IRLML6401PbF HEXFET® Power MOSFET

- Ultra Low On-Resistance
- P-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching
- 1.8V Gate Rated
- Lead-Free
- Halogen-Free

Description

These P-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low onresistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET[®] power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in battery and load management.

A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3[™], is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available.

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{DS}	Drain- Source Voltage	-12	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -4.5V	-4.3		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -4.5V	-3.4	Α	
I _{DM}	Pulsed Drain Current ①	-34		
P _D @T _A = 25°C	Power Dissipation	1.3	W	
P _D @T _A = 70°C	Power Dissipation	0.8	٧V	
	Linear Derating Factor	0.01	W/°C	
E _{AS}	Single Pulse Avalanche Energy ④	33	mJ	
V _{GS}	Gate-to-Source Voltage	± 8.0	V	
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C	

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{0JA}	Maximum Junction-to-Ambient®	75	100	°C/W

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-12			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.007		V/°C	Reference to 25° C, $I_{D} = -1$ mA
				0.050	0	V _{GS} = -4.5V, I _D = -4.3A ②
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.085		V _{GS} = -2.5V, I _D = -2.5A ②
				0.125		V _{GS} = -1.8V, I _D = -2.0A ②
V _{GS(th)}	Gate Threshold Voltage	-0.40	-0.55	-0.95	V	$V_{DS} = V_{GS}, I_D = -250 \mu A$
g _{fs}	Forward Transconductance	8.6			S	$V_{DS} = -10V, I_D = -4.3A$
I	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -12V, V_{GS} = 0V$
IDSS	Dialitio-Source Leakage Guiteni			-25	μA	$V_{DS} = -9.6V, V_{GS} = 0V, T_J = 55^{\circ}C$
1	Gate-to-Source Forward Leakage			-100		V _{GS} = -8.0V
GSS	Gate-to-Source Reverse Leakage			100	nA	V _{GS} = 8.0V
Qg	Total Gate Charge		10	15		I _D = -4.3A
Q _{gs}	Gate-to-Source Charge		1.4	2.1	nC	$V_{DS} = -10V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		2.6	3.9		V _{GS} = -5.0V ^②
t _{d(on)}	Turn-On Delay Time		11		ns	V _{DD} = -6.0V
tr	Rise Time		32		115	I _D = -1.0A
t _{d(off)}	Turn-Off Delay Time		250			$R_D = 6.0\Omega$
t _f	Fall Time		210			R _G = 89Ω ②
C _{iss}	Input Capacitance		830			$V_{GS} = 0V$
Coss	Output Capacitance		180		рF	V _{DS} = -10V
C _{rss}	Reverse Transfer Capacitance		125			f = 1.0 MHz

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			-1.3		MOSFET symbol
	(Body Diode)		-1.3	3 A	showing the	
I _{SM}	Pulsed Source Current			04	~	integral reverse
	(Body Diode) ①		-34		p-n junction diode.	
V _{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}C, I_S = -1.3A, V_{GS} = 0V$ (2)
t _{rr}	Reverse Recovery Time		22	33	ns	$T_J = 25^{\circ}C, I_F = -1.3A$
Q _{rr}	Reverse RecoveryCharge		8.0	12	nC	di/dt = -100A/µs ②

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- O Pulse width \leq 300 μ s; duty cycle \leq 2%.
- ③ Surface mounted on 1" square single layer 1oz. copper FR4 board, steady state.

(4) Starting
$$T_J = 25^{\circ}C$$
, $L = 3.5mH$
 $R_G = 25\Omega$, $I_{AS} = -4.3A$.