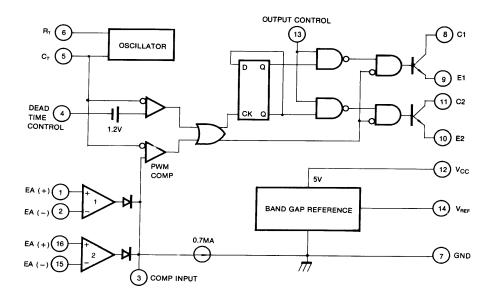


KA7500B SMPS Controller

Features


- Internal Regulator Provides a Stable 5V Reference Supply Trimmed to 5%
- Uncommitted Output TR for 200mA Sink or Source Current
- Output Control For Push-Pull or Single Ended Operation
- Variable Duty Cycle By Dead Time Control (Pin 4) Complete PWM Control Circuit
- On-Chip Oscillator With Master or Slave Operation
- Internal Circuit Prohibits Double Pulse at Either Output

Description

The KA7500B is used for the control circuit of the PWM switching regulator. The KA7500B consists of 5V reference voltage circuit, two error amplifiers, a flip flop, an output control circuit, a PWM comparator, a dead time comparator and an oscillator. This device can be operated in the switching frequency of 1kHz to 300kHz.

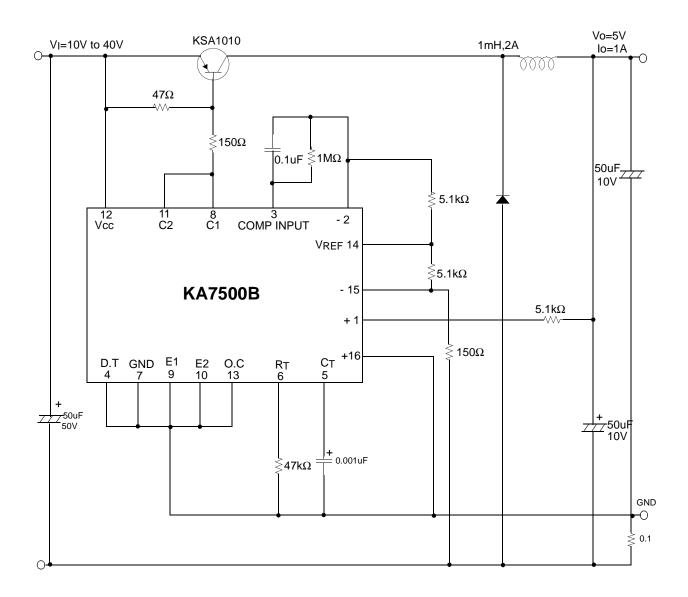
Internal Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage	Vcc	42	V
Collector Supply Voltage	Vc	42	V
Output Current	lo	250	mA
Amplifier Input Voltage	VIN	VCC +0.3	V
Power Dissipation (TA = 25°C)	PD	1 (KA7500B) 0.9 (KA7500BD)	W
Operating Temperature Range	TOPR	0 ~ +70	٥C
Storage Temperature Range	TSTG	-65 ~ +150	О°

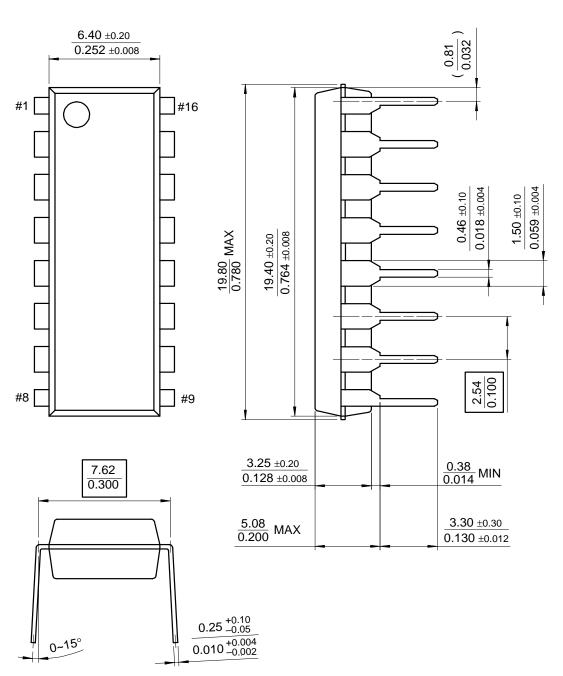
Electrical Characteristics

(VCC = 20V, f = 10kHz, TA = 0° C to +70°C, unless otherwise specified)


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
REFERENCE SECTION						1	
Reference Output Voltage	Vref	IREF = 1mA	4.75	5.0	5.25	V	
Line Regulation	ΔV_{REF}	V _{CC} = 7V to 40V	-	2.0	25	mV	
Temperature Coefficient of VREF	$\Delta V_{REF} / \Delta T$	$T_A = 0^{\circ}C$ to $70^{\circ}C$	-	0.01	0.03	%/°C	
Load Regulation	$\Delta VREF$	IREF = 1mA to 10mA	-	1.0	15	mV	
Short-Circuit Output Current	Isc	VREF = 0V	10	35	50	mA	
OSCILLATOR SECTION			I				
Oscillation Frequency	f	$C_T = 0.01 \mu F$, $R_T = 12 k \Omega$	-	10	-	kHz	
Frequency Change with Temperature	$\Delta f / \Delta T$	$C_T = 0.01 \mu F, R_T = 12 k \Omega$	-	-	2	%	
DEAD TIME CONTROL SECTION							
Input Bias Current	IBIAS	VCC = 15V, 0V≤V4≤5.25V	-	-2.0	-10	μA	
Maximum Duty Cycle	D(MAX)	V _{CC} = 15V, V ₄ = 0V O.C Pin = V _{REF}	45	-	-	%	
	N/	Zero Duty Cycle	-	3.0	3.3		
Input Threshold Voltage	VITH	Max. Duty Cycle	0	-	-	V	
ERROR AMP SECTION			I				
Input Offset Voltage	Vio	V ₃ = 2.5V	-	2.0	10	mV	
Input Offset Current	lio	V ₃ = 2.5V	-	25	250	mA	
Input Bias Current	IBIAS	V ₃ = 2.5V	-	0.2	1.0	μΑ	
Common Mode Input Voltage	Vсм	$7V \le VCC \le 40V$	-0.3	-	Vcc	V	
Open-Loop Voltage Gain	Gvo	$0.5V \le V_3 \le 3.5V$	70	95	-	dB	
Unit-Gain Bandwidth (Note1)	BW	-	-	650	-	kHz	
PWM COMPARATOR SECTION						1	
Input Threshold Voltage	VITH	Zero Duty Cycle	-	4	4.5	V	
Input Sink Current	ISINK	V3=0.7V	-0.3	-0.7	-	mV	
OUTPUT SECTION						1	
Output Saturation Voltage Common Emitter	VCE(SAT)	$V_{E} = 0, I_{C} = 200 \text{mA}$	-	1.1	1.3		
Common Collector	VCC(SAT)	V _C = 15V, I _E = -200mA	-	1.5	2.5	V	
Collector Off-State Current	IC(OFF)	$V_{CC} = 40V, V_{CE} = 40V$	-	2	100	A	
Emitter Off-State Current	IE(OFF)	VCC = VC = 40V, VE = 0	-	-	-100	μA	
TOTAL DEVICE			•	•			
Supply Current	ICC	Pin 6 = V_{REF} , V_{CC} = 15V	-	6	10	mA	
OUTPUT SWITCHING CHARACTERIST	TICS		•				
Rise Time	tR	-	-	-	-	-	
Common Emitter	-	-	-	100	200	r 2	
Common Collector	-	-	-	100	200	ns	
Fall Time	tF	-	-	-	-	-	
Common Emitter	-	-	-	25	100	ns	
Common Collector	-	-	-	40	100		

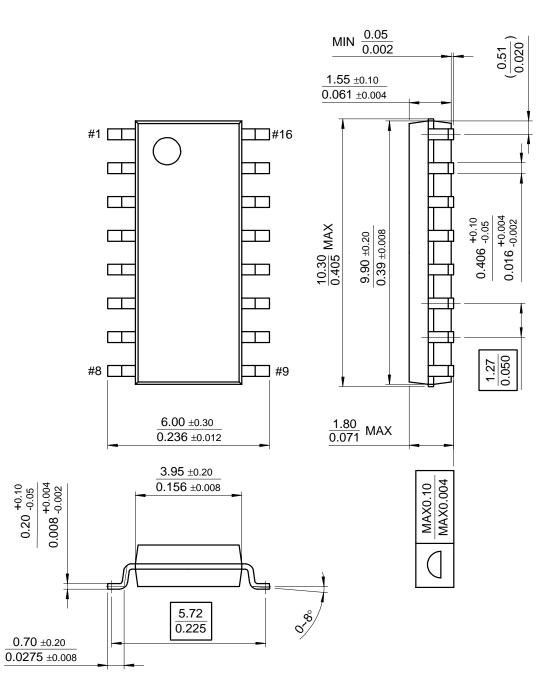
Note:

1. This parameter, although guaranteed, is not 100% tested in production.


Typical Application

Pulse Width Modulated Step-down Converter

Mechanical Dimensions


Package

16-DIP

Mechanical Dimensions (Continued)

Package

16-SOP

Ordering Information

Product Number	Package	Operating Temperature
KA7500B	16-DIP	0 ~ +70°C
KA7500BD	16-SOP	0~+70 C

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com