Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/Distributors for availability and specifications.
(Note 8)

	LF155A/6A/7A	LF155/6/7	$\begin{gathered} \text { LF355B/6B/7B } \\ \text { LF255/6/7 } \end{gathered}$	$\begin{gathered} \text { LF355/6/7 } \\ \text { LF355A/6A/7A } \end{gathered}$
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 40 \mathrm{~V}$	$\pm 40 \mathrm{~V}$	$\pm 40 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage Range (Note 2)	$\pm 20 \mathrm{~V}$	$\pm 20 \mathrm{~V}$	$\pm 20 \mathrm{~V}$	$\pm 16 \mathrm{~V}$
Output Short Circuit Duration	Continuous	Continuous	Continuous	Continuous
TjMAX				
H-Package	$150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$
N-Package			$100^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
M-Package			$100^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Notes 1 and 9)				
H-Package (Still Air)	560 mW	560 mW	400 mW	400 mW
H-Package (400 LF/Min Air Flow)	1200 mW	1200 mW	1000 mW	1000 mW
N-Package			670 mW	670 mW
M-Package			380 mW	380 mW
Thermal Resistance (Typical) $\theta_{\text {JA }}$				
H-Package (Still Air)	$160^{\circ} \mathrm{C} / \mathrm{W}$			
H-Package (400 LF/Min Air Flow)	$65^{\circ} \mathrm{C} / \mathrm{W}$			
N-Package			$130^{\circ} \mathrm{C} / \mathrm{W}$	$130^{\circ} \mathrm{C} / \mathrm{W}$
M-Package			$195^{\circ} \mathrm{C} / \mathrm{W}$	$195^{\circ} \mathrm{C} / \mathrm{W}$
(Typical) $\theta_{\text {JC }}$				
H-Package	$23^{\circ} \mathrm{C} / \mathrm{W}$			
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			
Soldering Information (Lead Temp.)				
Metal Can Package				
Soldering (10 sec.)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
Dual-In-Line Package				
Soldering (10 sec.)		$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
Small Outline Package				
Vapor Phase (60 sec.)			$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)			$220^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD tolerance
$(100 \mathrm{pF}$ discharged through $1.5 \mathrm{k} \Omega) 1000 \mathrm{~V} 1000 \mathrm{~V} 1000 \mathrm{~V}$
DC Electrical Characteristics (Note 3) $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	LF155A/6A/7A			LF355A/6A/7A			Units
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		1	$\begin{gathered} 2 \\ 2.5 \end{gathered}$		1	$\begin{gathered} 2 \\ 2.3 \end{gathered}$	$m \mathrm{mV}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{S}=50 \Omega$		3	5		3	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{TC} / \Delta \mathrm{V}_{\text {OS }}$	Change in Average TC with $\mathrm{V}_{\text {OS }}$ Adjust	$\mathrm{R}_{\mathrm{S}}=50 \Omega$, (Note 4)		0.5			0.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ per mV
los	Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,5) \\ & \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {HIGH }} \end{aligned}$		3	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		3	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,5) \\ & \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {HIGH }} \end{aligned}$		30	$\begin{aligned} & 50 \\ & 25 \end{aligned}$		30	$\begin{gathered} 50 \\ 5 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10^{12}			10^{12}		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \text { Over Temperature } \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	200		$\begin{aligned} & 50 \\ & 25 \end{aligned}$	200		V / mV V / mV
V_{O}	Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

DC Electrical Characteristics (Note 3) $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (Continued)

Symbol	Parameter	Conditions	LF155A/6A/7A			LF355A/6A/7A			Units
			Min	Typ	Max	Min	Typ	Max	
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11	$\begin{gathered} +15.1 \\ -12 \end{gathered}$		± 11	$\begin{gathered} +15.1 \\ -12 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Common-Mode Rejection Ratio		85	100		85	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	85	100		85	100		dB

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Symbol	Parameter	Conditions	LF155A/355A			LF156A/356A			LF157A/357A			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
SR	Slew Rate	$\text { LF155A/6A; } A_{V}=1 \text {, }$ $L F 157 A ; A_{V}=5$	3	5		10	12		40	50		$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$
GBW	Gain Bandwidth Product			2.5		4	4.5		15	20		MHz
$\mathrm{t}_{\text {s }}$	Settling Time to 0.01\%	(Note 7)		4			1.5			1.5		$\mu \mathrm{s}$
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & R_{S}=100 \Omega \\ & f=100 \mathrm{~Hz} \\ & \mathrm{f}=1000 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 25 \\ & 20 \end{aligned}$			$\begin{aligned} & 15 \\ & 12 \end{aligned}$			$\begin{aligned} & 15 \\ & 12 \end{aligned}$		$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
i_{n}	Equivalent Input Noise Current	$\begin{aligned} & \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{f}=1000 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$		$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			3			3			3		pF

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	LF155/6/7			$\begin{gathered} \hline \text { LF255/6/7 } \\ \text { LF355B/6B/7B } \end{gathered}$			LF355/6/7			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		3	$\begin{aligned} & 5 \\ & 7 \end{aligned}$		3	$\begin{gathered} 5 \\ 6.5 \end{gathered}$		3	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		5			5			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{TC} / \Delta \mathrm{V}_{\text {OS }}$	Change in Average TC with $\mathrm{V}_{\text {OS }}$ Adjust	$\mathrm{R}_{\text {S }}=50 \Omega$, (Note 4)		0.5			0.5			0.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ per mV
los	Input Offset Current	$\begin{aligned} & \hline \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,5) \\ & \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {HIGH }} \\ & \hline \end{aligned}$		3	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		3	$\begin{gathered} 20 \\ 1 \end{gathered}$		3	$\begin{gathered} 50 \\ 2 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & \hline \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,5) \\ & \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {HIGH }} \\ & \hline \end{aligned}$		30	$\begin{gathered} 100 \\ 50 \end{gathered}$		30	$\begin{gathered} 100 \\ 5 \end{gathered}$		30	$\begin{gathered} 200 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1012			1012			1012		Ω
AVOL	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \text { Over Temperature } \\ & \hline \end{aligned}$	$\begin{array}{r} 50 \\ 25 \\ \hline \end{array}$	200		$\begin{array}{r} 50 \\ 25 \\ \hline \end{array}$	200		$\begin{aligned} & 25 \\ & 15 \\ & \hline \end{aligned}$	200		V / mV V / mV
V_{O}	Output Voltage Swing	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ \hline \end{array}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}$	± 11	$\begin{gathered} +15.1 \\ -12 \\ \hline \end{gathered}$		± 11	$\begin{array}{\|c} \hline \pm 15.1 \\ -12 \\ \hline \end{array}$		+10	$\begin{gathered} +15.1 \\ -12 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Common-Mode Rejection Ratio		85	100		85	100		80	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	85	100		85	100		80	100		dB

DC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {S }}= \pm 15 \mathrm{~V}$													
Parameter	LF155A/155, LF255, LF355A/355B		LF355		LF156A/156, LF256/356B		LF356A/356		LF157A/157LF257/357B		LF357A/357		Units
	Typ	Max											
Supply Current	2	4	2	4	5	7	5	10	5	7	5	10	mA

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Symbol	Parameter	Conditions	$\begin{gathered} \text { LF155/255/ } \\ \text { 355/355B } \end{gathered}$	LF156/256, LF356B	$\begin{array}{\|c\|} \hline \text { LF156/256/ } \\ 356 / 356 B \end{array}$	LF157/257, LF357B	$\begin{array}{\|c\|} \hline \text { LF157/257/ } \\ \text { 357/357B } \end{array}$	Units
			Typ	Min	Typ	Min	Typ	
SR	Slew Rate	LF155/6: $A_{V}=1$, LF157: $A_{V}=5$	5	7.5	12	30	50	$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
GBW	Gain Bandwidth Product		2.5		5		20	MHz
$\mathrm{t}_{\text {s }}$	Settling Time to 0.01\%	(Note 7)	4		1.5		1.5	$\mu \mathrm{s}$
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & R_{S}=100 \Omega \\ & f=100 \mathrm{~Hz} \\ & f=1000 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \\ & \hline \end{aligned}$		$\begin{aligned} & 15 \\ & 12 \end{aligned}$		$\begin{aligned} & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
i_{n}	Equivalent Input Current Noise	$\begin{aligned} & f=100 \mathrm{~Hz} \\ & \mathrm{f}=1000 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		3		3		3	pF

Notes for Electrical Characteristics

Note 1: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $\mathrm{T}_{\mathrm{jMAX}}, \theta_{\mathrm{j}}$, and the ambient temperature, T_{A}. The maximum available power dissipation at any temperature is $\mathrm{P}_{\mathrm{d}}=\left(\mathrm{T}_{\mathrm{j} M \mathrm{AX}}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{jA}}$ or the $25^{\circ} \mathrm{C} \mathrm{P}_{\mathrm{dMAX}}$, whichever is less.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: Unless otherwise stated, these test conditions apply:

	LF155A/6A/7A LF155//6/7	LF255//6/7	LF355A/6A/7A	LF355B/6B/7B	LF355//6/7
Supply Voltage, V_{S} T_{A} $\mathrm{T}_{\mathrm{HIGH}}$	$\begin{aligned} & \pm 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V} \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V} \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \pm 20 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & +70^{\circ} \mathrm{C} \end{aligned}$

and $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$ and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 4: The Temperature Coefficient of the adjusted input offset voltage changes only a small amount ($0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset adjustment.
Note 5: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{J}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Pd. $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{A}}+\theta_{\mathrm{jA}} \mathrm{Pd}$ where $\theta_{\mathrm{j} A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 6: Supply Voltage Rejection is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.
Note 7: Settling time is defined here, for a unity gain inverter connection using $2 \mathrm{k} \Omega$ resistors for the LF155/6. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10 V step input is applied to the inverter. For the LF157, $A_{V}=-5$, the feedback resistor from output to input is $2 \mathrm{k} \Omega$ and the output step is 10 V (See Settling Time Test Circuit).
Note 8: Refer to RETS155AX for LF155A, RETS155X for LF155, RETS156AX for LF156A, RETS156X for LF156, RETS157A for LF157A and RETS157X for LF157 military specifications.
Note 9: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

Typical DC Performance Characteristics

Curves are for LF155, LF156 and LF157 unless otherwise specified.

TL/H/5646-2

TL/H/5646-3

Typical AC Performance Characteristics

Typical AC Performance Characteristics (Continued)

Detailed Schematic

Connection Diagrams (Top Views)

TL/H/5646-14
Order Number LF156AH, LF155H, LF156H, LF255H, LF256H, LF257H, LF355AH, LF356AH, LF357AH, LF356BH, LF355H, LF356H, LF357H, LM155AH/883, LM155H/883, LM156AH/883, LM156H/883, LM157AH/883 or LM157H/883* See NS Package Number H08C

Dual-In-Line Package (M and N)

TL/H/5646-29
Order Number LF355M, LF356M, LF357M, LF355BM, LF356BM, LF355BN, LF356BN, LF357BN, LF355N, LF356N or LF357N
See NS Package Number M08A or N08E

Application Hints

The LF155/6/7 series are op amps with JFET input devices. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore large differential input voltages can easily be accomodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the commonmode voltage can exceed the positive supply by approximately 100 mV independent of supply voltage and over the full operating temperature range. The positive supply can therefore be used as a reference on an input as, for example, in a supply current monitor and/or limiter.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
All of the bias currents in these amplifiers are set by FET current sources. The drain currents for the amplifiers are therefore essentially independent of supply voltage.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Typical Circuit Connections

Typical Applications (Continued)

Fast Logarithmic Converter

- Dynamic range: $100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{i}} \leq 1 \mathrm{~mA}$ (5 decades), $\mid \mathrm{V}_{\mathrm{O}}=1 \mathrm{~V} /$ decade
- Transient response: $3 \mu \mathrm{~s}$ for $\Delta \mathrm{I}_{\mathrm{i}}=1$ decade
- C1, C2, R2, R3: added dynamic compensation
- $V_{O S}$ adjust the LF156 to minimize quiescent error
- R_{T} : Tel Labs type $\mathrm{Q} 81+0.3 \% /{ }^{\circ} \mathrm{C}$
$\left|V_{\text {OUT }}\right|=\left[1+\frac{R 2}{R_{T}}\right] \frac{\mathrm{kT}}{\mathrm{q}} \ln \mathrm{V}_{\mathrm{i}}\left[\frac{\mathrm{R}_{\mathrm{r}}}{\mathrm{V}_{\text {REF Ri }}}\right]=\log \mathrm{V}_{\mathrm{i}} \frac{1}{\mathrm{R}_{\mathrm{i}} \mathrm{I}_{\mathrm{r}}} \mathrm{R} 2=15.7 \mathrm{k}, \mathrm{R}_{\mathrm{T}}=1 \mathrm{k}, 0.3 \% /{ }^{\circ} \mathrm{C}$ (for temperature compensation)

Precision Current Monitor

- $\mathrm{V}_{\mathrm{O}}=5 \mathrm{R} 1 / \mathrm{R} 2\left(\mathrm{~V} / \mathrm{mA}\right.$ of $\left.\mathrm{I}_{\mathrm{S}}\right)$
- R1, R2, R3: 0.1\% resistors
- Use LF155 for
- Common-mode range to supply range
- Low IB
- Low V_{OS}
- Low Supply Current

8-Bit D/A Converter with Symmetrical Offset Binary Operation

TL/H/5646-32

- R1, R2 should be matched within $\pm 0.05 \%$
- Full-scale response time: $3 \mu \mathrm{~s}$

EO $_{\mathbf{O}}$	B1	B2	B3	B4	B5	B6	B7	B8	Comments
+9.920	1	1	1	1	1	1	1	1	Positive Full-Scale
+0.040	1	0	0	0	0	0	0	0	$(+)$ Zero-Scale
-0.040	0	1	1	1	1	1	1	1	$(-)$ Zero-Scale
-9.920	0	0	0	0	0	0	0	0	Negative Full-Scale

Typical Applications (Continued)

- Power BW: $\mathrm{f}_{\mathrm{MAX}}=\frac{\mathrm{S}_{\mathrm{r}}}{2 \pi \mathrm{~V}_{\mathrm{P}}} \cong 191 \mathrm{kHz}$
- Parasitic input capacitance C1 $\cong(3 \mathrm{pF}$ for LF155, LF156 and LF157 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate add C2 such that: R2 C2 $\cong \mathrm{R} 1 \mathrm{C} 1$.

- $\operatorname{loUT}_{\mathrm{OL}}(\mathrm{MAX}) \cong 150 \mathrm{~mA}$ (will drive $\mathrm{R}_{\mathrm{L}} \geq 100 \Omega$)
- $\frac{\Delta \mathrm{V}_{\text {OUT }}}{\Delta \mathrm{T}}=\frac{0.15}{10^{-2}} \mathrm{~V} / \mu \mathrm{s}$ (with C_{L} shown)
- No additional phase shift added by the current amplifier

Overshoot 6\%

- $\mathrm{t}_{\mathrm{s}} 10 \mu \mathrm{~s}$
- When driving large C_{L}, the $V_{\text {OUT }}$ slew rate determined by C_{L} and I OUT(MAX):
$\frac{\Delta \mathrm{V}_{\text {OUT }}}{\Delta \mathrm{T}}=\frac{\mathrm{l}_{\mathrm{OUT}}}{\mathrm{C}_{\mathrm{L}}} \cong \frac{0.02}{0.5} \mathrm{~V} / \mu \mathrm{s}=0.04 \mathrm{~V} / \mu \mathrm{s}$ (with C_{L} shown)

- By adding D1 and $R_{f}, V_{D 1}=0$ during hold mode. Leakage of $D 2$ provided by feedback path through R_{f}.
- Leakage of circuit is essentially I_{b} (LF155, LF156) plus capacitor leakage of Cp
- Diode D3 clamps $\mathrm{V}_{\text {OUT }}(\mathrm{A} 1)$ to $\mathrm{V}_{I N}-\mathrm{V}_{\mathrm{D} 3}$ to improve speed and to limit reverse bias of D2.
- Maximum input frequency should be $\ll 1 / 2 \pi R_{f} C_{D 2}$ where $C_{D 2}$ is the shunt capacitance of D2.

$f=\frac{V_{C}(R 8+R 7)}{\left(8 V_{P U} R 8 R 1\right) C}, 0 \leq V_{C} \leq 30 V, 10 \mathrm{~Hz} \leq f \leq 10 \mathrm{kHz}$
R1, R4 matched. Linearity 0.1% over 2 decades.

Non-Inverting Unity Gain Operation for LF157

Typical Applications (Continued)

High Impedance, Low Drift Instrumentation Amplifier

- $\mathrm{V}_{\text {OUT }}=\frac{\mathrm{R} 3}{\mathrm{R}}\left[\frac{2 \mathrm{R} 2}{\mathrm{R} 1}+1\right] \Delta \mathrm{V}, \mathrm{V}^{-}+2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}}$ common-mode $\leq \mathrm{V}^{+}$
- System $\mathrm{V}_{\text {OS }}$ adjusted via A2 $\mathrm{V}_{\text {OS }}$ adjust
- Trim R3 to boost up CMRR to 120 dB . Instrumentation amplifier resistor array recommended for best accuracy and lowest drift

Typical Applications (Continued)

TL/H/5646-33

- Both amplifiers (A1, A2) have feedback loops individually closed with stable responses (overshoot negligible)
- Acquisition time T_{A}, estimated by:
$T_{A} \cong\left[\frac{2 R_{O N}, V_{I N}, C_{h}}{S_{r}}\right]^{1 / 2}$ provided that:
$\mathrm{V}_{\text {IN }}<2 \pi \mathrm{~S}_{\mathrm{r}} \mathrm{R}_{\mathrm{ON}} \mathrm{C}_{\mathrm{h}}$ and $\mathrm{T}_{\mathrm{A}}>\frac{\mathrm{V}_{\text {IN }} \mathrm{C}_{h}}{\operatorname{loUT}(\mathrm{MAX})}$, R_{ON} is of SW1
If inequality not satisfied: $T_{A} \cong \frac{V_{I N} C_{h}}{20 \mathrm{~mA}}$
- LF156 develops full S_{r} output capability for $\mathrm{V}_{\mathrm{IN}} \geq 1 \mathrm{~V}$
- Addition of SW2 improves accuracy by putting the voltage drop across SW1 inside the feedback loop
- Overall accuracy of system determined by the accuracy of both amplifiers, A1 and A2

High Accuracy Sample and Hold

TL/H/5646-27

- By closing the loop through A2, the $\mathrm{V}_{\text {OUT }}$ accuracy will be determined uniquely by A 1 . No $V_{O S}$ adjust required for A2.
- T_{A} can be estimated by same considerations as previously but, because of the added propagation delay in the feedback loop (A2) the overshoot is not negligible
- Overall system slower than fast sample and hold
- R1, C_{C} : additional compensation
- Use LF156 for
- Fast settling time
- Low V_{OS}

Typical Applications (Continued)

Physical Dimensions inches (millimeters)

Small Outline Package (M)
Order Number LF355M, LF356M, LF357M, LF355BM or LF356BM
NS Package Number M08A
LF155/LF156/LF157 Series Monolithic JFET Input Operational Amplifiers
Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N)
Order Number LF355N, LF356N, LF357N, LF355BN, LF356BN, LF357BN
NS Package Number N08E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

This datasheet has been download from: www.datasheetcatalog.com

Datasheets for electronics components.

National Semiconductor was acquired by Texas Instruments.

http://www.ti.com/corp/docs/investor_relations/pr_09_23_2011_national_semiconductor.html

This file is the datasheet for the following electronic components:

LF156 - http://www.ti.com/product/lf156?HQS=TI-null-null-dscatalog-df-pf-null-wwe
LF157 - http://www.ti.com/product/If157?HQS=TI-null-null-dscatalog-df-pf-null-wwe
LF155 - http://www.ti.com/product//f155?HQS=TI-null-null-dscatalog-df-pf-null-wwe

