

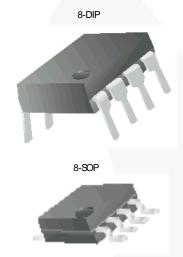
Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

June 2008


MC34063A / MC33063A SMPS Controller

Features

- Operation from 3.0 to 40V Input
- Short Circuit Current Limiting
- Low Standby Current
- Output Switch Current of 1.5A Without External Transistors
- Adjustable Output Voltage
- Frequency of Operation from 100Hz to 100KHz
- Step-up, Step Down, or Inverting Switching Regulators

Description

The MC34063A/MC33063A is a monolithic regulator subsystem intended for a DC to DC converter. The device contains a temperature-compensated bandgap reference, a duty cycle control oscillator, driver, and high-current output switch. It can be used for stepdown, step-up, or inverting switching and series pass regulators.

Ordering Information

Part Number	Operating Temperature Range	© Eco Status	Package	
MC34063AP	0 ~ +70°C	RoHS	8-DIP	
MC34063AD	0 ~ +70°C	RoHS	8-SOP	
MC33063AP	-40 ~ +85°C	RoHS	8-DIP	
MC33063AD	-40 ~ +85°C	RoHS	8-SOP	

Por Fairchild's definition of "green" Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohsgreen.html.

Block Diagram

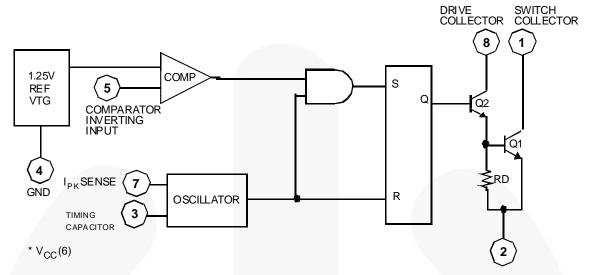


Figure 1. Block Diagram

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V _{CC}	Supply Voltage			40	V
V _{I(COMP)}	Comparator Input Voltage R	ange	-0.3	+40	V
V _{C(SW)}	Switch Collector Voltage		40	V	
$V_{E(SW)}$	Switch Emitter Voltage		40	V	
V _{CE(SW)}	Switch Collector to Emitter Voltage			40	V
V _{C(DR)}	Driver Collector Voltage			40	V
I _{SW}	Switch Current			1.5	А
T _{STG}	Storage Temperature Range		-65	+150	°C
В	Dower Dissipation	SOP		0.8	W
P_{D}	Power Dissipation	DIP		1	VV

Electrical Characteristics

 $V_{CC} = 5.0V$, $T_A = 0$ °C to +70°C for MC34063, $T_A = -40$ °C to +85°C for MC33063, unless otherwise specified.

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Units
Oscillator							
I _{CHG}	Charging Current		V _{CC} =5 to 40V, T _A =25°C	22	31	42	μA
I _{DISCHG}	Discharging Current		V _{CC} =5 to 40V, T _A =25°C	140	190	260	μΑ
V _(OSC)	Oscillator Amplitude		T _A =25°C		0.5		V
K	Discharge-to-Charge Current Ratio		V ₇ =V _{CC} , T _A =25°C	5.2	6.1	7.5	
V _{SENSE(CL)}	Current Limit Sense Voltage		I _{CHG} =I _{DISCHG} , T _A =25°C	250	300	350	mV
Output Sw	itch						
V _{CE(SAT)1}	Saturation Voltage 1 ⁽¹⁾		I _{SW} =1.0A, V _{C(driver)} =V _{C(SW)}		0.95	1.30	V
V _{CE(SAT)2}	Saturation Voltage 2 ⁽¹⁾		I _{SW} =1.0A, V _{C(driver)} =50mA	A	0.45	0.70	V
G _{I(DC)}	DC Current Gain ⁽¹⁾		I _{SW} =1.0A, V _{CE} =5.0V, T _A =25°C	50	180		
I _{C(OFF)}	Collector Off-State Current ⁽¹⁾		V _{CE} =40V, T _A =25°C		0.01	100.00	μΑ
Comparato	or				39/		-J
V _{TH}	Threshold Voltage			1.21	1.24	1.29	V
ΔV_{TH}	Threshold Voltage Line Regulation		V _{CC} =3 to 40V		2	5	mV
I _{BIAS}	Input Bias Current		V _I =0V		50	400	nA
Total Device	ce					•	
Icc	Supply Current MC34063 MC33063	/IC34063	V_{CC} =5 to 40V, C_T =0.001 μ F,			4	Λ
		/IC33063	V ₇ =V _{CC} , V ₅ >V _{TH} , pin 2=GND			5	mA

Note:

1. Output switch tests are performed under pulsed conditions to minimize power dissipation.

Typical Performance Characteristics

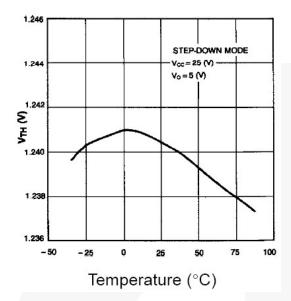


Figure 2. Temperature Drift (V_{TH})

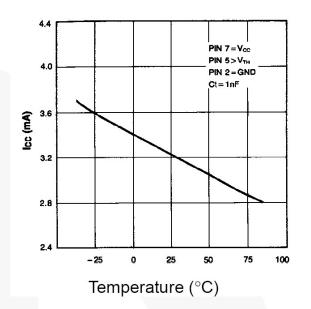
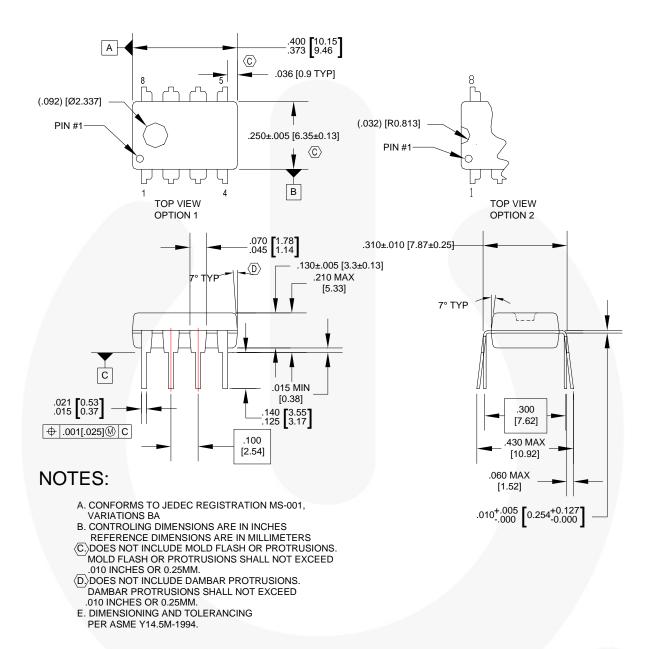



Figure 3. Temperature Drift (loc)

Physical Dimensions

N08EREVG

Figure 4. 8-Lead PDIP, JEDEC MS-001

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

Physical Dimensions

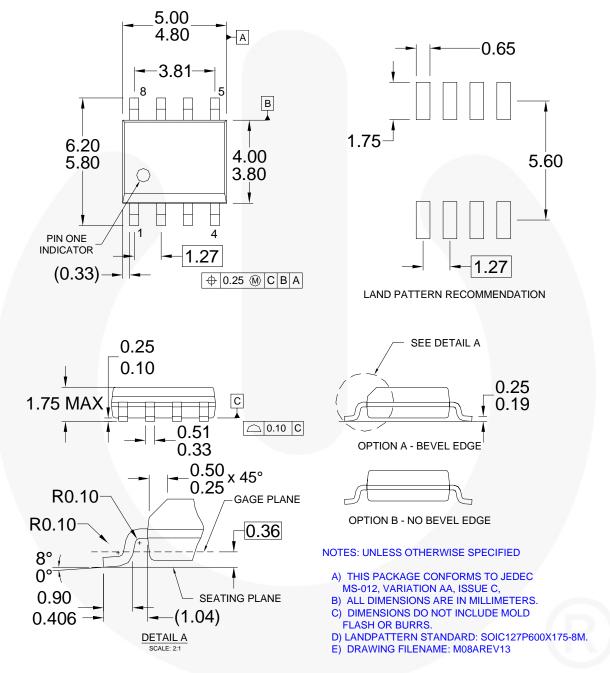


Figure 5. 8-Lead, SOIC, JEDEC MS-012, .150 inch Narrow Body

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ Core PLUS™ Core POWER™ CROSSVOLT™ **CTL™**

Current Transfer Logic™ EcoSPARK® EfficentMa×™ EZSWITCH™*

Fairchild® Fairchild Semiconductor® FACT Quiet Series™

FAST® FastvCore™ FlashWriter®* E-PESTM FRFET®

Global Power Resource Green FPS™ Green FPS™ e-Series™

GTO** IntelliMAX™ ISOPLANAR™ MegaBuck™

MICROCOUPLER™ MicroFET** MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC®

OPTOPLANAR®

PDP SPM™ Power-SPM™

PowerTrench® Programmable Active Droop™

QFET QSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW at a time™ SmartMax™

SMART START™ SPM®

STEALTH™ SuperFET™ SuperSOT**-3 SuperSOTM6 SuperSOT**8 SupreMOS™ SyncFET™

SYSTEM ®

TinyBoost™ TinvBuck** TinyLogic[®] TINYOPTO™ TinyPower™ TinyPVVM™ TinyWire™ μSerDes™ UHC Ultra FRFET™ UniFET™ VCXTM

VisualMax™

The Power Franchise®

wer

franchise

* EZSWITCH™ and FlashWriter® are trademarks of System General Comporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN, NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Source's. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification Product Status		Definition			
		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data, supplementary data will be published at a later date. Fairchil Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. 135

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative