Forum, USB (USB-IF), 11,
17

503

Compliance Program, 417—21

Vendor IDs, 104, 273
InfCatReady application, 272
infedit application, 271 INF
(information) files, 37, 41

catalog (CAT) file of, 422

creating, 271—4

generic INF file for HIDs, 271

information in, 263—7

location of, 260, 261, 262

searching for, 256-7
sections of, 267—71 Infineon, 149, 150
infrared interface, 291
initialize_control_read routine, 212, 213
initialize_control_write routine, 215 input
and output (I /O) pins, 147 input.inf, 271

Input item, 325 Inside/Out Networks, 288
Institute of Electrical and Electronics Engi-

neers, 17 Intel, 17, 149, 150
StrongARM series chips, 169
interface descriptors, 110—3
bAlternatel nterface field, 135
binterfaceClass field, 281, 283
bInterface field, 135
blnterfaceProtocol field, 281
blnterfaceSubClass field, 281, 283
protocol field, 301
subclass field, 299
interface_power descriptor, 102-103
interfaces
See also eectrica interface; interface
descriptors; names of specific
interfaces
for audio applications, 283-4
boot interfaces, 299-302
comparison of, 4

index

control of, 16—7

converters for, 12

Get_Interface request, 128, 135

for modems, 284

multiple, 99

requesting status of features of a, 138

reguests to disable feature on, 137

reguests to enable feature on, 136

Set Interface request, 128, 134

speed of, 4

synchronous serial interfaces, 146, 195
inter-packet delay, 468 Interrupt Enable
Sense bit, 203 interrupt endpoints

bandwidth available for, 82

and data speed, 83, 114, 118

MaxPacketSize field, 118

and STALL status code, 64 interrupt
pipes, 297 interrupt-request (IRQ) lines,
3, 5 interrupt-service routine (ISR), 198,
199-

200 interrupt transfers,

47—8, 81—2

availability of, 82

bandwidth use, 89

brief ovarview, 47—38

and Cypress enCoRe '63743 chip, 182

data size, 83

and data speed, 34

delays, 81-2

detecting and handling errors, 84

handling with Cypress enCoRe, 218

to retrieve input reports, 332

speed of, 83-4

split transactions in, 60

stages of, 52

and steam pipers, 50

structure of, 82 IN
transactions, 45-6, 51

Byte Count bits, 190

504

Index

in control transfers, 122
endpoint interrupts in, 200
isochronous, 61
phases of, 52 iord instruction,
174 IrDA interface, 4, 291 IRQ
(interrupt-request) lines, 3, 5 IRQ
Pending bit, 203 isochronous
bandwidth, 89-90, 117 isochronous
endpoints
and audio applications, 283-4
and bus bandwidth, 89-90
data speed, 88
MaxPacketSize field, 118
and NAK code, 63
optiona ahilities, 117
isochronous transactions, 58, 88
isochronoustransfers, 48—9, 85
availability of, 85
and bandwidth, 46—7
brief overview, 48—9
data size, 87
and data-toggle bits, 68-9
detecting and handling errors, 88-9
speed of, 33-4, 84, 88
split transactions in, 60—1
stages of, 52
structure of, 85-7
isolation, 494
ISR (interrupt-service routine), 198, 199-
200
J

J bus state. See Data J bus state;

High-speed Data J bus state
joysticks, selecting device classes for, 280
Jungo, 253-254

K
K bus state. See Data K bus state;

High-speed Data K bus state.
kernel mode, 235 kernel-mode drivers,
237 KernelDriver, 254 keyboard
descriptor, 301, 406 keyboards

with boot interface, 299, 301
and HID class, 280

on hubs, 450

selecting device classes for, 280
support for, 12-3

transfer type used for, 48

L

Lakeview Research website, 219

latencies. See delays

LayoutFile key, 268

legacy hardware, support for, 11-3

licensing fees, 15, 16-7

Linear | Non-linear bit, 328

Local items descriptor, 339-42

Logica Minimum and Logical Maximum
item, 333-4 Logo,

USB, 417, 421 Logo, Windows,

417, 421-422 L ong items

descriptor, 325 low-power state,

31—2 low-speed keep-dive

signa, 55 Low-Voltage reset,

204, 205 Lucent, 17, 151, 152

M

Main items descriptor
Collection and End Collection tags,
329-30 Input, Output, and
Feature items, 325-
9
Manufacturer section, of INF files, 269
mass storage devices, selecting device
classes for, 280-2

505

master in, dave out (MI1SO) lines, 195
MDATA code, 54, 68, 69 memory

data, 146

moving cetain, 380—1

program, 144—6
message pipes, 49, 72
mice

boot descriptor, 301

boot-interface protocols for, 299

cablesfor, 6, 157

and interrupt transfers, 48, 91

selecting device classes for, 280

transfer type used for, 48 Microchip's
PIC series chips, 150, 164-5
microcontrollers, 150-2, 168
microframes, 29, 42

number of transactionsin, 69

width of, 115
Microsoft, 17

See also Windows, WHQL; Visua
Badgc, Visud C+H Microwire interface,
4, 151, 168 MIDI (musica instrument
digitd interface), 4, 278, 283, 284 mini-
B connector, 489-490 MISO (master in,
dave out) lines, 195 Mitsubishi, 150
Monitor class, 278 Motorola, 150, 196
mouse. See mice mouse boot descriptor,
301 MSComm control, 233 multiple
transactions, 42, 53, 57

aror-checking, 67—9
multiple transaction trandators, 435
musical instrument digitd interface
(MIDI), 4, 278, 283, 284

N

Index

NAK (negative acknowledge) status code,

54, 62-3 and

control transfers
reporting detusof, 66—6
speed of, 77

and data-toggle bit, 67—8 and interrupt
transfers, 84 maximum NAK rate, 115
National Semiconductor's USBN9603

chips, 151, 167-8 NEC, 17
negative acknowledge status code. See

NAK
NET2888 controller chips buses, 151,
165 endpoaints, 166-7 NetChip, See
NET2888 Non-Return to Zero Inverted
(NRZI) with bit stuffing (encoding
format), 462-3
No Null Postion | Null State bit, 328-9
Non-volatile | Volatile bit, 329 No Wrap |
Wrap hit, 328 ntkern.vxd, 238, 270 nulls,
passing, 357 Numega, CompuWare, 254
NYET (not yet) status code, 54, 59, 61,
64-5

0

OHCl, 246, 419
On-The-Go, USB, 13, 490
one-time programmable (OTP) PROMs,
1450pen Host Controller
Interface (OHCI),
246, 419
opaaing sysem support, 9—10, 22—3
Other_Speed Configuration Descriptor,
110, 111, 118,435 OTP
(one-time programmable) PROMs,

506

Index

145
Output item, 325 Output report,
325—6 OUT transactions, 45-6,
51, 52 over-current protection,
450—1

P

Packet IDs (PIDs), 51, 53-6, 466
Sed namesof gadfic Pade IDs da
tus codes
in control transfers Data stage, 123, 124
Setup stage, 120, 122 Status stage, 124,
125 error-checking, 67 in isochronous
transfers, 68—9 USB Endpoint Mode
Registers, 188-90 packets, 51, 52, 54-5
See also data packets; error-checking;
handshake packets; Packet IDs
(PIDs); PRE packets, Start-of-
Frame packets; token packets
address field, 467 brief overview, 53 in
bulk transfers, 78—81 in control
transfers, 71-8 Data stage, 122-4
Setup stage, 120-2 Status stage, 124-5,
126 CRC fidld, 467 data, 65, 120-2,
123, 125 maximum size, 46, 75—6
sequence of, 56 data field, 467 delays
between, 57 End-of-Packet (EOP)
signal, 55, 431,
454, 457, 464
and endpoint 0 interrupts, 211, 213,
215

endpoint field, 467
format of, 465-8
frame-number field, 467
high-speed, 460
identifying low-speed, 427
inter-packet delay, 468
in interrupt transfers, 82—4
I/O request packets (IRPs), 90, 236-7
in isochronous transfers, 86—8
packet sequences, 56-7
receiving data from host, 316-9
receiving data from the host, 215, 216,
217 reporting status of control
transfers,
65-6
size of
in device descriptor, 104, 105 in
device_qualifier descriptor, 107 in
endpoint descriptor, 114 learning
during enumeration, 98 in split
transactions, 59-61 start of high-speed
packet, 460 Start-of-Packet state, 457,
460 SYNC fields, 463-4 Test_Packet,
469 and USB Endpoint 0 Mode
Register,
188,190 and USB Endpoint
Counter Register,
190
and wireless connection, 290 padding
descriptors, 342 Parallel Printer Port, 4,
14-5 PC 2001 System Design Guide, 90
PC Requirements, 22-3 PC-to-PC
connections, selecting device
classes for, 290
PDIUSBD11/12 chips, 168-9 peer
to peer communications, 13
peripheral support, 10-1, 12
Personality Board, 220-1, 222

507

phases, 52
See also packets dock,
196 transaction, 53-6
packet sequences, 56—7
split transactions, 57—61
timing constraints and guarantees,
57 Philips
Semiconductors, 17
PDIUSBD11/12 chips, 151, 168-9
Photographic and Imaging Manufacturers
Association (PIMA) 15740 Standard, 282
physical descriptor, 342 Physical Interface
class, 278 Physica Minimum and Physical
Maximum item, 334-5 PIC series chips,
150, 164-5 PIDs. See Packet IDs PING
protocol, 55, 56, 64-5, 79 pipes, 46-7
for bulk transfers, 79
control pipes, 296—7
Default Control Pipe, 46, 75, 127
for control transfers, 71—2
default pipes, learning maximum size
of, 98
interrupt pipes, 297 for interrupt
transfers, 82, 84 for isochronous
transfers, 86 message pipes, 49, 72
stream pipes, 49—50 Point-of-sale
(POS) devices, 288 Port Interrupt
Enable Register, 200 ports
configurations for connecting devicesto
host, 26
Connect state, 458
defined, 27-8
Disconnect state, 457

Index

downstream-facing, speed support,

477, 478
entering and exiting test modes, 468
expanding number of, 5 of externa
hubs, 424—5 Get_Port_Status request,
96-7, 100,

126, 140, 430, 438 pardld
ports, 155, 288-90 Parallel Printer
Port, 4, 14-5 port addresses, 5 port
indicators, 440-1 Port Interrupt
Enable Register, 200 Reset state, 459
resetting, 57, 97, 126 RS-232 serial
port, 220, 285 Set_Port_Feature
request, 97, 126, 452 SPI (Seria
Peripheral Interface) port,

195-6
upstream-facing port, 479
USB,142-3
on Application Board, 220 for
Cypress enCoRe chip, 182 versus
traditional, 27-8 when device exceeds
current limits of,

450, 451

POS (Point-of-sale) devices, 288

power
See also suspend state from buses, 443-
8 for hubs, 449-50 power-
conservation, 452-4 Configuration
Descriptor power use

information, 109-10 Cypress
enCoRe power management,

207
hub power, 449-51
low consumption, 7
managing, 31—2
options for, 443-8
Power class, 278

508

Index

provision of, 29—30
saving, 452-4
surges, 494 Power class, 278 power
switching, 451 predefined values
descriptor, 324 Preferred State | No
Preferred State bit, 328 PRE packets, 55,
56, 59 printers
Pardld Printer Port, 4, 14-6
printer driver, 282
Printer Object, 233, 351
selecting device classes for, 282
transfer type used for, 48
USB printer adapter, 289 problems
with USB. See disadvantages of
USB Processor Status and
Control Register, 203,
205
Product IDs, 104
in Drvidx.bin file, 256—7
obtaining, 15
reading, 378-9 program
memory, 144—6
programming
assembly-language, 174—5
in C, 180-1
languages for developing device driver,
36
PROM programming, 226-9
and protocol complexity, 14-5
Visual Basic, caling API functions
with, 351-2
Visud C++
calling API functions with, 349-51
compilers for, 350-1
Windows Telephony Application Pro-
gramming Interface (TAPI), 284
to write driver for USB device, 238, 250

Program Stack Pointer (PSP), 185-7
PROM programming, 226—9
protocol anayzers, 410-4

protocol, complexity of, 14-5
protocol stalls, 63

Provider key, 268

PS/2 Pullup Enable bit, 192

PSP (Program Stack Pointer), 185-7

Q

QualityLogic, 410-413
R

RAM (random-access memory), 146
ReadFile function, 387-96 reading
data
feature report from device, 397—8
input report from device, 387—96
read-only memory (ROM), 145 Read
transfers, control
amount of data returned by device, 76
datatravel, 72, 74
detecting and handling errors, 78
reporting status of, 65—6
RegisterDeviceNotiflcation function, 363-
4
registers, 146-7
reliability of USB, 7
remote-wakeup feature, 32, 191, 248, 453
ReNum register bit, 162 Report Count
item, 306 report descriptors, 298, 304-6,
304-6, 321-2
creating, 322—3
testing, 322—3 Report ID
item, 331 Report Size item, 306
requirements, computer, 22—3
Reset bus state, 458 ROM (read-
only memory), 145

509

Root 1 USB Functional Verification
Adapter, 416-7 root-
hub, 23 driver for, 241
power for, 449
viewing information about, 259 RPM
Systems' Root 1 USB Functiona
Verification Adapter, 416-7 RS-232
devices, selecting device classes for
upgrading, 285-8 RS-
232 (EIA/TIA-232) interface
comparison with other interfaces, 4, 5
ports of compared with USB ports, 27—
8
RS-232 seria port, 220, 285 RS-485
(TIA/EIA-485) interface, 4
RtIMoveMemory function, 360-1

S

saving bandwidth, 311
scanners

device classes for, 282—3

transfer type used for, 48 SCK (serid
clock) lines, 195 Semiconductor's
AN2720SC chips, 290 serial clock (SCK)
lines, 195 seria interface engine, 142—3
Serial Periphera Interface (SPI)

comparison with other interfaces, 4

SPI Port, 195-6 series-A, B
connectors, 489-91 Set_ Address request,
98, 128, 129, 187-8 Set_Configuration
reguest, 63, 99, 122,

128, 132, 447

Set_Descriptor request, 128, 131
Set_Feature request, 128, 136, 191, 396-7
Set Hub Descriptor, 438 Set_Idle
request, 307, 311 Set Interface request,
128, 134 Set_Port_Feature request, 97,
126, 452

Index

Set_Protocol request, 307, 313
Set_Report request, 307, 309, 316-9, 384
SetupDiChange State function, 364
SetupDiDestroyDevicelnfoList function,
345, 379, 398-9
SetupDiEnumDevicel nterfaces function,
369
SetupDiGetClassDevs function, 367
Setup stage, 72, 120-2 Setup
transactions, 45—6
in control transfers, 72, 74
endpoint interrupts in, 200 shieding
cables, 492-3 Short items descriptor, 324—
5 SIE, 142-3 SigmaTel, 291 Signature key,
268 Single-Ended One bus state, 456
Single-Ended-Zero bus state, 456 SMSC,
149, 150 SOF packets. See Start-of-Frame
(SOF)
packets
SOF (Start-of-Frame) markers, 53-5
software
developing to communicate with
peripherals, 35-8
requirements, 22-3
specification release, 18-9 SPI
(Seria Peripheral Interface)
comparison with other interfaces, 4
SPI Port, 195-6
split transactions, 57-61
brief overview, 56
in bulk transfers, 59-60
in interrupt transfers, 60
in isochronous transfers, 60—1
packets in, 59-61 Squelch bus state,
460 SSPLIT (start-split) transactions, 58,
59 stages

510

Index

of bulk transfers, 52
Data stage, 122-4
of Control Read transfer, handling
errors, 78 datatravel, 72 number
of data bytesin, 121-2,
128, 438
reporting the status of control transfersin,
65—6size of data packet in, 75 of
interrupt transfers, 52 Setup stage, 72,
120—2 Status stage, 75, 124-5 ddls
functional stalls, 64 protocol stalls, 63
STALL status code, 54, 63-4 in control
transfers, 126 reporting status of control
transfers, 65 Standard Microsystems, 149,
150 Standby state. See Suspend state Start-
of-Frame (SOF) markers, 53-5 Start-of -
Frame (SOF) packets, 42, 55 End-of -
Packet (EOP) signal, 464 error-checking
bits, 66—7 frame-number field, 467
keeping devices from entering suspend
state, 432
and suspend state, 432, 452 Start-of -
High-speed-Packet bus state, 462 Start-of -
Packet bus state, 459 start-split (SSPLIT)
transactions, 58, 59 status codes
ACK (acknowledge) status code, 62—3
and cyclic redundancy check
(CRC), 67
and data-toggle bits, 67-8 and
endpoint interrupts, 200, 211
information provided by, 54 and
mode changes, 188, 189, 190,

191
and NAK rate, 115 not returned
after transfer's final

data packet, 78 reporting status
of control transfers,

65-6

in split transactions, 59, 60 used

with NYET, 64-5 when receiving

data from host, 216,

217, 316; 317, 318 when sending
data to host, 215, 327 with wireless
links, 290 DATAO status code, 54, 67,
68, 69, 466 DATA1 status code, 54, 67,
68, 69, 466 DATAZ2 status code, 54, 68,
69 NAK (negative acknowledge) status

code, 54, 62-3
and control transfers, 65—6, 77 and
data-toggle bit, 67—8 and interrupt
transfers, 84 maximum NAK rate, 115
NYET (not yet) status code, 54, 60, 61,
64-5
STALL status code, 54, 63-4 in control
transfers, 126 reporting status of
control transfers,
6
status packet. See handshake packet status
phase. See handshake phase Status stage,
75, 124-5 stream pipes, 49-50
STMicroelectronics, 150 string descriptor,
102, 115-6 String Index item, 341 String
Minimum and Maximum item, 341 Strings
section, of INF files, 270—1 StrongARM
series chips, 169 support
hardware, 11-3, 22
iMac computers, 9

511

keyboards, 12—3
for legacy hardware, 11—3
operaing system, 9—10, 22—3
peripheral, 10—1, 12
Suspend state
and bmAttributes field of configuration
descriptor, 100, 109
brief overview, 31—2, 100
Brown-Out Reset, 205
for chip, 207
halting CPU, 204
resuming from, 454
and Start-of-Frame marker, 55
timer interrupts, 197, 201-3
Synch_Frame request, 128, 139
synchronization, 462—4

T

test.asm file, 177

Test_Force Enable test mode, 470

test.hex code, 178

testing devices
with CATC Traffic Generator, 415
detecting devices, 402 Device
Framework tests, 402—3 and driver
signing, 422 forum for, 11,417-21
HIDView tests, 403-9 with protocol
analyzers, 410—4 with Root 1 Test
Adapter, 416-7 test modes, 468-70
and USB Logo use, 421 Windows
Hardware Quality Labs (WHQL)
testing, 421-2

test.Ist file, 179

Test_Packet test mode, 469

test.rom file, 177

Test SEO_NAK test mode, 468-9

TIA/EIA-485 interface, 4

TIA (Telecommunications Industry Asso-

Index

ciation), 17
timer interrupts, 201-3 Timer LSB (least
significant byte) Register,
198
Timer MSB (most significant byte) Regis-
ter, 198
timing constraints, 57 token packets, 51,
52, 54, 56 See also Packet I Ds (PIDs) brief
overview, 53, 56 complete-split token
packet (CSPLIT),
60
in control transfers Data stage, 123
Setup stage, 120 Status stage, 124-5
and data speed, 59 data-toggle hit, 67
identifying as part of SPLIT transac-
tion, 56
and Start-of -Frame marker, 53—b5 start-
split token packet (SSPLIT), 57,
60
in wireless connection, 290
topology, bus, 23—5 Traffic
Generator, 415 transactions, 50—3
See also data packets; handshake pack-
ets; token packets complete-split
(CSPLIT), 59, 60 control, 64 defined,
52
device and endpoint addresses, 46
isochronous, 58, 88 limitations on
amount of data, 57 multiple, 42, 53,
57 error-checking, 67-9 multiple
transaction translators, 435 OUT
transactions, 45-6, 51, 52 phases of,
52, 53—6

512

Index

reporting status of, 62—5
Setup, 45-6, 73, 74
in control transfers, 72, 74
endpoint interrupts in, 200
phases of, 52
split, 57-61
brief overview, 56
in bulk transfers, 59—60
in interrupt transfers, 60
in isochronous transfers, 60—1
packetsin, 59-61 start-split
(SSPLIT), 58, 59 timing
constraints, 57 IN
transactions, 45-6, 51
Byte Count bits, 190
in control transfers, 122
endpoint interrupts in, 200
isochronous, 61
phases of, 52
transaction scheduling, 42
types of, 51
transaction tranglator, 428-30
transceivers, 472 high-speed,
476-8
circuits, 478-81
detecting removal of, 481
low-speed
circuits, 474-6
differences between full-speed and,
474
switching speeds, 481
transferring data, 69
See also bulk transfers; control transfers;
handshaking; interrupt transfers;
isochronous transfers; trans-
actions
application communications, 41
bandwidth issues, 46—7 configuration
communications, 40-1 definition of
transfer, 50

initiating transfers, 50

managing data on bus, 41—2

reporting status of, 65—6

small versus large amounts, 53
TTL input thresholds, 193
tWAKE vaue, 197 twisted pairs,
491-2

u

UHCI (Universal Host Controller Inter-
face), 246, 419-20 Understanding WDM
Power Management,
454
Unit Exponent item, 335 Unit tag,
335 Universal Host Controller
Interface
(UHCI), 246, 419-20 Universal
Serial Bus Architecture, 455 Universal Sial
Bus Specification, 40 Usage item, 306,
339-41 Usage Minimum and Maximum
item, 341 Usage Page item, 305, 333 USB
1.0, release of, 18-9 USB 1.1
compatibility with USB 2.0, 19
release of, 18-9
USB 2.0
compatibility with USB 1.1, 19
history of, 19
release of, 18-9USB
Check suite, 402
detecting a device, 402
HIDView, 403-9
tests, 402-3
USB Design by Example, 362 USB Device
Working Group, 296 USB Endpoint
Interrupt Enable Register,
199
USB endpoint interrupts, 200
USB Expert

513

error-checking, 413
parallel connections for, 411—2 USB
Implementers (USB-1F) Forum, 11, 17
Compliance Program, 417—21
Vendor I1Ds, 104,273
USBN9603 chips, 167-8 USB
On-The-Go, 13, 490 USB
port, 142-3 usbready utility, 22
USBView application, 362—3
user mode, 235 user settings, 3

%

Vendor IDs, 15, 104,273 Version
section, of INF files, 268 Visua Basic,
calling API functions with,
351-2

Visud C++

calling API functions with, 349-51

compilers for, 350-1 vmm32.vxd file,
270 voltages, 444-5, 482-3 VREG
Enable bit, 191 VxDs (virtual device
drivers), 237, 241

W

Wake-up interrupt, 197, 203
Watch-Dog Reset, 205
Watch Dog Restart Register, 205

Index

WDM drivers, 237-8
WHQL, 421-2
Win32 AP| Puzzle Book, 361-2
win32api.txt file, 353
Win32 Driver Model (WDM), 10, 237
communication flow, 241—7
layered drivers, 238—41
WinDK, 254
Windows 2000, USB support, 9-10
Windows Device Developer's Kit (DDK),
249-50 Windows Hardware
Quality Labs Testing,
421-2 Windows, USB support
for, 9-10, 18-9,
22-3
WinDriver USB, 254
WinRTInterruptTransfer function, 251
WInRT toolkit, 251-3 wireless
connections, 290—1 WriteFile function,
384-7 Write transfers, control
datatravel in, 72
reporting status of, 65
writing data
feature report to device, 396-7
output report to device, 384—7

X

X register, 175
XTALIN pin, 206

514

	Introduction
	A Fresh Start
	What USB Can Do
	It's Not Perfect
	History

	Is USB Right for My Project?
	Inside USB Transfers
	Transfer Basics
	Host Speed
	Elements of a Transfer
	Ensuring that Transfers Are Successful

	A Transfer Type for Every Purpose
	Control Transfers
	Bulk Transfers
	Interrupt Transfers
	Isochronous Transfers
	More about Time-critical Transfers

	Enumeration: How the Host Learns about Devices
	The Process
	Descriptor Types and Contents
	Descriptors in 2.0-compliant Devices

	Control Transfers
	Elements of a Control Transfer
	The Requests

	Chip Choices
	Elements of a USB Controller
	Simplifying the Development Process
	A Look at Some Chips

	Inside a USB Controller:
	Selecting a Chip
	The Assembler
	Programming in C
	Chip Architecture
	USB Communications
	Other I/O
	Other Chip Capabilities

	Writing Firmware
	Hardware and Firmware Responsibilities
	Hardware Development Tools

	How the Host Communicates
	Device Driver Basics
	The Win32 Driver Model
	Choosing a Driver Type
	Writing a Custom Driver

	How Windows Selects a Driver
	The Process
	Inside an INF File
	Creating INF Files

	Device Classes
	Uses of Classes
	Matching a Device to a Class

	Human Interface Devices: Firmware Basics
	What is a HID?
	Identifying a Device as a HID
	HID-specific Requests
	Transferring Data

	Human Interface Devices: Reports
	Report Structure
	The Main Item Type
	The Global Item Type
	The Local Item Type

	Human Interface Devices: Host Application Primer
	Host Communications Overview
	Using API Functions
	Device Attachment and Removal

	Human Interface Devices: Host Application Example
	Finding a Device
	Reading and Writing Data

	Device Testing
	USB Check's Test Suite
	Test Equipment
	Testing and Logos

	Hubs: the Link between Devices and the Host
	Hub Basics
	The Hub Class

	Managing Power
	Powering Options
	Hub Power
	Saving Power

	Signals and Encoding
	Bus States
	Data Encoding
	Packet Format
	Test Modes

	The Electrical Interface
	Transceivers and Signals
	Signal Voltages
	Cables
	Ensuring Signal Quality

	Index

