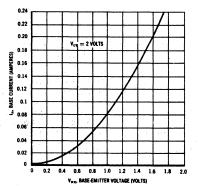

2N176 (GERMANIUM) 2N669

PNP germanium power transistors for economical power switching circuits and commercial grade power amplifier applications.

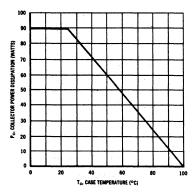
MAXIMUM RATINGS

Rating	Symbol	Symbol Value	
Collector-Base Voltage	V _{CB}	40	Vdc
Collector-Emitter Voltage	v _{CES}	30	Vdc
Collector Current (Continuous)	^I C	3.0	Amp
Storage and Junction Temperature	TJ, Tstg	-65 to +100	°C
Total Device Dissipation (At 25°C Case Temperature)	PD	90	Watts
Thermal Resistance (Junction to Case)	θJC	0.8	°C/w

SAFE OPERATING AREAS


The Safe Operating Area Curves indicate $I_C - V_{CE}$ limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short. (Case temperature and duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum TJ, the power-temperature derating curve must be observed for both steady state and pulse power conditions.

2N176, 2N669 (continued)


Characteristic		Symbol	Minimum	Typical	Maximum	Unit
Collector-Base Cutoff Current $V_{CB} = 30 V$, $I_E = 0$ $V_{CB} = 2.0 V$, $I_E = 0$ $V_{CB} = 30 V$, $I_E = 0$, $T_C = 90^{\circ}C$		^I сво		50 	3.0 20	mA μA mA
Emitter-Base Cutoff Current $V_{EB} = 10 V, I_C = 0$		IEBO	_		2.0	mA
Collector-Emitter Breakdown Voltage $I_C = 330 \text{ mA}, R_{BE} = 10 \text{ Ohms}$	2N176 2N669	BV _{CER} BV _{CES}	30 30		·	Vdc
Collector-Emitter Saturation Voltage $I_C = 3 A$, $I_B = 300 mA$		V _{CE(SAT)}		_	0.4	Vdc
DC Forward Current Transfer Ratio $V_{CE} = 2.0 V, I_C = 0.5 A$	2N176 2N669	h _{FE}	25 75	· · · · · · · · · · · · · · · · · · ·	250	-
Power Gain $P_{out} = 2$ Watts, $V_{CE} = 12$ V, $I_C = 0.5$ Amp, $f = 1$ kHz, $R_S = 10$ Ohms, $R_L = 26.6$ Ohms	2N176 2N669	G _{PE}	34 38		37	dB
Total Harmonic Distortion (under same conditions of power gain)			<u> </u>	-	5.0	%
Small-Signal Current Gain Cutoff Frequency V_{CE} = 12 V, I_C = 0.5 Amp, f = 1 kHz ref	2N176 2N669	f _{αe}	4.0 3.0	7.0 5.0		kHz
Small-Signal Forward-Current Transfer Ratio V_{CE} = 2.0 V, I_{C} = 0.5 Amp, f = 1 kHz	2N176 2N669	h _{fe}	_	45 90		
Small-Signal Input Impedance $V_{CE} = 2.0 V$, $I_{C} = 0.5 Amp$, f = 1 kHz	2N176 2N669	^h i _e	7.0 10	_	25 50	Ohms

ELECTRICAL CHARACTERISTICS (T_C= 25°C unless otherwise noted)

INPUT CURRENT versus EMITTER DRIVE VOLTAGE (Both Types)

POWER-TEMPERATURE DERATING CURVE (Both Types)

