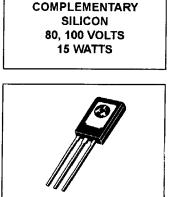
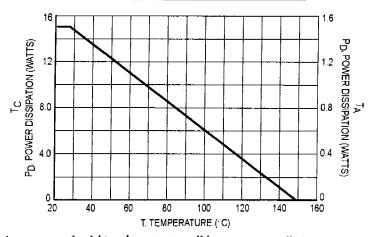
New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.


Complementary Plastic Silicon Power Transistors

... designed for low power audio amplifier and low-current, high speed switching applications.

- High Collector–Emitter Sustaining Voltage VCEO(sus) = 80 Vdc (Min) — BD789, BD790 = 100 Vdc (Min) — BD791, BD792
- High DC Current Gain @ I_C = 200 mAdc h_{FE} = 40--250
- Low Collector–Emitter Saturation Voltage VCE(sat) = 0.5 Vdc (Max) @ IC = 500 mAdc
- High Current Gain Bandwidth Product —
- f_T = 40 MHz (Min) @ I_C = 100 mAdc)


*MAXIMUM RATINGS

Rating	Symbol	BD789 BD790	BD791 BD792	Unit
Collector-Emitter Voltage	VCEO	80	100	Vdc
Collector-Base Voltage	V _{CB}	80	100	Vdc
Emitter-Base Voltage	VEBO	6.0		Vdc
Collector Current Continuous Peak	lC	4.0 8.0		Adc
Base Current	IВ	1.0		Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	15 0.12		Watts W/°C
Operating and Storage Junction Temperature Range	Tj,Tstg	-65 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{0JC}	8.34	°C/W

NJ Semi-Conductors reserves the right to change test conditions, parameters limits and package dimensions without notice information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

PNP

BD790

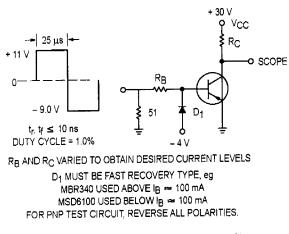
BD792

*Motorola Preferred Device

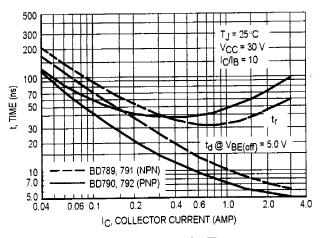
4 AMPERE

POWER TRANSISTORS

TO-225**AA**


BD789 BD791 BD790 BD792

*ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)


Characteristic		Symbol	Min	Max	Unit
FF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (1) (I _C = 10 mAdc, I _B = 0)	BD789, BD790 BD791, BD792	V _{CEO(sus)}	80 100		Vdc
Collector Cutoff Current (VCE = 40 Vdc, I _B = 0) (VCE = 50 Vdc, I _B = 0)	BD789, BD790 BD791, BD792	ICEO		100 100	μAdc
Collector Cutoff Current (VCE = 80 Vdc, VBE(off) = 1.5 Vdc) (VCE = 100 Vdc, VBE(off) = 1.5 Vdc) (VCE = 40 Vdc, VBE(off) = 1.5 Vdc, T _C = 125°C) (VCE = 50 Vdc, VBE(off) = 1.5 Vdc, T _C = 125°C)	BD789, BD790 BD791, BD792 BD789, BD790 BD791, BD792	ICEX		1.0 1.0 0.1 0.1	μAdc mAdc
Emitter Cutoff Current (VEB = 6.0 Vdc, IC = 0)		^I EBO	—	1.0	μAdc
DN CHARACTERISTICS (1)					.
DC Current Gain (I _C = 200 mAdc, V _{CE} = 3 0 Vdc) (I _C = 1.0 Adc, V _{CE} = 3.0 Vdc) (I _C = 2.0 Adc, V _{CE} = 3.0 Vdc) (I _C = 4.0 Adc, V _{CE} = 3.0 Vdc)		hFE	40 20 10 5.0	250 — — —	
Collector Emitter Saturation Voltage ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 100 \text{ mAdc}$) ($I_C = 2.0 \text{ Adc}$, $I_B = 200 \text{ mAdc}$) ($I_C = 4.0 \text{ Adc}$, $I_B = 800 \text{ mAdc}$)		VCE(sat)	 	0.5 1.0 2.5 3.0	Vdc
Base-Emitter Saturation Voltage (I _C = 2.0 Adc, I _B = 200 mAdc)	· · · · · · · · · · · · · · · · · · ·	V _{BE(sat)}		1.8	Vdc
Base-Emitter On Voltage (I _C = 200 mAdc, V _{CE} = 3.0 Vdc)		V _{BE(on)}	—	1.5	Vdc
				4	
Current–Gain — Bandwidth Product (I _C = 100 mAdc, V _{CE} = 10 Vdc, f = 10 MHz)		fΤ	, 40	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _C = 0, f = 0.1 MHz)	BD789, BD791 BD790, BD792	Cob	-	50 70	pF
Small–Signal Current Gain (I _C = 200 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{fe}	10	_	
in the second party of Data					

* Indicates JEDEC Registered Data.

(1) Pulse Test: Pulse \overline{W} idth \leq 300 µs, Duty Cycle \leq 2.0%.

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.