

Low Power Audio System with Wolfson myZone™ Ambient Noise Cancellation and Echo Cancellation

DESCRIPTION

The WM5110 is a highly-integrated low-power audio system for smartphones, tablets and other portable audio devices. It combines an advanced DSP feature set with a flexible, high-performance audio hub CODEC.

The WM5110 digital core combines a quad-core, 600MMAC DSP system with a variety of power-efficient fixed-function audio processing blocks. The programmable DSP cores support advanced audio features, including multi-mic wideband noise reduction and beamforming, high-performance acoustic echo cancellation (AEC), stereo ambient noise cancellation (ANC), speech enhancement, advanced media enhancement, and many more. The DSP cores are supported by a fully-flexible, all-digital mixing and routing engine with sample rate converters, for wide use-case flexibility.

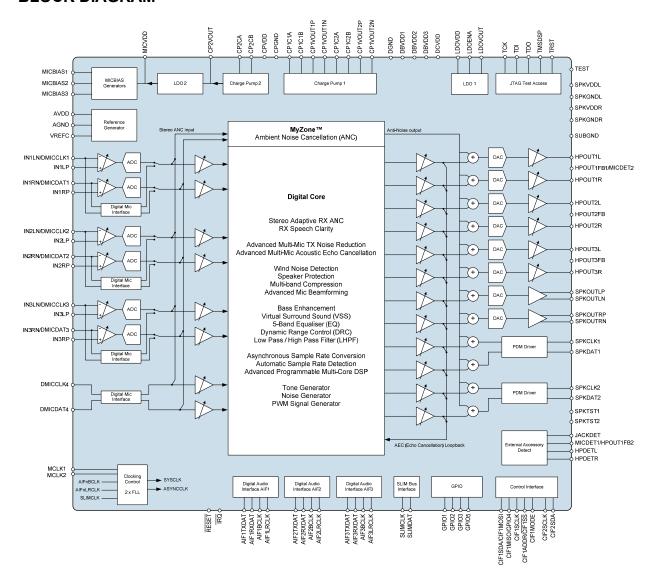
A SLIMbus interface supports multi-channel audio paths and host control register access. Multiple sample rates are supported concurrently via the SLIMbus interface. Three further digital audio interfaces are provided, each supporting a wide range of standard audio sample rates and serial interface formats. Automatic sample rate detection enables seamless wideband/narrowband voice call handover.

Three stereo headphone drivers each provide stereo ground-referenced or mono BTL outputs. 110dB SNR, and noise levels as low as $2\mu V_{\text{RMS}},$ offer hi-fi quality line or headphone output. High power, high-quality speaker output is provided by a stereo pair of 2W Class-D speaker amplifiers. Four channels of stereo PDM output are provided, for connection to external amplifiers.

The WM5110 supports up to eight microphone inputs, (up to six analogue, or up to eight PDM digital, or combinations of each). Microphone activity detection with interrupt is available. A smart accessory interface supports most standard 3.5mm accessories. Impedance sensing and measurement is provided for external accessory and pushbutton detection.

The WM5110 power, clocking and output driver architectures are all designed to maximise battery life in voice, music and standby modes. The chip can be powered from a 1.8V external supply. (For full device functionality, a 1.2V digital core supply and a 4.2V Class D speaker driver supply are recommended.)

Two integrated FLLs provide support for a wide range of system clock frequencies. The WM5110 is configured using the I2C, SPI or SLIMbus interfaces. The fully-differential internal analogue architecture, minimal analogue signal paths and on-chip RF noise filters ensure a very high degree of noise immunity.


FEATURES

- 600 MIPS, 600MMAC multi-core audio-signal processor
- Programmable wideband, multi-mic audio processing
 - myZoneTM stereo adaptive ambient noise cancellation
 - Transmit-path noise reduction and echo cancellation
 - Microphone beam-forming
 - Wind noise, sidetone and other programmable filters
 - Dynamic Range Control, Fully parametric EQs
 - Multiband Compression, Virtual Surround Sound
- Multi-channel asynchronous sample rate conversion
- Integrated 6/8 channel 24-bit hi-fi audio hub CODEC
 - 6 ADCs, 100dB SNR microphone input (48kHz)
 - 8 DACs, 110dB SNR headphone playback (48kHz)
- Audio inputs
 - Up to 6 analogue or 8 digital microphone inputs
 - Single-ended or differential mic/line inputs
- Multi-purpose headphone / earpiece / line output drivers
 - 3 stereo output paths
 - 33mW into 32Ω load at 1% THD+N
 - 100mW into 16Ω BTL load at 5% THD+N
 - 3mW typical headphone playback power consumption
 - Pop suppression functions
 - 2μV_{RMS} noise floor (A-weighted)
- 2 x 2W stereo Class D speaker output drivers
- Four-channel digital speaker (PDM) interface
- · SLIMbus® audio and control interface
- 3 full digital audio interfaces
 - Standard sample rates from 4kHz up to 768kHz
 - Ultrasonic accessory function support
 - TDM support on all AIFs
 - 8 channel input and output on AIF1
- Flexible clocking, derived from MCLKn, BCLKn or SLIMbus
- 2 low-power FLLs support reference clocks down to 32kHz
- Advanced accessory detection functions
 - Low-power standby mode
 - 'Switchable ground' support for different headset types
- Configurable functions on 5 GPIO pins
- Integrated LDO regulators and charge pumps
- Small W-CSP package, 0.4mm pitch

APPLICATIONS

- · Smartphones and Multimedia handsets
- Tablets and Mobile Internet Devices (MID)
- General-purpose low-power audio CODEC hub

BLOCK DIAGRAM

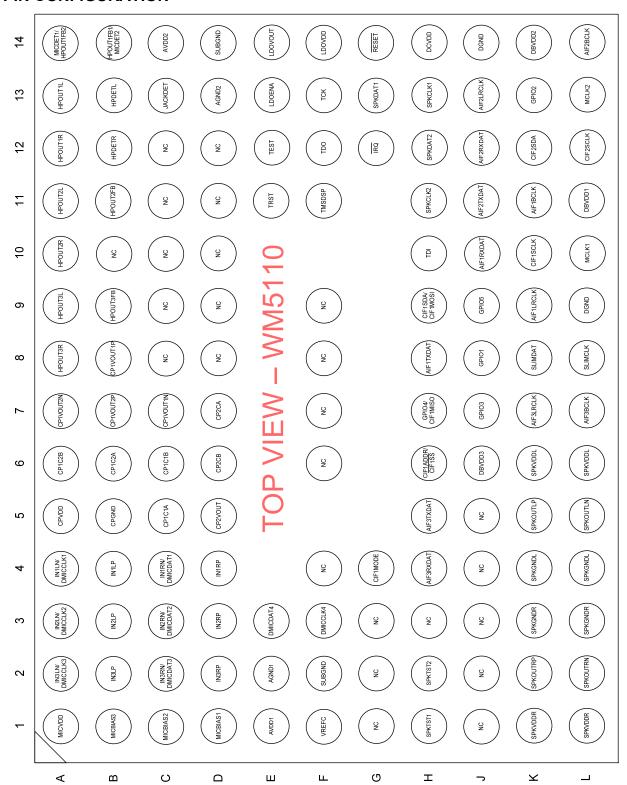


TABLE OF CONTENTS

DESCRIPTION	
FEATURES	
APPLICATIONS	
BLOCK DIAGRAM	2
TABLE OF CONTENTS	3
PIN CONFIGURATION	4
ORDERING INFORMATION	5
PIN DESCRIPTION	5
ABSOLUTE MAXIMUM RATINGS	8
RECOMMENDED OPERATING CONDITIONS	
ELECTRICAL CHARACTERISTICS	
TERMINOLOGY	
DEVICE DESCRIPTION	
INTRODUCTION	
HI-FI AUDIO CODEC	
DIGITAL AUDIO COREDIGITAL INTERFACES	
OTHER FEATURES	
RECOMMENDED EXTERNAL COMPONENTS	
PACKAGE DIMENSIONS	
IMPORTANT NOTICE	
ADDRESS:	
DEVISION HISTORY	27

PIN CONFIGURATION

ORDERING INFORMATION

ORDER CODE	TEMPERATURE RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL	PEAK SOLDERING TEMPERATURE
WM5110ECS/R	-40°C to +85°C	W-CSP (Pb-free, Tape and reel)	MSL1	260°C

Note:

Reel quantity = 5000

PIN DESCRIPTION

A description of each pin on the WM5110 is provided below.

Note that, where multiple pins share a common name, these pins should be tied together on the PCB.

PIN NO	NAME	TYPE	DESCRIPTION
E2	AGND1	Supply	Analogue ground (Return path for AVDD1)
D13	AGND2	Supply	Analogue ground (Return path for AVDD2)
K11	AIF1BCLK	Digital Input / Output	Audio interface 1 bit clock
J10	AIF1RXDAT	Digital Input	Audio interface 1 RX digital audio data
K9	AIF1LRCLK	Digital Input / Output	Audio interface 1 left / right clock
H8	AIF1TXDAT	Digital Output	Audio interface 1 TX digital audio data
L14	AIF2BCLK	Digital Input / Output	Audio interface 2 bit clock
J12	AIF2RXDAT	Digital Input	Audio interface 2 RX digital audio data
J13	AIF2LRCLK	Digital Input / Output	Audio interface 2 left / right clock
J11	AIF2TXDAT	Digital Output	Audio interface 2 TX digital audio data
L7	AIF3BCLK	Digital Input / Output	Audio interface 3 bit clock
H4	AIF3RXDAT	Digital Input	Audio interface 3 RXdigital audio data
K7	AIF3LRCLK	Digital Input / Output	Audio interface 3 left / right clock
H5	AIF3TXDAT	Digital Output	Audio interface 3 TX digital audio data
E1	AVDD1	Supply	Analogue supply
C14	AVDD2	Supply	Analogue supply
H6	CIF1ADDR/	Digital Input	Control interface 1 (I2C) address select /
	CIF1SS		Control interface 1 (SPI) Slave Select (SS)
H7	CIF1MISO/	Digital Input / Output	Control interface 1 Master In Slave Out data /
	GPIO4		General Purpose pin GPIO4
G4	CIF1MODE	Digital Input	Control interface 1 mode select input
K10	CIF1SCLK	Digital Input	Control interface 1 clock input
H9	CIF1SDA/	Digital Input / Output	Control interface 1 (I2C) data input and output /
	CIF1MOSI		Control interface 1 (SPI) Master Out Slave In data
L12	CIF2SCLK	Digital Input	Control interface 2 clock input
K12	CIF2SDA	Digital Input / Output	Control interface 2 data input and output / acknowledge output
C5	CP1C1A	Analogue Output	Charge pump 1 fly-back capacitor 1 pin
C6	CP1C1B	Analogue Output	Charge pump 1 fly-back capacitor 1 pin
B6	CP1C2A	Analogue Output	Charge pump 1 fly-back capacitor 2 pin
A6	CP1C2B	Analogue Output	Charge pump 1 fly-back capacitor 2 pin
C7	CP1VOUT1N	Analogue Output	Charge pump 1 negative output 1 decoupling pin
B8	CP1VOUT1P	Analogue Output	Charge pump 1 positive output 1 decoupling pin
A7	CP1VOUT2N	Analogue Output	Charge pump 1 negative output 2 decoupling pin
B7	CP1VOUT2P	Analogue Output	Charge pump 1 positive output 2 decoupling pin
D7	CP2CA	Analogue Output	Charge pump 2 fly-back capacitor pin
D6	CP2CB	Analogue Output	Charge pump 2 fly-back capacitor pin
D5	CP2VOUT	Analogue Output	Charge pump 2 output decoupling pin / Supply for LDO2
B5	CPGND	Supply	Charge pump 1 & 2 ground (Return path for CPVDD)

WM5110

PIN NO	NAME	TYPE	DESCRIPTION
A5	CPVDD	Supply	Supply for Charge Pump 1 & 2
L11	DBVDD1	Supply	Digital buffer (I/O) supply (core functions and Audio Interface 1)
K14	DBVDD2	Supply	Digital buffer (I/O) supply (for Audio Interface 2)
J6	DBVDD3	Supply	Digital buffer (I/O) supply (for Audio Interface 3)
H14	DCVDD	Supply	Digital core supply
J14, L9	DGND	Supply	Digital ground
			(Return path for DCVDD, DBVDD1, DBVDD2 and DBVDD3)
F3	DMICCLK4	Digital Output	Digital MIC clock output 4
E3	DMICDAT4	Digital Input	Digital MIC data input 4
J8	GPIO1	Digital Input / Output	General Purpose pin GPIO1
K13	GPIO2	Digital Input / Output	General Purpose pin GPIO2
J7	GPIO3	Digital Input / Output	General Purpose pin GPIO3
J9	GPIO5	Digital Input / Output	General Purpose pin GPIO5
B13	HPDETL	Analogue Input	Headphone left (HPOUT1L) sense input
B12	HPDETR	Analogue Input	Headphone right (HPOUT1R) sense input
B14	HPOUT1FB1/	Analogue Input	HPOUT1L and HPOUT1R ground feedback pin 1/
	MICDET2		Microphone & accessory sense input 2
A13	HPOUT1L	Analogue Output	Left headphone 1 output
A12	HPOUT1R	Analogue Output	Right headphone 1 output
B11	HPOUT2FB	Analogue Input	HPOUT2L and HPOUT2R ground loop noise rejection feedback
A11	HPOUT2L	Analogue Output	Left headphone 2 output
A10	HPOUT2R	Analogue Output	Right headphone 2 output
В9	HPOUT3FB	Analogue Input	HPOUT3L and HPOUT3R ground loop noise rejection feedback
A9	HPOUT3L	Analogue Output	Left headphone 3 output
A8	HPOUT3R	Analogue Output	Right headphone 3 output
A4	IN1LN/	Analogue Input /	Left channel single-ended MIC input /
	DMICCLK1	Digital Output	Left channel negative differential MIC input /
			Digital MIC clock output 1
B4	IN1LP	Analogue Input	Left channel line input /
			Left channel positive differential MIC input
C4	IN1RN/	Analogue input /	Right channel single-ended MIC input /
	DMICDAT1	Digital Input	Right channel negative differential MIC input /
			Digital MIC data input 1
D4	IN1RP	Analogue Input	Right channel line input /
			Right channel positive differential MIC input
A3	IN2LN/	Analogue Input / Digital Output	Left channel single-ended MIC input /
	DMICCLK2	Digital Output	Left channel negative differential MIC input / Digital MIC clock output 2
B3	IN2LP	Analogue Input	Left channel line input /
ВЗ	IINZLF	Analogue Input	Left channel input? Left channel positive differential MIC input
C3	IN2RN/	Analogue input /	Right channel single-ended MIC input /
03	DMICDAT2	Digital Input	Right channel negative differential MIC input /
	DIVIIODATE		Digital MIC data input 2
D3	IN2RP	Analogue Input	Right channel line input /
			Right channel positive differential MIC input
A2	IN3LN/	Analogue Input /	Left channel single-ended MIC input /
	DMICCLK3	Digital Output	Left channel negative differential MIC input /
			Digital MIC clock output 3
B2	IN3LP	Analogue Input	Left channel line input /
			Left channel positive differential MIC input
C2	IN3RN/	Analogue input /	Right channel single-ended MIC input /
	DMICDAT3	Digital Input	Right channel negative differential MIC input /
			Digital MIC data input 3

PIN NO	NAME	TYPE	DESCRIPTION
D2	IN3RP	Analogue Input	Right channel line input /
			Right channel positive differential MIC input
G12	ĪRQ	Digital Output	Interrupt Request (IRQ) output (default is active low)
C13	JACKDET	Analogue Input	Jack detect input
E13	LDOENA	Digital Input	Enable pin for LDO1
F14	LDOVDD	Supply	Supply for LDO1
E14	LDOVOUT	Analogue Output	LDO1 output
L10	MCLK1	Digital Input	Master clock 1
L13	MCLK2	Digital Input	Master clock 2
D1	MICBIAS1	Analogue Output	Microphone bias 1
C1	MICBIAS2	Analogue Output	Microphone bias 2
B1	MICBIAS3	Analogue Output	Microphone bias 3
A14	MICDET1/	Analogue Input	Microphone & accessory sense input 1/
	HPOUT1FB2		HPOUT1L and HPOUT1R ground feedback pin 2
A1	MICVDD	Analogue Output	LDO2 output decoupling pin (generated internally by WM5110)
G14	RESET	Digital Input	Digital Reset input (active low)
L8	SLIMCLK	Digital Input / Output	SLIM Bus Clock input / output
K8	SLIMDAT	Digital Input / Output	SLIM Bus Data input / output
H13	SPKCLK1	Digital Output	Digital speaker (PDM) 1 clock output
H11	SPKCLK2	Digital Output	Digital speaker (PDM) 2 clock output
G13	SPKDAT1	Digital Output	Digital speaker (PDM) 1 data output
H12	SPKDAT2	Digital Output	Digital speaker (PDM) 2 data output
K4, L4	SPKGNDL	Supply	Left speaker driver ground (Return path for SPKVDDL)
K3, L3	SPKGNDR	Supply	Right speaker driver ground (Return path for SPKVDDR)
L5	SPKOUTLN	Analogue Output	Left speaker negative output
K5	SPKOUTLP	Analogue Output	Left speaker positive output
L2	SPKOUTRN	Analogue Output	Right speaker negative output
K2	SPKOUTRP	Analogue Output	Right speaker positive output
H1	SPKTST1	Analogue Output	Test function (recommend no external connection)
H2	SPKTST2	Analogue Output	Test function (recommend no external connection)
K6, L6	SPKVDDL	Supply	Left speaker driver supply
K1, L1	SPKVDDR	Supply	Right speaker driver supply
D14, F2	SUBGND	Supply	Substrate ground
F13	TCK	Digital Input	JTAG clock input
H10	TDI	Digital Input	JTAG data input
F12	TDO	Digital Output	JTAG data output
E12	TEST	Digital Input	Digital Core Test function input (connect to GND)
F11	TMSDSP	Digital Input	JTAG mode select input
E11	TRST	Digital Input	JTAG Test Access Port reset (active low, internal pull-down).
			This input should be logic 0 for normal WM5110 operation.
F1	VREFC	Analogue Output	Bandgap reference decoupling capacitor connection
B10, C8, C9,	NC	n/a	No Connection
C10, C11, C12, D8, D9,			
D10, D11,			
D12, F4, F6,			
F7, F8, F9,			
G1, G2, G3,			
H3, J1, J2, J3, J4, J5			
33, 51, 50		1	

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.

MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

The Moisture Sensitivity Level for each package type is specified in Ordering Information.

CONDITION	MIN	MAX
Supply voltages (DCVDD)	-0.3V	1.6V
Supply voltages (DBVDD1)	-0.3V	4.0V
Supply voltages (DBVDD2, DBVDD3, LDOVDD, AVDD, CPVDD, MICVDD)	-0.3V	5.0V
Supply voltages (SPKVDDL, SPKVDDR)	-0.3V	TBD
Voltage range digital inputs (DBVDD1 domain)	SUBGND - 0.3V	DBVDD1 + 0.3V
Voltage range digital inputs (DBVDD2 domain)	SUBGND - 0.3V	DBVDD2 + 0.3V
Voltage range digital inputs (DBVDD3 domain)	SUBGND - 0.3V	DBVDD3 + 0.3V
Voltage range digital inputs (DMICDATn)	SUBGND - 0.3V	MICVDD + 0.3V
Voltage range analogue inputs (INnLP, INnLN, INnRP, INnRN)	SUBGND - 0.3V	MICVDD + 0.3V
Voltage range analogue inputs (HPOUT1FB1, HPOUT1FB2, HPOUTnFB)	SUBGND - 0.3V	SUBGND + 0.3V
Voltage range analogue inputs (MICDETn)	SUBGND - 0.3V	MICVDD + 0.3V
Voltage range analogue inputs (JACKDET, HPDETL, HPDETR)	CP1VOUTN - 0.3V	AVDD + 0.3V
Ground (AGND, DGND, CPGND, SPKGNDL, SPKGNDR)	SUBGND - 0.3V	SUBGND + 0.3V
Operating temperature range, T _A	-40°C	+85°C
Operating junction temperature, T _J	-40°C	+125°C
Storage temperature after soldering	-65°C	+150°C

Notes:

- 1. The AVDD1 and AVDD2 pins should be tied together. The associated power domain is referred to as AVDD.
- 2. The AGND1 and AGND2 pins should be tied together. The associated ground domain is referred to as AGND.
- 3. The HPOUT1FBn and MICDETn functions share common pins. The Absolute Maximum Rating varies according to the applicable function of each pin.
- CP1VOUTN is an internal supply, generated by the WM5110 Charge Pump (CP1). The CP1VOUTN voltage may vary between AGND and -CPVDD.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Digital supply range (Core)	DCVDD	1.14	1.2	1.26	V
Digital supply range (I/O)	DBVDD1	1.14		1.95	V
See note 3					
Digital supply range (I/O)	DBVDD2, DBVDD3	1.71		2.62	V
LDO supply range	LDOVDD	1.71	1.8	1.89	V
Charge Pump supply range	CPVDD	1.71	1.8	1.89	V
Speaker supply range	SPKVDDL, SPKVDDR	2.4		5.5	V
Analogue supply range	AVDD	1.71	1.8	1.89	V
See notes 4, 5					
Microphone Bias supply	MICVDD	2.375	2.5	3.6	V
See note 6					
Ground	DGND, AGND, CPGND, SPKGNDL, SPKGNDR, SUBGND		0		V
Power supply rise time	All supplies	1			μs
See notes 7, 8, 9					
Operating temperature range	T _A	-40		85	°C

Notes:

- 1. The grounds must always be within 0.3V of SUBGND.
- 2. There is no power sequencing requirement; the supplies may be enabled in any order.
- 3. If the SLIMbus interface is enabled, then DBVDD1 must be in the range 1.65V to 1.95V or in the range 1.14V to 1.30V.
- 4. The AVDD1 and AVDD2 pins should be tied together. The associated power domain is referred to as AVDD.
- 5. The AGND1 and AGND2 pins should be tied together. The associated ground domain is referred to as AGND.
- 6. An internal Charge Pump and LDO (powered by CPVDD) provide the Microphone Bias supply; the MICVDD pin should not be connected to an external supply.
- 7. DCVDD and MICVDD minimum rise times do not apply when these domains are powered using the internal LDOs.
- 8. The specified minimum power supply rise times assume a minimum decoupling capacitance of 100nF per pin. However, Wolfson strongly advises that the recommended decoupling capacitors are present on the PCB and that appropriate layout guidelines are observed.
- 9. The specified minimum power supply rise times also assume a maximum PCB inductance of 10nH between decoupling capacitor and pin.

ELECTRICAL CHARACTERISTICS

Test Conditions

AVDD = 1.8V,

With the exception of the condition(s) noted above, the following electrical characteristics are valid across the full range of recommended operating conditions.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Analogue Input Signal Level (IN1L, IN1R, IN2L, IN2R, IN3L, IN3R)						
Full-scale input signal level	V _{INFS}	Single-ended PGA input	0.5			V_{RMS}
			-6			dBV
		Differential PGA input	1			V_{RMS}
			0			dBV

Notes:

- 1. The full-scale input signal level changes in proportion with AVDD. For differential input, it is calculated as AVDD / 1.8.
- 2. A 1.0V $_{\text{RMS}}$ differential signal equates to 0.5V $_{\text{RMS}}$ /-6dBV per input.
- 3. A sinusoidal input signal is assumed.

Test Conditions

 $T_A = +25^{\circ}C$

With the exception of the condition(s) noted above, the following electrical characteristics are valid across the full range of recommended operating conditions.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Analogue Input Pin Characteristics (IN1L, IN1R, IN2L, IN2R, IN3L, IN3R)							
Input resistance	R _{IN}	Single-ended PGA input,	10	12		kΩ	
		All PGA gain settings					
		Differential PGA input,	20	24			
		All PGA gain settings					
Input capacitance	C _{IN}				5	pF	

Test Conditions

The following electrical characteristics are valid across the full range of recommended operating conditions.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Programmable Gain Ampl	ifiers (PGAs)					
Minimum programmable gain				0		dB
Maximum programmable gain				31		dB
Programmable gain step size		Guaranteed monotonic		1		dB
Headphone Output Programmal	ble Gain Amplif	iers (PGAs)				
Minimum programmable gain				-12		dB
Maximum programmable gain				0		dB
Programmable gain step size		Guaranteed monotonic		1		dB

Test Conditions

The following electrical characteristics are valid across the full range of recommended operating conditions.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Line / Headphone / Earpiece O	utput Driver (HP	OUTnL, HPOUTnR)				
Load resistance		Normal operation	15			Ω
		Device survival with load applied indefinitely	1			
Load capacitance		Direct connection, Normal Mode			500	pF
		Direct connection, Mono Mode (BTL)			200	
		Connection via 16Ω series resistor			2	nF
DC offset at Load		Single-ended mode		0.1	0.2	mV
		Differential (BTL) mode		0.2	0.5	
Speaker Output Driver (SPKOL	JTLP+SPKOUTL	N, SPKOUTRP+SPKOUTRN)				
Load resistance		Stereo Mode	4			Ω
		Mono Mode	3			
Load capacitance					200	pF
DC offset at Load					5	mV
SPKVDD leakage current			_		1	μΑ

Test Conditions

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Analogue Input Paths (INnL, INnl	R) to ADC (Dif	ferential Input Mode, INn_MO	DE = 01)			•
Signal to Noise Ratio	SNR	48kHz sample rate	94	100		dB
(A-weighted)		16kHz sample rate, (wideband voice)	100	106		
Total Harmonic Distortion	THD	-1dBV input		-91	-85	dB
Total Harmonic Distortion Plus Noise	THD+N	-1dBV input		-90	-84	dB
Channel separation (Left/Right)				100		dB
Input noise floor		A-weighted, PGA gain = +20dB		3.2		μV _{RMS}
Common mode rejection ratio	CMRR	PGA gain = +30dB	54	60		dB
		PGA gain = 0dB	64	70		
PSRR (AVDD)	PSRR	100mV (peak-peak) 217Hz, PGA gain = 0dB	94	100		dB
		100mV (peak-peak) 217Hz, PGA gain = +20dB	74	80		
		100mV (peak-peak) 1kHz, PGA gain = +20dB	64	70		
		100mV (peak-peak) 10kHz, PGA gain = +20dB	54	60		
Analogue Input Paths (INnL, INnl PGA Gain = +6dB unless otherwise		ngle-Ended Input Mode, INn_N	MODE = 00)			
Signal to Noise Ratio	SNR	48kHz sample rate		100		dB
(A-weighted)		16kHz sample rate, (wideband voice)		106		
Total Harmonic Distortion	THD	-7dBV input		-91		dB
Total Harmonic Distortion Plus Noise	THD+N	-7dBV input		-90		dB
Channel separation (Left/Right)				100		dB
Input noise floor		A-weighted, PGA gain = +20dB		3.2		μV _{RMS}
PSRR (AVDD)	PSRR	100mV (peak-peak) 217Hz		100		dB
		100mV (peak-peak) 10kHz		TBD		

Test Conditions

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DAC to Line Output (HPOUTnL, H	HPOUTnR; Lo	ad = 10kΩ, 50pF)				
Full-scale output signal level	V _{OUT}	0dBFS input	1 0			Vrms dBV
Signal to Noise Ratio (A-weighted)	SNR	High performance mode (OUTn_LP_MODE=0)	104	110		dB
		Low power mode (OUTn_LP_MODE=1)	101	107		
Total Harmonic Distortion	THD	0dBFS input		-91	-85	dB
Total Harmonic Distortion Plus Noise	THD+N	0dBFS input		-90	-84	dB
Channel separation (Left/Right)				95		dB
Output noise floor (A-weighted)		High performance mode (OUTn_LP_MODE=0)		3.2		μV_{RMS}
		Low power mode (OUTn_LP_MODE=1)		4.5		
PSRR (all supplies)	PSRR	100mV (peak-peak) 217Hz	80	85		dB
		100mV (peak-peak) 10kHz	80	85		
DAC to Headphone Output (HPO	UTnL, HPOUT	Γ nR; R _L = 32 Ω)				
Maximum output power	Po	0.1% THD		30		mW
Signal to Noise Ratio (A-weighted)	SNR	High performance mode (OUTn_LP_MODE=0)	104	110		dB
		Low power mode (OUTn_LP_MODE=1)	97	103		
Total Harmonic Distortion	THD	P ₀ = 20mW		-86	-80	dB
Total Harmonic Distortion Plus Noise	THD+N	P _O = 20mW		-85	-79	dB
Total Harmonic Distortion	THD	P _o = 5mW		-91	-85	dB
Total Harmonic Distortion Plus Noise	THD+N	P ₀ = 5mW		-90	-84	dB
Channel separation (Left/Right)				95		dB
Output noise floor		A-weighted, PGA gain = -12dB		1.8		μV_{RMS}
PSRR (all supplies)	PSRR	100mV (peak-peak) 217Hz	80	85		dB
		100mV (peak-peak) 10kHz	80	85		1
DAC to Headphone Output (HPO	UTnL, HPOUT	ΓnR; R _L = 16Ω)				
Maximum output power	Po	0.1% THD		33		mW
Signal to Noise Ratio (A-weighted)	SNR	High performance mode (OUTn_LP_MODE=0)	104	110		dB
		Low power mode (OUTn_LP_MODE=1)	97	103		
Total Harmonic Distortion	THD	P _o = 20mW		-86	-82	dB
Total Harmonic Distortion Plus Noise	THD+N	P _o = 20mW		-85	-79	dB
Total Harmonic Distortion	THD	P _O = 5mW		-91	-85	dB
Total Harmonic Distortion Plus Noise	THD+N	P _O = 5mW		-90	-84	dB
Channel separation (Left/Right)				95		dB
Output noise floor		A-weighted, PGA gain = -12dB		1.8		μV _{RMS}
PSRR (all supplies)	PSRR	100mV (peak-peak) 217Hz	80	85		dB
		100mV (peak-peak) 10kHz	80	85		

Test Conditions

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DAC to Earpiece Output (HPOUT	nL, HPOUTnR	R, Mono Mode, $R_L = 32\Omega$ BTL)			•	
Maximum output power	Po	0.1% THD		60		mW
		5% THD		100		
Signal to Noise Ratio	SNR	A-weighted	104	110		dB
Total Harmonic Distortion	THD	P _o = 75mW		-76	-70	dB
Total Harmonic Distortion Plus Noise	THD+N	P ₀ = 75mW		-75	-69	dB
Total Harmonic Distortion	THD	P _o = 5mW		-86	-80	dB
Total Harmonic Distortion Plus Noise	THD+N	P ₀ = 5mW		-85	-79	dB
Output noise floor		A-weighted, PGA gain = -12dB			TBD	μV _{RMS}
PSRR (AVDD, CPVDD)	PSRR	100mV (peak-peak) 217Hz	80	85		dB
		100mV (peak-peak) 10kHz	80	85		
DAC to Earpiece Output (HPOUT	nL, HPOUTnR	R, Mono Mode, $R_L = 16\Omega$ BTL)				
Maximum output power	Po	0.1% THD		60		mW
		10% THD		115		
Signal to Noise Ratio	SNR	A-weighted	104	110		dB
Total Harmonic Distortion	THD	P _o = 75mW		-76	-71	dB
Total Harmonic Distortion Plus Noise	THD+N	P ₀ = 75mW		-75	-69	dB
Total Harmonic Distortion	THD	P ₀ = 5mW		-86	-80	dB
Total Harmonic Distortion Plus Noise	THD+N	P _O = 5mW		-85	-79	dB
Output noise floor		A-weighted			TBD	μV_{RMS}
		PGA gain = -12dB				
PSRR (all supplies)	PSRR	100mV (peak-peak) 217Hz	80	85		dB
		100mV (peak-peak) 10kHz	08	85		

Test Conditions

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DAC to Speaker Output (SPKOU	TLP+SPKOUT	LN, SPKOUTRP+SPKOUTRN	l, Load = 8Ω	, 22µH, BTL)		•
Maximum output power	Po	SPKVDD = 5.0V, 1% THD		1.2		W
		SPKVDD = 4.2V, 1% THD		1.0		
		SPKVDD = 3.6V, 1% THD		0.7		
Signal to Noise Ratio	SNR	A-weighted	89	95		dB
Total Harmonic Distortion	THD	P _o = 1.0W		-70	-64	dB
Total Harmonic Distortion Plus Noise	THD+N	P _o = 1.0W		-68	-62	dB
Total Harmonic Distortion	THD	P _o = 0.5W		-65	-59	dB
Total Harmonic Distortion Plus Noise	THD+N	P _o = 0.5W		-63	-57	dB
Channel separation (Left/Right)				80		dB
Output noise floor		A-weighted			TBD	μV_{RMS}
PSRR (all supplies)	PSRR	100mV (peak-peak) 217Hz	65	70		dB
		100mV (peak-peak) 10kHz	60	65		
DAC to Speaker Output (SPKOU	TLP+SPKOUT	LN, SPKOUTRP+SPKOUTRN	l, Load = 4Ω	2, 15µH, BTL)		
Maximum output power	Po	SPKVDD = 5.0V, 1% THD		2		W
		SPKVDD = 4.2V, 1% THD		1.8		
		SPKVDD = 3.6V, 1% THD		TBD		
Signal to Noise Ratio	SNR	A-weighted		95		dB
Total Harmonic Distortion	THD	P _O = 1.0W		TBD		dB
Total Harmonic Distortion Plus Noise	THD+N	P _o = 1.0W		TBD		dB
Total Harmonic Distortion	THD	P _O = 0.5W		TBD		dB
Total Harmonic Distortion Plus Noise	THD+N	P _o = 0.5W		TBD		dB
Channel separation (Left/Right)				80		dB
Output noise floor		A-weighted		TBD		μV_{RMS}
PSRR (all supplies)	PSRR	100mV (peak-peak) 217Hz		TBD		dB
		100mV (peak-peak) 10kHz		TBD		
DAC to Speaker Output (SPKOU	TxP+SPKOUT	xN, Mono Mode, Load = 4Ω ,	15µH, BTL)			
Maximum output power	Po	SPKVDD = 5.0V, 1% THD		2.5		W

Test Conditions

The following electrical characteristics are valid across the full range of recommended operating conditions.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital Input / Output (except DI	MICDATn and D	MICCLKn)				
Digital I/O is referenced to DBVI	DD1, DBVDD2 o	or DBVDD3.				
See "Recommended Operating	Conditions" for	r the valid operating voltag	je range of eac	h DBVDDn	domain.	
Input HIGH Level	V _{IH}	V _{DBVDDn} = 1.2V ±10%	0.65 ×			V
			V_{DBVDDn}			
		$V_{DBVDDn} = 1.8V \pm 10\%$	0.65 ×			
) / O.F.V : 400/	V _{DBVDDn}			
		$V_{DBVDDn} = 2.5V \pm 10\%$	$0.7 \times V_{DBVDDn}$			
Input LOW Level	V _{IL}	V _{DBVDDn} = 1.2V ±10%	V DBVDDn		0.35 ×	V
input Lovy Level	V IL	V DBVDDn — 1.2 V ±1070			V _{DBVDDn}	V
		V _{DBVDDn} = 1.8V ±10%			0.35 ×	
		55755			V_{DBVDDn}	
		V _{DBVDDn} = 2.5V ±10%			0.3 ×	
					V_{DBVDDn}	
Note that digital input pins should	not be left unco	nnected or floating.				
Output HIGH Level	V_{OH}	$I_{OH} = 1mA$	0.9 ×			V
			V_{DBVDDn}			
Output LOW Level	V _{OL}	$I_{OL} = -1mA$			0.1 ×	V
Input consoitance			+	10	V_{DBVDDn}	
Input capacitance			1	10	1	pF
Input leakage			-1	26	1 1	μA
Pull-up / pull-down resistance			28	36	45	kΩ
(where applicable)	+ (DMIODAT:					
Digital Microphone Input / Output DMICDATn and DMICCLKn are 6			aaaardina t	a tha INIn	DMIC CUD ***	iatava
DMICDATH and DMICCERH are to		u to a selectable supply, v		o the init_	DIVIC_SUP 1eg	V
·	V _{IH}		$0.65 \times V_{SUP}$		0.25 1/	V
DMICOL Kn output LIICLL ovel	V _{IL}	l = 1 = A	0.0 1/		$0.35 \times V_{SUP}$	V
DMICCLKn output HIGH Level DMICCLKn output LOW Level	V _{OH}	I _{OH} = 1mA	$0.8 \times V_{SUP}$		0.0 1/	
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	V _{OL}	I _{OL} = -1mA		0.5	$0.2 \times V_{SUP}$	<u>-</u>
Input capacitance			+ 4	25		pF
Input leakage	01 18401 141	N IMP AT	-1		1	μΑ
SLIMbus Digital Input / Output (SLIMDAI)				
1.2V I/O Signalling (ie. 1.10V ≤ D					TDD	
Input LOW Level	V _{IL}		TDD		TBD	V
Input HIGH Level	V _{IH}	1 4 m A	TBD		TDD	V
Output LOW Level	V _{OL}	I _{OL} = -1mA	TDD		TBD	V
Output HIGH Level	V _{OH}	I _{OH} = 1mA	TBD		TE 5	V
Pin capacitance		N IMP AT			TBD	pF
SLIMbus Digital Input / Output (•				
1.8V I/O Signalling (ie. 1.65V ≤ D)			TDD	.,,
Input LOW Level	V _{IL}		TDD		TBD	V
Input HIGH Level	V _{IH}		TBD		TE 5	V
Output LOW Level	V _{OL}	I _{OL} = -1mA			TBD	V
Output HIGH Level	V _{OH}	I _{OH} = 1mA	TBD			V
Pin capacitance	(00)0 :				TBD	pF
General Purpose Input / Output	(GPIOn)					
Clock output frequency		GPIO pin configured as			40	MHz
		OPCLK or FLL output				

Test Conditions

The following electrical characteristics are valid across the full range of recommended operating conditions.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ADC Decimation Filters					•	
Passband		+/- 0.05dB	0		0.454 fs	
		-6dB		0.5 fs		
Passband ripple					+/- 0.05	dB
Stopband			0.546 fs			
Stopband attenuation		f > 0.546 fs	-85			dB
Group delay					2	ms
DAC Interpolation Filters						
Passband		+/- 0.05dB	0		0.454 fs	
		-6dB		0.5 fs		
Passband ripple					+/- 0.05	dB
Stopband			0.546 fs			
Stopband attenuation		f > 0.546 fs	-85			dB
Group delay					1.5	ms

Test Conditions

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Microphone Bias (MICBIAS1, MIC	BIAS2, MICB	IAS3)		-		
Note - No capacitor on MICBIASn						
Note - In regulator mode, it is require	ed that V _{MICVDI}	o - V _{MICBIASn} > 200mV				
Minimum Bias Voltage	V _{MICBIAS}	Regulator mode		1.5		V
Maximum Bias Voltage		(MICBn_BYPASS=0)		2.8		V
Bias Voltage output step size		Load current ≤ 1.0mA		0.1		V
Bias Voltage accuracy			-5%		+5%	V
Bias Current		Regulator mode (MICBn_BYPASS=0), V _{MICVDD} - V _{MICBIAS} >200mV			2.4	mA
		Bypass mode (MICBn_BYPASS=1)			5.0	
Output Noise Density		Regulator mode (MICBn_BYPASS=0), MICBn_LVL = 4h, Load current = 1mA, Measured at 1kHz		100		nV/√Hz
Integrated noise voltage		Regulator mode (MICBn_BYPASS=0), MICBn_LVL = 4h, Load current = 1mA, 100Hz to 7kHz, A-weighted		5		μVrms
Power Supply Rejection Ratio	PSRR	100mV (peak-peak) 217Hz	100			dB
(CPVDD)		100mV (peak-peak) 10kHz	80			
Load capacitance		Regulator mode (MICBn_BYPASS=0)			50	pF
Output discharge resistance		MICBn_ENA=0, MICBn_DISCH=1		15		kΩ
External Accessory Detect	•					•
Load impedance detection range (HPDETL or HPDETR)			8		128	Ω
Load impedance detection accuracy (HPDETL or HPDETR)			-30		+30	%
Load impedance detection range		for MICD_LVL[0] = 1	0		3	Ω
(MICDET1 or MICDET2)		for MICD_LVL[1] = 1	17		21	
$2.2k\Omega$ (2%) MICBIAS resistor.		for MICD_LVL[2] = 1	36		44	
Note these characteristics assume		for MICD_LVL[3] = 1	62		88	
no other component is connected		for MICD_LVL[4] = 1	115		160	
to MICDETn.		for MICD_LVL[5] = 1	207		381	
		for MICD_LVL[8] = 1	475		30000	
Jack Detection input threshold	V _{JACKDET}	Jack insertion		0.5 x AVDD		V
voltage (JACKDET)		Jack removal		0.85 x AVDD		

Test Conditions

DBVDD1 = DBVDD2 = DBVDD3 = CPVDD = AVDD = 1.8V, DCVDD = 1.2V, SPKVDDL = SPKVDDR = 4.2V, $T_A = +25^{\circ}C$, 1kHz sinusoid signal, fs = 48kHz, PGA gain = 0dB, 24-bit audio data unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
MICVDD Regulator (LDO2)	•					
Output voltage	V _{MICVDD}		1.7	2.7	3.3	V
Programmable output voltage step size		LDO2_VSEL=00h to 14h (0.9V to 1.4V)		50		mV
		LDO2_VSEL=14h to 27h (1.4V to 3.3V)		100		
Maximum output current				8		mA
Start-up time		4.7μF on MICVDD			1.5	ms
Frequency Locked Loop (FLL1, Fl	L2)					
Output frequency			39		298	MHz
Lock Time		F_{REF} = 32kHz, F_{OUT} = 24.576MHz			2	ms
		F _{REF} = 12MHz, F _{OUT} = 24.576MHz			0.3	
RESET pin Input			<u>.</u>			
RESET de-bounce time (The RESET input may be ignored if asserted for less than this duration)	V _{IH}				TBD	μs
Device Reset Thresholds			<u>.</u>			
AVDD Reset Threshold	V_{AVDD}		0.6		1.5	V
DCVDD Reset Threshold	V_{DCVDD}		0.4		0.7	V
DBVDD2 Reset Threshold	V_{DBVDD2}		0.4		0.7	V

Note that the reset thresholds are derived from simulations only, across all operational and process corners.

Device performance is not assured outside the voltage ranges defined in the "Recommended Operating Conditions" section. Refer to this section for the WM5110 power-up sequencing requirements.

TERMINOLOGY

1. Signal-to-Noise Ratio (dB) – SNR is a measure of the difference in level between the maximum full scale output signal and the output with no input signal applied. (Note that this is measured without any mute function enabled.)

- 2. Total Harmonic Distortion (dB) THD is the ratio of the RMS sum of the harmonic distortion products in the specified bandwidth (see note below) relative to the RMS amplitude of the fundamental (ie. test frequency) output.
- 3. Total Harmonic Distortion plus Noise (dB) THD+N is the ratio of the RMS sum of the harmonic distortion products plus noise in the specified bandwidth (see note below) relative to the RMS amplitude of the fundamental (ie. test frequency) output.
- 4. Power Supply Rejection Ratio (dB) PSRR is the ratio of a specified power supply variation relative to the output signal that results from it. PSRR is measured under quiescent signal path conditions.
- 5. Common Mode Rejection Ratio (dB) CMRR is the ratio of a specified input signal (applied to both sides of a differential input), relative to the output signal that results from it.
- 6. Channel Separation (L/R) (dB) left-to-right and right-to-left channel separation is the difference in level between the active channel (driven to maximum full scale output) and the measured signal level in the idle channel at the test signal frequency. The active channel is configured and supplied with an appropriate input signal to drive a full scale output, with signal measured at the output of the associated idle channel.
- 7. Multi-Path Crosstalk (dB) is the difference in level between the output of the active path and the measured signal level in the idle path at the test signal frequency. The active path is configured and supplied with an appropriate input signal to drive a full scale output, with signal measured at the output of the specified idle path.
- 8. Mute Attenuation This is a measure of the difference in level between the full scale output signal and the output with mute applied.
- 9. All performance measurements are specified with a 20kHz low pass 'brick-wall' filter and, where noted, an A-weighted filter. Failure to use these filters will result in higher THD and lower SNR readings than are found in the Electrical Characteristics. The low pass filter removes out of band noise.

DEVICE DESCRIPTION

INTRODUCTION

The WM5110 is a highly integrated low-power audio hub CODEC for mobile telephony and portable devices. It provides flexible, high-performance audio interfacing for handheld devices in a small and cost-effective package. It provides exceptional levels of performance and signal processing capability, suitable for a wide variety of mobile and handheld devices.

The WM5110 digital core incorporates the Wolfson MyZone™ Ambient Noise Cancellation (ANC), and provides an extensive capability for programmable signal processing algorithms, including receive (RX) path noise cancellation, transmit (TX) path noise reduction, Acoustic Echo Cancellation (AEC) and microphone beam-forming algorithms.

The WM5110 digital core supports audio enhancements such as Dynamic Range Control (DRC), Multi-band Compression (MBC), Virtual Surround Sound (VSS), Speaker Protection and Bass Enhancement. Highly flexible digital mixing, including stereo full-duplex asynchronous sample rate conversion, provides use-case flexibility across a broad range of system architectures.

The WM5110 provides multiple digital audio interfaces, including SLIMbus, in order to provide independent and fully asynchronous connections to different processors (eg. application processor, baseband processor and wireless transceiver).

A flexible clocking arrangement supports a wide variety of external clock references, including clocking derived from the digital audio interface. Two integrated Frequency Locked Loop (FLL) circuits provide additional flexibility.

Unused circuitry can be disabled under software control, in order to save power; low leakage currents enable extended standby/off time in portable battery-powered applications.

Versatile GPIO functionality is provided, and support for external accessory / push-button detection inputs. Comprehensive Interrupt (IRQ) logic and status readback are also provided.

HI-FI AUDIO CODEC

The WM5110 is a high-performance low-power audio CODEC which uses a simple analogue architecture. 6 ADCs and 8 DACs are incorporated, providing a dedicated ADC for each analogue input and a dedicated DAC for each output channel.

The analogue outputs comprise three 30mW (110dB SNR) stereo headphone amplifiers with ground-referenced output, and a Class D mono speaker driver capable of delivering 2W per channel into a 4Ω load. Six analogue inputs are provided, each supporting single-ended or differential input modes. In differential mode, the input path SNR is 106dB (16kHz sample rate, ie. wideband voice mode). The ADC input paths can be bypassed, supporting up to 8 channels of digital microphone input.

The audio CODEC is controlled directly via register access. The simple analogue architecture, combined with the integrated tone generator, enables simple device configuration and testing, minimising debug time and reducing software effort.

The WM5110 output drivers are designed to support as many different system architectures as possible. Each output has a dedicated DAC which allows mixing, equalisation, filtering, gain and other audio processing to be configured independently for each channel. This allows each signal path to be individually tailored for the load characteristics. All outputs have integrated pop and click suppression features.

The headphone output drivers are ground-referenced, powered from an integrated charge pump, enabling high quality, power efficient headphone playback without any requirement for DC blocking capacitors. Ground loop feedback is incorporated, providing rejection of noise on the ground connections. A mono mode is available on the headphone outputs; this configures the drivers as differential (BTL) outputs, suitable for an earpiece or hearing aid coil.

The Class D speaker drivers deliver excellent power efficiency. High PSRR, low leakage and optimised supply voltage ranges enable powering from switching regulators or directly from the battery. Battery current consumption is minimised across a wide variety of voice communication and multimedia playback use cases.

The WM5110 is cost-optimised for a wide range of mobile phone applications, and features two channels of Class D power amplification. For applications requiring more than two channels of power amplification, the PDM output channels can be used to drive up to four external PDM-input speaker drivers. In applications where stereo loudspeakers are physically widely separated, the PDM outputs can ease layout and EMC by avoiding the need to run the Class-D speaker outputs over long distances and interconnects.

DIGITAL AUDIO CORE

The WM5110 uses a core architecture based on all-digital signal routing, making digital audio effects available on all signal paths, regardless of whether the source data input is analogue or digital. The digital mixing desk allows different audio effects to be applied simultaneously on many independent paths, whilst also supporting a variety of sample rates concurrently. This helps support many new audio use-cases. Soft mute and un-mute control allows smooth transitions between use-cases without interrupting existing audio streams elsewhere.

The Wolfson myZone™ Ambient Noise Cancellation (ANC) processor within the WM5110 provides the capability to improve the intelligibility of a voice call by using destructive interference to reduce the acoustic energy of the ambient sound. The stereo ANC capability supports a wide variety of headset/handset applications.

The Wolfson myZone™ technology supports receive (RX) path noise cancellation. Transmit (TX) path noise reduction, multi-mic Acoustic Echo Cancellation (AEC), and microphone beam-forming algorithms are also supported. The WM5110 is ideal for mobile telephony, providing enhanced voice communication quality for near-end and far-end handset users.

The WM5110 digital core provides an extensive capability for programmable signal processing algorithms. The DSP can support functions such as wind noise, side-tone and other programmable filters. A wide range of application-specific filters and audio enhancements can also be implemented, including Dynamic Range Control (DRC), Multi-band Compression (MBC), Virtual Surround Sound (VSS), Speaker Protection and Bass Enhancement. These digital effects can be used to improve audibility and stereo imaging while minimising supply current.

Highly flexible digital mixing, including mixing between audio interfaces, is possible. The WM5110 performs multi-channel full-duplex asynchronous sample rate conversion, providing use-case flexibility across a broad range of system architectures. Automatic sample rate detection is provided, enabling seamless wideband/narrowband voice call handover.

Dynamic Range Controller (DRC) functions are available for optimising audio signal levels. In playback modes, the DRC can be used to maximise loudness, while limiting the signal level to avoid distortion, clipping or battery droop, in particular for high-power output drivers such as speaker amplifiers. In record modes, the DRC assists in applications where the signal level is unpredictable.

The 5-band parametric equaliser (EQ) functions can be used to compensate for the frequency characteristics of the output transducers. EQ functions can be cascaded to provide additional frequency control. Programmable high-pass and low-pass filters are also available for general filtering applications such as removal of wind and other low-frequency noise.

DIGITAL INTERFACES

Three serial digital audio interfaces (AIFs) each support PCM, TDM and I2S data formats for compatibility with most industry-standard chipsets. AIF1 supports eight input/output channels; AIF2 and AIF3 each support two input/output channels. Bidirectional operation at sample rates up to 768kHz is supported.

Eight digital PDM input channels are available (four stereo interfaces); these are typically used for digital microphones, powered from the integrated MICBIAS power supply regulators. Four PDM output channels are also available (two stereo interfaces); these are typically used for external power amplifiers. Embedded mute codes provide a control mechanism for external PDM-input devices.

The WM5110 features a MIPI-compliant SLIMbus interface, providing eight channels of audio input/output. Mixed audio sample rates are supported on the SLIMbus interface. The SLIMbus interface also supports read/write access to the WM5110 control registers.

The WM5110 is equipped with an I2C/SPI control interface and an I2C-only control interface. The I2C slave port operates up to 1MHz; the SPI ports operate up to 26MHz. Full access to the register map is also provided via the SLIMbus port.

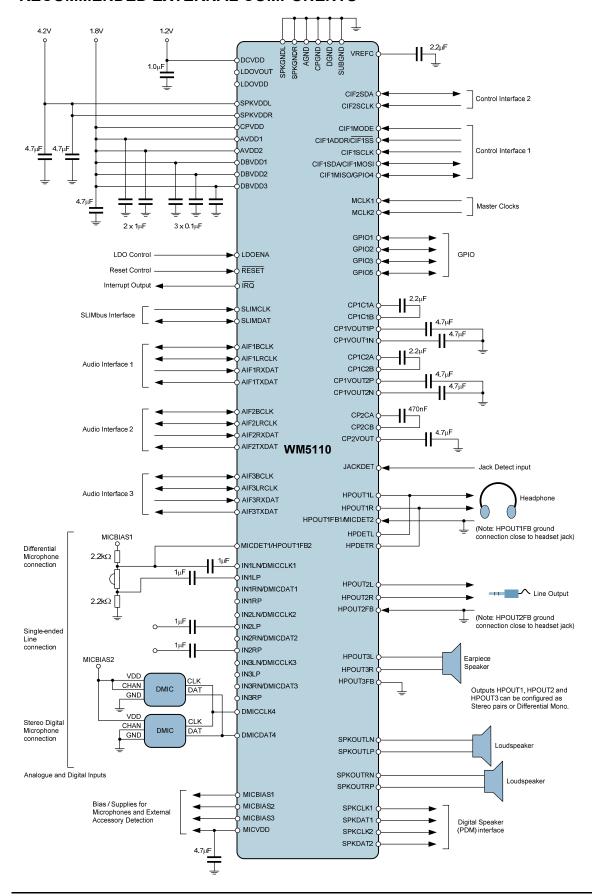
OTHER FEATURES

The WM5110 incorporates two 1kHz tone generators which can be used for 'beep' functions through any of the audio signal paths. The phase relationship between the two generators is configurable, providing flexibility in creating differential signals, or for test scenarios.

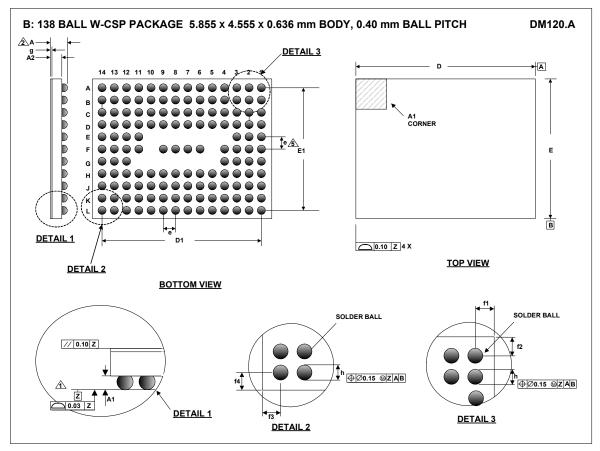
A white noise generator is provided, which can be routed within the digital core. The noise generator can provide 'comfort noise' in cases where silence (digital mute) is not desirable.

Two Pulse Width Modulation (PWM) signal generators are incorporated. The duty cycle of each PWM signal can be modulated by an audio source, or can be set to a fixed value using a control register setting. The PWM signal generators can be output directly on a GPIO pin.

The WM5110 provides 5 GPIO pins, supporting selectable input/output functions for interfacing, detection of external hardware, and to provide logic outputs to other devices. Comprehensive Interrupt (IRQ) functionality is also provided for monitoring internal and external event conditions.


The WM5110 can be powered from a 1.8V external supply. A separate (1.2V) digital core supply is required for full DSP functionality, and a 4.2V (eg. battery) supply is typically required for the Class D speaker driver. Integrated Charge Pump and LDO Regulators circuits are used to generate supply rails for internal functions and to support powering or biasing of external microphones.

A smart accessory interface is included, supporting most standard 3.5mm accessories. Jack detection, accessory sensing and impedance measurement is provided, for external accessory and push-button detection. 'Switchable ground' features enable support for different headset types. Microphone activity detection with interrupt is also available.


System clocking can be derived from the MCLK1 or MCLK2 input pins. Alternatively, the SLIMbus interface, or the audio interfaces (configured in Slave mode), can be used to provide a clock reference. Two integrated Frequency Locked Loop (FLL) circuits provide support for a wide range of clocking configurations, including the use of a 32kHz input clock reference.

RECOMMENDED EXTERNAL COMPONENTS

PACKAGE DIMENSIONS

Symbols		Dimensions (mm)					
	MIN	NOM	MAX	NOTE			
Α	0.592	0.636	0.681				
A1	0.175	0.190	0.205				
A2	0.417	0.446	0.476				
D	5.800	5.855	5.880				
D1		5.20 BSC					
E	4.500	4.555	4.580				
E1		4.00 BSC					
е		0.40 BSC		5			
f1		0.3275 BSC					
f2		0.2775 BSC					
f3		0.3275 BSC					
f4		0.2775 BSC					
g	0.036	0.040	0.044				
h	0.216	0.270	0.324				

- NOTES:

 1. PRIMARY DATUM -Z- AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

 2. THIS DIMENSION INCLUDES STAND-OFF HEIGHT 'A1'.

 3. A1 CORNER IS IDENTIFIED BY INKLASER MARK ON TOP PACKAGE.

 4. BILATERAL TOLERANCE ZONE IS APPLIED TO EACH SIDE OF THE PACKAGE BODY.

 5. 'g' REPRESENTS THE BASIC SOLDER BALL GRID PITCH.

 6. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.

 7. FOLLOWS JEDEC DESIGN GUIDE MO-211-C.

IMPORTANT NOTICE

Wolfson Microelectronics plc ("Wolfson") products and services are sold subject to Wolfson's terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement.

Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.

Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty. Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

In order to minimise risks associated with customer applications, the customer must use adequate design and operating safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.

Wolfson's products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer's own risk.

Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party's products or services does not constitute Wolfson's approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document belong to the respective third party owner.

Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is not liable for any unauthorised alteration of such information or for any reliance placed thereon.

Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in Wolfson's standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person's own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person.

ADDRESS:

Wolfson Microelectronics plc 26 Westfield Road Edinburgh EH11 2QB United Kingdom

Tel :: +44 (0)131 272 7000 Fax :: +44 (0)131 272 7001

Email :: sales@wolfsonmicro.com

REVISION HISTORY

DATE	REV	DESCRIPTION OF CHANGES	PAGE	CHANGED BY
18/04/12	1.0	First Release		
22/05/12	1.1	Correction to AIF2BCLK pin number	5	PH

