GD4051B # 8-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER DESCRIPTION - The 40518 is an 8-Channel Analog Multiplexer/Demultiplexer with three Address Inputs (A_0-A_2) , an active LOW Enable Input (E), eight independent inputs (Y_0-Y_7) and a Common input/Output (Z). The 4051B contains eight bidirectional analog switches, each with one side connected to an Independent input/Output (Y_0-Y_7) and the other side connected to a Common input/Output (Z). With the Enable Input (E) LOW, one of the eight switches is selected (low impedance, ON state) by the three Address Inputs (A_0-A_2) . With the Enable Input (\bar{E}) HIGH, all switches are in the high impedance OFF state, independent of the Address Inputs. V_{DD} and V_{SS} are the two supply voltage connections for the digital control inputs (A_0-A_2,\overline{E}) . Their voltage limits are the same as for all other digital CMOS. The analog inputs/outputs (Y_0-Y_2,Z) can swing between V_{DD} as a positive limit and V_{EE} as a negative limit. $V_{DD}-V_{EE}$ may not exceed 15 V. For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to V_{SS} (typically ground). - ANALOG OR DIGITAL MULTIPLEXER/DEMULTIPLEXER - COMMON ENABLE INPUT (ACTIVE LOW) ## PIN NAMES Y0-Y7 AO-A2 Independent inputs/Outputs Address Inputs Enable Input (Active LOW) Common Input/Output #### **TRUTH TABLE** | | IN | PUTS | | CHANNELS | | | | | | | | | | |-----|----------------|------|----------------|-------------------|------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--| | Ē | A ₂ | Αı | A ₀ | Y ₀ -z | Y1-Z | Y ₂ -z | Y ₃ -Z | Y ₄ -Z | Y ₅ -Z | Y ₆ -Z | Y ₇ –Z | | | | L | L | L | L | ON | OFF | | | L | L | L | н | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | | | | L | L | Н | L | OFF | OFF | ON | OFF | OFF | OFF | OFF | OFF | | | | L | L | Н | н | OFF | OFF | OFF | ON | OFF | OFF | OFF | OFF | | | | L | Н | L | L | OFF | OFF | OFF | OFF | ON | OFF | OFF | OFF | | | | ᅵᅵᅵ | н | L | н | OFF | OFF | OFF | OFF | OFF | ON | OFF | OFF | | | | ᅵᅵ | н | н | L | OFF | OFF | OFF | OFF | OFF | OFF | ON | OFF | | | | - | н | H | н | OFF ON | | | | Н | Х | х | _ X | OFF | | = LOW Level H = HIGH Level X = Don't Care Dual In-line Package, DC CHARACTERISTICS: V_{DD} as shown, V_{EE} = 0 V (See Note 1) | | | | LIMITS | | | | | | | | | | | | |----------------|---|-----------------------|--------------|----------|------------------------|-----|----------|--|--------------|----------|---------------|-----------|-----------------|---| | SYMBOL | PARAMET | V _{DD} = 5 V | | | V _{DD} = 10 V | | | V _{DD} = 15 V | | | UNITS | TEMP | TEST CONDITIONS | | | | | | TYP | MAX | MIN | TYP | MAX | MIN | TYP | MAX | | | | | | | | | | 95 | 900 | | 55 | 380 | | 35 | 210 | | MIN | | | | | | | 100 | 1000 | | 65 | 500 | | 40 | 280 | Ω | 25°C | | | RON | ON
Resistance | xc | | 125 | 1100 | | 100 | 600 | | 65 | 340 | | MAX | Vis = VDD to VEE | | | | | | 90 | 850 | | 50 | 340 | | 30 | 190 | | MIN | Note 2 | | | | XM | | 100 | 1000 | | 65 | 500 | | 40 | 280 | Ω | 25° C | | | | | | | 150 | 1150 | | 110 | 660 | | 70 | 370_ | | MAX | | | | "Δ" ON Resis | st- | | | | | | | | | | | | | | ΔRON | ance Between Any | | | 25 | | | 10 | | | 5 | | Ω | 25°C | Note 2 | | | Two Channels | | | | | | | | | | <u> </u> | | | | | | OFF State | хc | | | | | | 800 | | | | nA 25° | 25°C | E = V _{DD}
V _{SS} = V _{DD} /2
V _{is} = V _{DD} or V _{EE}
V _{OS} = V _{EE} or V _{DD}
E = V _{SS} = V _{DD} /2 | | | Leakage
Current, All
Channels OFF | | | | | | <u> </u> | ļ <u>.</u> | <u> </u> | | | | | | | | | хм | | | | 1 | | 80 | | | | | | | | ¹ Z | | ''' | ļ | <u> </u> | <u> </u> | | 1 | ļ <u> </u> | <u> </u> | ├ | ļ | | | | | | Any
Channel | хc | | | | | | 100 | | | | | | 1 | | | | XM | | | | | | 10 | | | | | | Vis = VDD or VEE | | | OFF | | | <u> </u> | | ļ | ļ | | | | | <u> </u> | 4411 0F0 - | Vos = VEE or VDD | | IDD | Quiescent
Power | l xc | | 20 | | | 40 | | | 80 | μΑ | MIN, 25°C | VSS = VEE | | | | | | | | 150 | | | 300 | ļ— | <u> </u> | 600 | | MAX | All inputs at | | | Supply | ХМ | | | 5 | | | 10 | | 1 | 20 | μА | MIN, 25°C | VDD or VEE | | | Dissipation | | | | 150 | 1 | | 300 | 1 | | 600 | | MAX | - JD T CC | Notes on following page. AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, V_{EE} = 0 V, T_A = 25°C (See Note 3) | | 1 | LIMITS | | | | | | | | | | | | | |--|---|-----------------------|--------------|-----|------------------------|--------------|-----|------------------------|--------------|-----|-------|---|--|--| | SYMBOL | PARAMETER | V _{DD} = 5 V | | | V _{DD} = 10 V | | | V _{DD} = 15 V | | | UNITS | TEST CONDITIONS | | | | | | MIN | TYP | MAX | MIN | TYP | MAX | MIN | TYP | MAX | | | | | | ^t PLH
<u>^tPHL</u> | | | 25
10 | | | 10
6 | | | 6 | | ns | $C_L = 50 \text{ pF}, R_L = 200 \text{ k}\Omega$
$\overline{E} = V_{SS} = V_{EE},$ | | | | ^t PLH
^t PHL | Propagation Delay,
Address to Output | | 170
210 | | | 95
125 | | | 80
95 | | ns | A _n or V _{i\$} = V _{DD} or V _{EE}
Note 5 | | | | tPZL
tPZH | Output Enable Time | | 185
205 | | | 95
105 | | | 75
85 | | ns | C _L = 50 pF, R _L = 1 kΩ
E or A _D = V _{SS} = V _{EE} | | | | tPLZ
tPHZ | Output Disable Time | | 1250
1240 | | | 1130
1120 | | | 1080
1070 | | ns | V _{IS} = V _{DD} or V _{EE}
Note 5 | | | | | Distortion, Sine
Wave Response | | 0.2 | | | 0.2 | | | 0.2 | | % | $R_L = 10 \text{ k}\Omega$
$V_{SS} = V_{DD}/2$, $\overline{E} = V_{EE}$,
$V_{1S} = V_{DD}/2$ (sine wave) p-
$f_{1S} = 1 \text{ kHz}$ | | | | | Crosstalk Between
Any Two Channels | | | | | 1 | | | | | MHz | R _L = 1 k Ω \overline{E} = V _E
V _{IS} = V _{DD} /2 (sine wave) p-
at -40 dB
V _{SS} = V _{DD} /2, 20 Log ₁₀
(V _{OS} /V _{IS}) = -40 dB | | | | | OFF State
Feedthrough | | | | | 1 | | | | | MHz | $R_L = 1 \text{ k}\Omega$, $V_{SS} = V_{DD}/2$
$E = V_{DD}$
$V_{is} = V_{DD}/2$ (sine wave) p-1
20 Log ₁₀ (V_{OS}/V_{iS}) = -40 o | | | | MAX | ON State
Frequency Response | | 13 | | | 40 | | | 70 | | MHz | $R_L = 1 \text{ k}\Omega$, $\overline{E} = V_{SS}$
$V_{1S} = V_{DD}/2 \text{ (sine wave)p-1}$
$V_{SS} = V_{DD}/2$
20 Log10 (V_{OS}/V_{OS} @ 1 kHz
= -3 dB | | | ### NOTES: 4. V_{is}/V_{OS} is the voltage signal at an Input/Output terminal (Y_n/Z_n) . 5. $V_{IN} = V_{DD}$ (Square Wave), Input transition times ≤ 20 ns, $R_L = 10$ k Ω Additional DC Characteristics are listed in this section under 4000B Series CMOS Family Characteristics. $E = V_{SS} R_L = 10 \text{ k}\Omega$, any channel selected and $V_{SS} = V_{EE}$ or $V_{DD/2}$. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics. ^{5.} VIN = VDD require vaver, import ransation times < 20 is, r_L = 10 × 10. 6. In certain applications, the current through the external load resistor (R_L) may include both V_{DD} and signal line components. To avoid drawing V_{DD} current when switch current flows into terminals 1, 2, 4, 5, 12, 13, 14, or 15 the voltage drop across the bidirectional switch must not exceed 0.5 V at T_A ≤ 25°C, or 0.3 V at T_A > 25°C. No V_{DD} current will flow through R_L if the switch current flows into