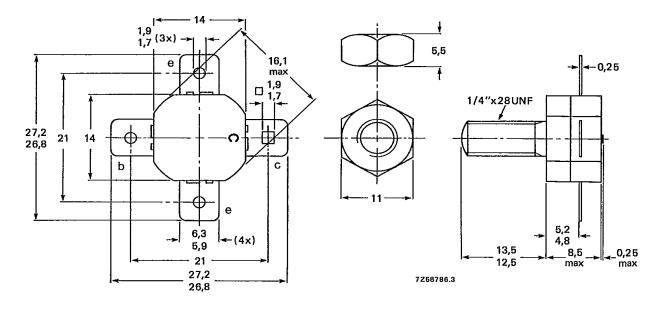
V.H.F. POWER TRANSISTOR

N-P-N planar epitaxial transistor intended for use in class-A, B and C operated mobile, industrial and military transmitters with a supply voltage of 28 V. The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions. It has a plastic encapsulated stripline package. All leads are isolated from the stud.

QUICK REFERENCE DATA


R.F. performance up to $T_{mb} = 25 \text{ °C}$ in an unneutralized common-emitter class-B circuit

mode of operation	V _{CE}	f	P _S	PL	I _C	G _p	η	z _i	Υ <u>Γ</u>
	V	MHz	W	W	A	dB	%	Ω	mS
c.w.	28	175	< 10	50	< 2,75	>7	>65	0,8 + j1,45	125 — j66

MECHANICAL DATA

Fig. 1 SOT-55.

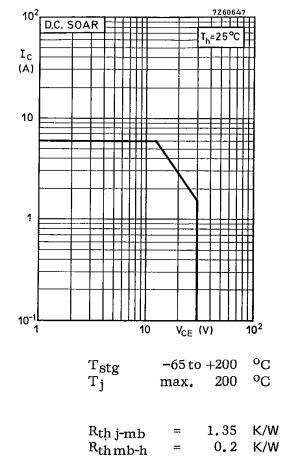
Dimensions in mm

Torque on nut: min. 2,3 Nm (23 kg cm) max.2,7 Nm (27 kg cm) Diameter of clearance hole in heatsink: max. 6,4 mm. Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.

PRODUCT SAFETY This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely safe provided that the BeO disc is not damaged.

1151


RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector -base voltage (open emitter)
peak value

- Collector-emitter voltage (open base)
- Emitter -base voltage (open collector)
- Collector current (average)
- Collector current (peak value) f > 1 MHz
- Total power dissipation up to $\rm T_{mb}$ = 25 $^{o}\rm C$ f > 1 MHz

150 (_						_		7 Z 60	422	_
130						[V _c	E ≤ 3	28V	
	5	hort	tim	e	A,			f	- 1M	Hz	
P _{tot}		pera S,W.		,	<u> </u>	1.0	1,3			[1
(W)				A			1- "J	5×0.	5		
				~	[.				(F)	w.	
100						7.35	! *^	-		-	
							*0.2	k	[
ł								Ň	<i>v</i>		
ł							<u> </u>				
ļ					-	erat १.< 3					
50						<u> </u>	 				
-											
ĺ	-										
0					5()	T _h	(°C)	10	0

VCBOM	max.	65	v
VCEO	max.	36	v
v_{EBO}	max.	4	v
I _{C(AV)}	max.	6	А
I _{CM}	max.	12	А
P _{tot}	max.	130	w

Storage temperature Operating junction temperature

THERMAL RESISTANCE

From junction to mounting base From mounting base to heatsink

1152

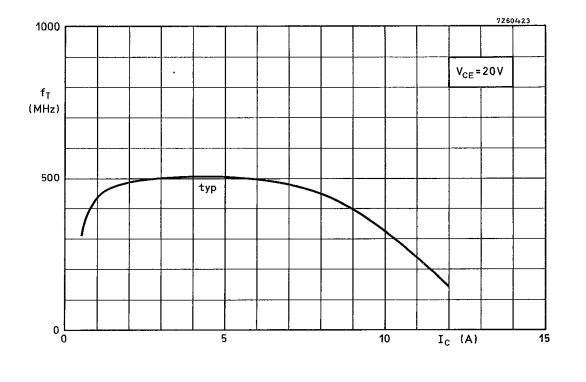
August 1986

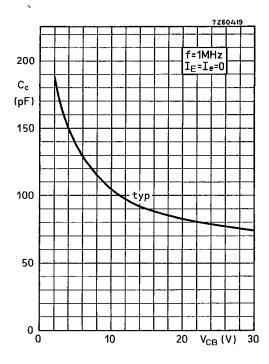
PHILIPS INTERNATIONAL

V.H.F. power transistor

65E D 🖿

₩ 7110826 0063657 366 ₩ PHIN


CHARACTERISTICS				
$T_j = 25$ °C unless otherwise specified				
Breakdown voltages				
Collector -base voltage open emitter, I _C = 100 mA	V(BR)CBO	>	65	v
Collector-emitter voltage open base, IC = 100 mA	V _(BR) CEO	>	36	v
Emitter-base voltage open collector; I _E = 25 mA	V _{(BR)EBO}	>	4	v
Transient energy				
L = 25 mH; f = 50 Hz				
open base $-V_{BE} = 1.5 \text{ V}; \text{ R}_{BE} = 33 \Omega$	E E	> >	8 8	ms ms
D.C. current gain				
$I_{C} = 1 A; V_{CE} = 5 V$	$h_{\rm FE}$	10 to	120	
Transition frequency				
$I_{C} = 6 A; V_{CE} = 20 V$	fŢ	typ.	500	MHz
Collector capacitance at f = 1 MHz				
$I_{\rm E} = I_{\rm e} = 0; V_{\rm CB} = 30 \text{ V}$	Cc	typ. <	75 130	pF pF
Feedback capacitance				
I_{C} = 100 mA; V_{CE} = 30 V	-C _{re}	typ.	47	\mathbf{pF}
Collector -stud capacitance	Ccs	typ.	3.5	pF


1153

L

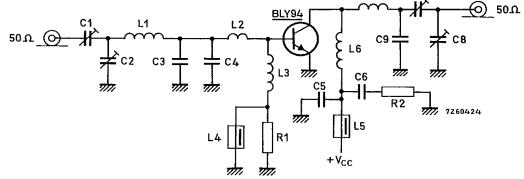
August 1986

This Material Copyrighted By Its Respective Manufacturer

1154 August 1986

This Material Copyrighted By Its Respective Manufacturer

APPLICATION INFORMATION


R.F. performance in c.w. operation (unneutralised common-emitter class Bcircuit)

f = 175 MHz; T_{mb} up to $25 \, {}^{o}C$

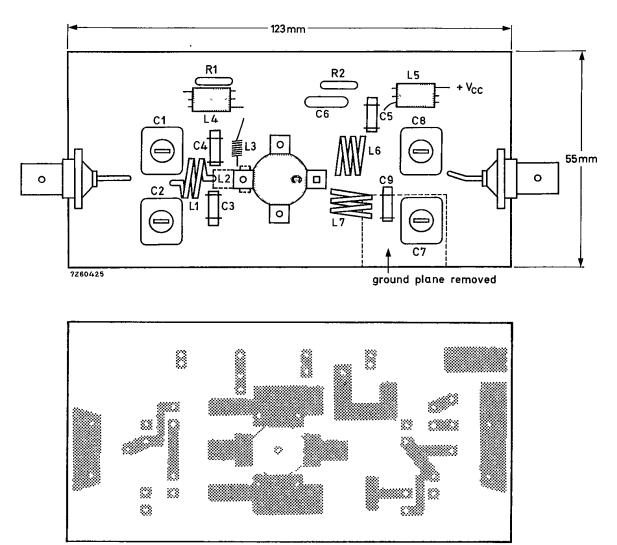
				Gp(dB)	1		
28	< 10	50	< 2.75	> 7	> 65	0.8+j1.45	125 - j66

L7

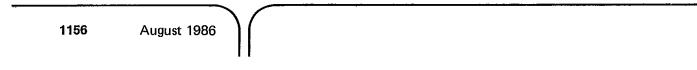
Test circuit for 175 MHz:

List of components:

C1 =	2to	20 pF film dielectric trimmer (code number 2222 809 07004)
C2=	4to	40 pF film dielectric trimmer (code number 2222 809 07008)
an at		

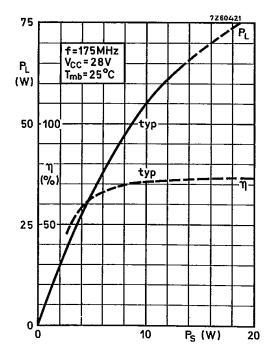

- 56 pF ceramic C3 = C4 =
- C5 = 100 pF ceramic C6 =
- 100 nF polyester
- C7= 4 to 60 pF film dielectric trimmer (code number 2222 809 07011)
- 4 to 100 pF film dielectric trimmer (code number 2222 809 07015) C8 =
- C9 = 6.8 pF ceramic
- L1 =36nH; 2turns enamelled Cuwire (1.5 mm); int. diam. 7mm; length 5 mm; lead length $2 \times 5 \,\mathrm{mm}$
- L2 =formed by the metallization on the p.c. board; see component lay-out
- L3 = 100 nH; 7 turns closely wound enamelled Cu wire (0.5 mm); int. diam 3 mm; lead length $2 \times 5 \,\mathrm{mm}$
- L4 = L5 = ferroxcube choke (code number 4312 020 36640)
- L6 53 nH; 2 turns enamelled Cu wire (1.5 mm); int. diam. 10 mm; length 5.2 mm; lead length $2 \times 5 \text{ mm}$
- L7= 46 nH; 2 turns enamelled Cu wire (1.5 mm); int. diam. 9 mm; length 5.4 mm; lead length 2x5mm

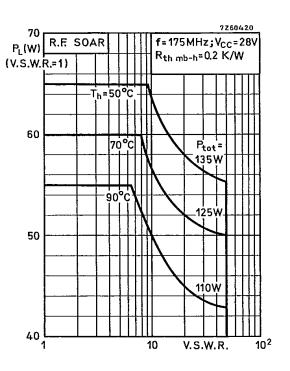
 $R1 = R2 = 10 \Omega$ carbon


August 1986 1155

APPLICATION INFORMATION (continued)

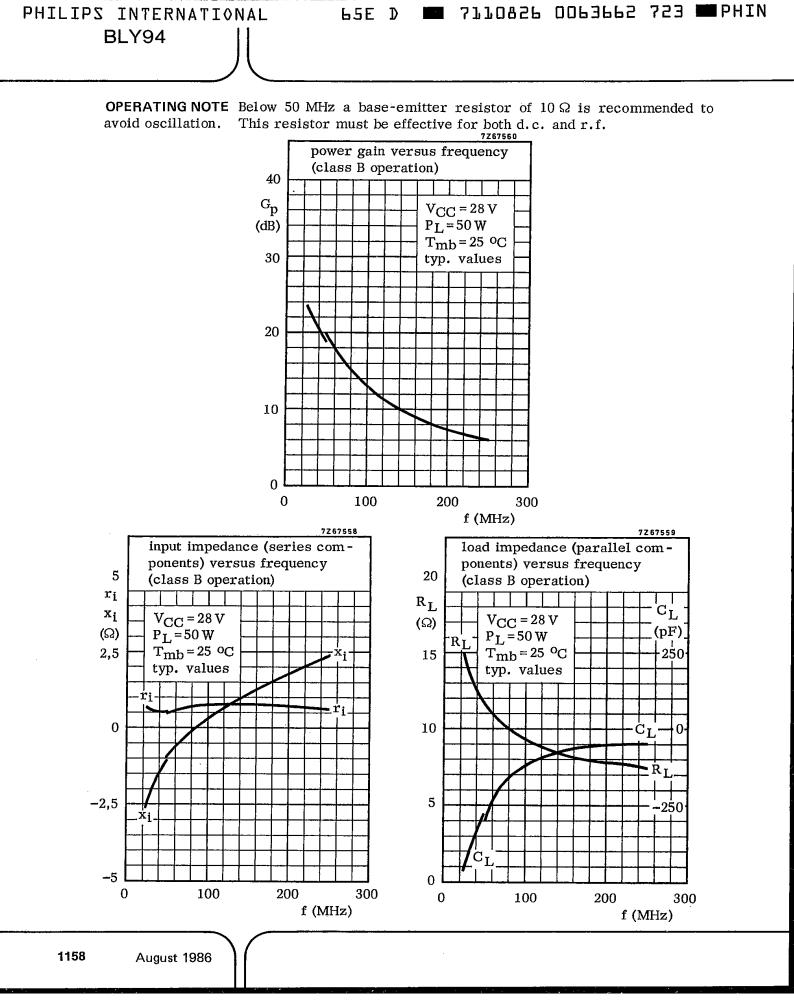
Component lay-out and printed circuit board for 175 MHz test circuit.

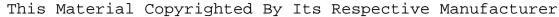



The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side being fully metallised to serve as earth. Earth connections are made by means of hollow rivets.

PHILIPS INTERNATIONAL

V.H.F. power transistor





For high voltage operation, a stabilized power supply is generally used. The graph shows the allowable output power under nominal conditions as a function of the V.S.W.R., with heatsink temperature as parameter.

August 1986

1157

