

FEATURES

- ► Industrial Standard SIP-7 Package
- ➤ Semi-regulated Output Voltage
- ► Very High Efficiency up to 88.5%
- ► I/O Isolation 1000 VDC
- ► Operating Ambient Temp. Range -40°C to +95°C
- ► UL/cUL/IEC/EN 60950-1 Safety Approval

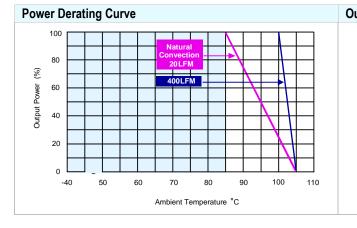
PRODUCT OVERVIEW

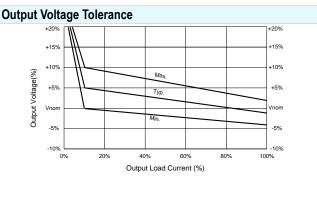
The MINMAX MA01 series is a new range of isolated 1W DC/DC converter modules in a small SIP-package. There are 24 models available with 5V, 12V or 24VDC input and single-or dual-output voltages. These products provide have a typical load regulation of 2.5% to 5.0% depending on model. The MA01 DC/DC converters are a compromise between a more expensive fully regulated converter and a non-regulated converter. They offer the designer a new solution for many cost critical applications where the output voltage variation has to be kept in a certain limit under all load conditions.

Model Number	Input Voltage		Output Current		Input Current		Load	Reflected	Max. capacitive	Efficiency	
							Regulation	Ripple	Load	(typ.)	
	(Range)		Max.	Min.	@Max. Load	@No Load				@Max. Load	
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	% (max.)	mA(typ.)	μF	%	
MA01-05S05	5	5	200	4	238		6.5		220	84	
MA01-05S09		9	110	2	228		5			87	
MA01-05S12		12	84	1.5	232		5.2			87	
MA01-05S15		15	67	1	230	20	5	7		87.5	
MA01-05D05	(4.5 ~ 5.5)	±5	±100	±2	237	30	5.2	7	100#	84.5	
MA01-05D09		±9	±56	±1	234		4.2			86	
MA01-05D12		±12	±42	±0.8	233		4.6			86.5	
MA01-05D15		±15	±34	±0.7	236		4.5			86.5	
MA01-12S05		5	200	4	99		5	4	220	84	
MA01-12S09		9	110	2	95		3.4			86.5	
MA01-12S12		12	84	1.5	95		3.4			88.5	
MA01-12S15	12	15	67	1	95	40	2.7			88	
MA01-12D05	(10.8 ~ 13.2)	±5	±100	±2	99	12	3.9			84.5	
MA01-12D09		±9	±56	±1	98		2.8		100#	86	
MA01-12D12		±12	±42	±0.8	95		2.9			100#	88.5
MA01-12D15		±15	±34	±0.7	94		2.6			87.5	
MA01-24S05		5	200	4	50		3.7	8	220	84	
MA01-24S09		9	110	2	48	11	2.5			86.5	
MA01-24S12	24 (21.6 ~ 26.4)	12	84	1.5	48		2.4			87.5	
MA01-24S15		15	67	1	48		2.3			87.5	
MA01-24D05		±5	±100	±2	50	11	3.7			83.5	
MA01-24D09		±9	±56	±1	49		2.5			86	
MA01-24D12		±12	±42	±0.8	48		2.4	100#		87	
MA01-24D15		±15	±34	±0.7	49		2.3	1		87	

For each output

Input Specifications					
Parameter	Model	Min.	Typ.	Max.	Unit
	5V Input Models	-0.7		9	VDC
Input Surge Voltage (1 sec. max.)	12V Input Models	-0.7		18	
	24V Input Models	-0.7		30	
	5V Input Models	4.5	5	5.5	VDC
nput Voltage Range	12V Input Models	10.8	12	13.2	
	24V Input Models	21.6	24	26.4	
nput Filter	All Models	Internal Capacitor			

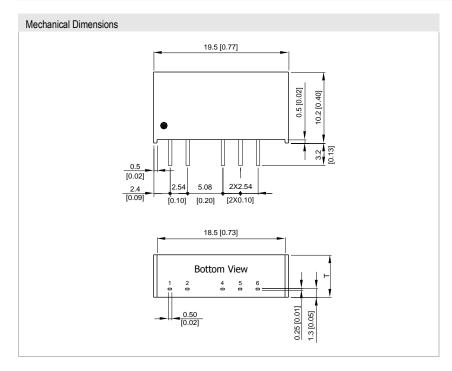

E-mail:sales@minmax.com.tw Tel:886-6-2923150



Output Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
Output Voltage Balance	Dual Output, Balanced Loads		±0.1	±1.0	%	
Line Regulation	For Vin Change of 1%		±1.05	±1.2	%	
Load Regulation	Io=20% to 100%		See Model Selection Guide			
Ripple & Noise	0-20MHz Bandwidth		30	60	mV _{P-P}	
Temperature Coefficient			±0.01	±0.02	%/°C	
Short Circuit Protection	0.5 Second Max., Automatic Recovery					

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O loolotion Voltage	60 Seconds	1000			VDC
I/O Isolation Voltage	1 Second	1200			VDC
I/O Isolation Resistance	500 VDC	1000			ΜΩ
I/O Isolation Capacitance	100KHz, 1V	40	60	120	pF
Switching Frequency		50	100	120	KHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	2,000,000 Hours			Hours
Safety Approvals	UL/cUL 60950-1 recognition (CSA certificate), IEC/EN 60950-1(CB-report)				

Environmental Specifications						
Parameter	Conditions	Min.	Max.	Unit		
Operating Ambient Temperature Range (See Power Derating Curve)	Natural Convection	-40	+85	°C		
Case Temperature			+95	°C		
Storage Temperature Range		-50	+125	°C		
Humidity (non condensing)			95	% rel. H		
Cooling	Natural Convection					
Lead Temperature (1.5mm from case for 10Sec.)			260	°C		


Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact factory.
- 5 That "natural convection" is about 20LFM but is not equal to still air (0 LFM).
- 6 Specifications are subject to change without notice.

Package Specifications

Pin Connections					
Pin	Single Output	Dual Output			
1	+Vin	+Vin			
2	-Vin	-Vin			
4	-Vout	-Vout			
5	No Pin	Common			
6	+Vout	+Vout			

T=6.1(0.24) for 5V & 12V Input Models T=7.1(0.28) for 24V Input Models

- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.25 (X.XX±0.01)

 X.XX±0.13 (X.XXX±0.005)
- ► Pins ±0.05(±0.002)

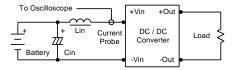
Physical Characteristics

Case Size (5&12V Input) : 19.5x6.1x10.2mm (0.77x0.24x0.40 inches)
Case Size (24V Input) : 19.5x7.1x10.2mm (0.77x0.28x0.40 inches)

Case Material : Non-Conductive Black Plastic (flammability to UL 94V-0 rated)

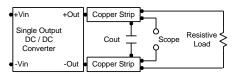
Pin Material : Alloy 42

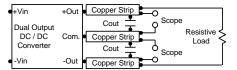
Weight (5&12V Input) : 2.2g Weight (24V Input) : 2.6g



Test Setup

Input Reflected-Ripple Current Test Setup

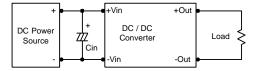

Input reflected-ripple current is measured with a inductor Lin (10 μ H) and Cin (1 μ F, ESR < 1.0 Ω at 100 KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance.


Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

Peak-to-Peak Output Noise Measurement Test

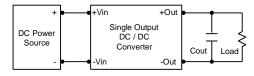
Use a Cout 0.33µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

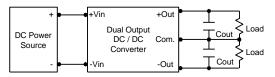
Technical Notes


Maximum Capacitive Load

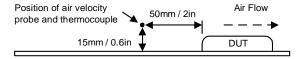
The MA01 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend $100\mu F$ maximum capacitive load for dual outputs and $220\mu F$ capacitive load for single outputs. The maximum capacitance can be found in the data sheet.

Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.


Capacitor mounted close to the power module helps ensure stability of the unit, it is commended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 1.00 KHz) capacitor of a 2.2μ F for the 5V input devices, a 1.0μ F for the 12V input devices and a 0.47μ F for the 24V devices.

Output Ripple Reduction


A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 1.0μ F capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.

