LF155/LF156/LF256/LF257/LF355/LF356/LF357 JFET Input Operational Amplifiers

General Description

These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors (BI-FET ${ }^{\text {TM }}$ Technology). These amplifiers feature low input bias and offset currents/low offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or common-mode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low 1/f noise corner.

Features

Advantages

- Replace expensive hybrid and module FET op amps
- Rugged JFETs allow blow-out free handling compared with MOSFET input devices
- Excellent for low noise applications using either high or low source impedance-very low 1/f corner
- Offset adjust does not degrade drift or common-mode rejection as in most monolithic amplifiers
- New output stage allows use of large capacitive loads ($5,000 \mathrm{pF}$) without stability problems
- Internal compensation and large differential input voltage capability

Applications

- Precision high speed integrators
- Fast D/A and A/D converters
- High impedance buffers
- Wideband, low noise, low drift amplifiers
- Logarithmic amplifiers
- Photocell amplifiers
- Sample and Hold circuits

Common Features

- Low input bias current: 30pA
- Low Input Offset Current: 3pA
- High input impedance: $10^{12} \Omega$
- Low input noise current: $0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- High common-mode rejection ratio: 100 dB
- Large dc voltage gain: 106 dB

Uncommon Features

	LF155/ LF355	LF156/ LF256/ LF356	$\begin{aligned} & \text { LF257/ } \\ & \text { LF357 } \\ & \left(A_{v}=5\right) \end{aligned}$	Units
Extremely fast settling time to 0.01\%	4	1.5	1.5	$\mu \mathrm{s}$
- Fast slew rate	5	12	50	$\mathrm{V} / \mu \mathrm{s}$
- Wide gain bandwidth	2.5	5	20	MHz
Low input noise voltage	20	12	12	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

Simplified Schematic

*3pF in LF357 series.
$\mathrm{BI}_{\mathrm{FEET}}{ }^{\mathrm{TM}}$, BI-FET II ${ }^{\text {TM }}$ are trademarks of National Semiconductor Corporation

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
Differential Input Voltage
Input Voltage Range (Note 2)
Output Short Circuit Duration
$\mathrm{T}_{\text {JMAX }}$
H-Package
N-Package
M-Package
Power Dissipation at $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$ (Notes

1, 8)
H-Package (Still Air)
H-Package (400 LF/Min Air Flow)
N-Package
M-Package

560 mW	400 mW	400 mW
1200 mW	1000 mW	1000 mW
	670 mW	670 mW

Thermal Resistance (Typical) θ_{JA}
H-Package (Still Air)

H-Package (400 LF/Min Air Flow)
$160^{\circ} \mathrm{C} / \mathrm{W}$

N-Package
M-Package
LF155/6
$\pm 22 \mathrm{~V}$
$\pm 40 \mathrm{~V}$
$\pm 20 \mathrm{~V}$
Continuous
$150^{\circ} \mathrm{C}$

LF256/7/LF356B
$\pm 22 \mathrm{~V}$
$\pm 40 \mathrm{~V}$
$\pm 20 \mathrm{~V}$
Continuous
$115^{\circ} \mathrm{C}$
$100^{\circ} \mathrm{C}$
$100^{\circ} \mathrm{C}$

LF355/6/7 $\pm 18 \mathrm{~V}$ $\pm 30 \mathrm{~V}$ $\pm 16 \mathrm{~V}$ Continuous $115^{\circ} \mathrm{C}$ $100^{\circ} \mathrm{C}$ $100^{\circ} \mathrm{C}$
(Typical) θ_{Jc} H-Package
Storage Temperature Range Soldering Information (Lead Temp.)

Soldering (10 sec.)
Dual-In-Line Package Soldering (10 sec.)
Small Outline Package
Vapor Phase (60 sec.)
Infrared (15 sec.)

$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$
$220^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD tolerance
(100 pF discharged through 1.5k 1000 V 1000V 1000V

DC Electrical Characteristics

(Note 3)

Symbol	Parameter	Conditions	LF155/6			LF256/7LF356B			LF355/6/7			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		3	$\begin{aligned} & 5 \\ & 7 \end{aligned}$		3	$\begin{gathered} \hline 5 \\ 6.5 \end{gathered}$		3	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\overline{\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		5			5			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\overline{\Delta T C / \Delta V_{\text {OS }}}$	Change in Average TC with $\mathrm{V}_{\text {OS }}$ Adjust	$\mathrm{R}_{\mathrm{S}}=50 \Omega$, (Note 4)		0.5			0.5			0.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ per mV
$\mathrm{l}_{\text {OS }}$	Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C},(\text { Notes } 3,5) \\ & \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {HIGH }} \end{aligned}$		3	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		3	$\begin{gathered} 20 \\ 1 \end{gathered}$		3	$\begin{gathered} 50 \\ 2 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$

DC Electrical Characteristics (Continued)

(Note 3)

Symbol	Parameter	Conditions	LF155/6			LF256/7LF356B			LF355/6/7			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \text {, (Notes 3, 5) } \\ & \mathrm{T}_{J} \leq \mathrm{T}_{\text {HIGH }} \\ & \hline \end{aligned}$		30	$\begin{gathered} 100 \\ 50 \\ \hline \end{gathered}$		30	$\begin{array}{\|c} \hline 100 \\ 5 \\ \hline \end{array}$		30	$\begin{gathered} 200 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		10^{12}			10^{12}			10^{12}		Ω
$\mathrm{A}_{\text {VOL }}$	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$ Over Temperature	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	200		$\begin{aligned} & 50 \\ & 25 \end{aligned}$	200		25 15	200		V / mV V/mV
$\mathrm{V}_{\text {O }}$	Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \pm 12 \\ \pm 10 \\ \hline \end{array}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \\ & \hline \end{aligned}$		$\begin{array}{\|l} \hline \pm 12 \\ \pm 10 \\ \hline \end{array}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11	$\begin{gathered} +15.1 \\ -12 \end{gathered}$		± 11	$\begin{gathered} \pm 15.1 \\ -12 \end{gathered}$		+10	$\begin{gathered} +15.1 \\ -12 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Common-Mode Rejection Ratio		85	100		85	100		80	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	85	100		85	100		80	100		dB

DC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Parameter	LF155		LF355		LF156/256/257/356B		LF356		LF357		Units
	Typ	Max									
Supply Current	2	4	2	4	5	7	5	10	5	10	mA

AC Electrical Characteristics

Symbol	Parameter	Conditions	LF155/355	$\begin{gathered} \hline \text { LF156/256/ } \\ 356 \mathrm{~B} \end{gathered}$	$\begin{gathered} \hline \text { LF156/256/356/ } \\ \text { LF356B } \end{gathered}$	LF257/357	Units
			Typ	Min	Typ	Typ	
SR	Slew Rate	$\begin{aligned} & \text { LF155/6: } \\ & A_{V}=1, \\ & \text { LF357: } A_{V}=5 \end{aligned}$	5	7.5	12	50	$\mathrm{V} / \mathrm{\mu s}$ V/ $\mu \mathrm{s}$
GBW	Gain Bandwidth Product		2.5		5	20	MHz
$\mathrm{t}_{\text {s }}$	Settling Time to 0.01\%	(Note 7)	4		1.5	1.5	$\mu \mathrm{s}$
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & R_{S}=100 \Omega \\ & f=100 \mathrm{~Hz} \\ & f=1000 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$		$\begin{aligned} & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
i_{n}	Equivalent Input Current Noise	$\begin{aligned} & \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{f}=1000 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		3		3	3	pF

Notes for Electrical Characteristics

Note 1: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$, and the ambient temperature,
T_{A}. The maximum available power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the $25^{\circ} \mathrm{C} P_{d M A X}$, whichever is less.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: Unless otherwise stated, these test conditions apply:

Notes for Electrical Characteristics (Continued)

	LF155/156	LF256/257	LF356B	LF355/6/7
Supply Voltage, V_{S}	$\pm 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$	$\pm 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$	$\pm 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \pm 20 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
$\mathrm{~T}_{\mathrm{A}}$	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {HIGH }}$	$+125^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

and $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$ and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 4: The Temperature Coefficient of the adjusted input offset voltage changes only a small amount ($0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset adjustment.
Note 5: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{J}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{Pd} . \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\theta_{\mathrm{JA}} \mathrm{Pd}$ where θ_{JA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 6: Supply Voltage Rejection is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.
Note 7: Settling time is defined here, for a unity gain inverter connection using $2 \mathrm{k} \Omega$ resistors for the LF155/6. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10 V step input is applied to the inverter. For the $\mathrm{LF} 357, \mathrm{~A}_{\mathrm{V}}=-5$, the feedback resistor from output to input is $2 \mathrm{k} \Omega$ and the output step is 10 V (See Settling Time Test Circuit).
Note 8: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

Typical DC Performance Characteristics Curves are for LF155 and LF156 unless othervise specified.

00564637

Input Bias Current

00564638

Typical DC Performance Characteristics
Curves are for LF155 and LF156 unless otherwise specified. (Continued)

Negative Current Limit

00564643
Positive Common-Mode Input Voltage Limit

Supply Current

Positive Current Limit

00564644
Negative Common-Mode
Input Voltage Limit

Typical DC Performance Characteristics
Curves are for LF155 and LF156 unless otherwise specified. (Continued)

Typical AC Performance Characteristics

00564649

0564651

Gain Bandwidth

00564650

Typical AC Performance Characteristics
Output Impedance

00564653
LF156 Small Signal Pulse Response, $\mathrm{A}_{\mathrm{v}}=\boldsymbol{+ 1}$

TIME ($0.5 \mu \mathrm{~s} / \mathrm{DIV}$)
00564606
LF156 Large Signal Puls Response, $A_{v}=+1$

(Continued)

LF155 Small Signal Pulse Response, $A_{V}=+1$

00564605
LF155 Large Signal Pulse Response, $\mathrm{A}_{\mathrm{V}}=\boldsymbol{+ 1}$

TIME (1 Ms/DIV)
00564608

Inverter Settling Time

Typical AC Performance Characteristics (Continued)

Bode Plot

00564658

Bode Plot

Open Loop Frequency Response

00564657
Bode Plot

00564659

Common-Mode Rejection Ratio

Typical AC Performance Characteristics (Continued)

Undistorted Output Voltage Swing

Equivalent Input Noise Voltage

00564665

Detailed Schematic

*C $=3$ pF in LF357 series.
Connection Diagrams (Top Views)

Metal Can Package (H)

Order Number LF155H, LF156H, LF256H, LF257H,
LF356BH, LF356H, or LF357H
See NS Package Number H08C
*Available per JM38510/11401 or JM38510/11402

Dual-In-Line Package (M and N)

00564629
Order Number LF356M, LF356MX, LF355N, or LF356N See NS Package Number M08A or N08E

Application Hints

These are op amps with JFET input devices. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a

Application Hints

(Continued)
reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the common-mode voltage can exceed the positive supply by approximately 100 mV independent of supply voltage and over the full operating temperature range. The positive supply can therefore be used as a reference on an input as, for example, in a supply current monitor and/or limiter.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
All of the bias currents in these amplifiers are set by FET current sources. The drain currents for the amplifiers are therefore essentially independent of supply voltage.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Typical Circuit Connections

- V_{Os} is adjusted with a 25 k potentiometer
- The potentiometer wiper is connected to V^{+}
- For potentiometers with temperature coefficient of 100 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less the additional drift with adjust is $\approx 0.5 \mu \mathrm{~V} /$ ${ }^{\circ} \mathrm{C} / \mathrm{mV}$ of adjustment
- Typical overall drift: $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \pm\left(0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} / \mathrm{mV}\right.$ of adj. $)$

Driving Capacitive Loads

* LF155/6 R = 5k

LF357 R = 1.25k
Due to a unique output stage design, these amplifiers have the ability to drive large capacitive loads and still maintain stability. $\mathrm{C}_{\mathrm{L}(\text { MAX })} \simeq 0.01 \mu \mathrm{~F}$.
Overshoot $\leq 20 \%$
Settling time (t_{s}) $\sim 5 \mu \mathrm{~s}$
LF357. A Large Power BW Amplifier

00564615
For distortion $\leq 1 \%$ and a $20 \mathrm{Vp}-\mathrm{p} \mathrm{V}_{\text {OUT }}$ swing, power bandwidth is: 500 kHz .

Typical Applications

- Settling time is tested with the LF155/6 connected as unity gain inverter and LF357 connected for $A_{V}=-5$
- FET used to isolate the probe capacitance
- Output $=10 \mathrm{~V}$ step
- $A_{V}=-5$ for LF357

Large Signal Inverter Output, $\mathrm{V}_{\text {Out }}$ (from Settling Time Circuit)

Typical Applications (Continued)

Low Drift Adjustable Voltage Reference

- $\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{T}= \pm 0.002 \% /{ }^{\circ} \mathrm{C}$
- All resistors and potentiometers should be wire-wound
- P1: drift adjust
- P2: V Vut adjust
- Use LF155 for

■ Low I_{B}
■ Low drift
■ Low supply current
Fast Logarithmic Converter

- Dynamic range: $100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{i}} \leq 1 \mathrm{~mA}$ (5 decades), $\left|\mathrm{V}_{\mathrm{O}}\right|=1 \mathrm{~V} /$ decade
- Transient response: $3 \mu \mathrm{~s}$ for $\Delta \mathrm{I}_{\mathrm{i}}=1$ decade
- C1, C2, R2, R3: added dynamic compensation
- V_{Os} adjust the LF156 to minimize quiescent error
- R_{T} : Tel Labs type $\mathrm{Q} 81+0.3 \% /^{\circ} \mathrm{C}$

$$
\left|V_{\text {OUT }}\right|=\left[1+\frac{R 2}{R_{T}}\right] \frac{k T}{q} \text { in } v_{i}\left[\frac{R_{r}}{V_{\text {REF Ri }}}\right]=\log v_{i} \frac{1}{R_{i} l_{r}} R 2=15.7 \mathrm{k}, R_{T}=1 \mathrm{k}, 0.3 \% /{ }^{\circ} \mathrm{C} \text { (for temperature compensation) }
$$

Typical Applications
(Continued)

- $\mathrm{V}_{\mathrm{O}}=5 \mathrm{R} 1 / \mathrm{R} 2\left(\mathrm{~V} / \mathrm{mA}\right.$ of $\left.\mathrm{I}_{\mathrm{s}}\right)$
- R1, R2, R3: 0.1\% resistors
- Use LF155 for

■ Common-mode range to supply range
■ Low I_{B}

- Low V_{OS}

■ Low Supply Current

8-Bit D/A Converter with Symmetrical Offset Binary Operation

00564632

- R1, R2 should be matched within $\pm 0.05 \%$
- Full-scale response time: $3 \mu \mathrm{~s}$

$\mathbf{E}_{\mathbf{O}}$	B1	B2	B3	B4	B5	B6	B7	B8	Comments
+9.920	1	1	1	1	1	1	1	1	Positive Full-Scale
+0.040	1	0	0	0	0	0	0	0	$(+)$ Zero-Scale
-0.040	0	1	1	1	1	1	1	1	$(-)$ Zero-Scale
-9.920	0	0	0	0	0	0	0	0	Negative Full-Scale

Wide BW Low Noise, Low Drift Amplifier

- Power BW: $\mathrm{f}_{\mathrm{MAX}}=\frac{\mathrm{S}_{\mathrm{r}}}{2 \pi V_{P}} \cong 191 \mathrm{kHz}$
- Parasitic input capacitance C1 $\simeq(3 p F$ for LF155, LF156 and LF357 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate add C2 such that: R2 C2 \simeq R1 C1.

Boosting the LF156 with a Current Amplifier

- $\mathrm{I}_{\text {OUT(MAX) }} \simeq 150 \mathrm{~mA}$ (will drive $\mathrm{R}_{\mathrm{L}} \geq 100 \Omega$)

$$
\text { - } \frac{\Delta \mathrm{V}_{\text {OUT }}}{\Delta \mathrm{T}}=\frac{0.15}{10^{-2}} \mathrm{~V} / \mu \mathrm{s} \text { (with } \mathrm{C}_{\mathrm{L}} \text { shown) }
$$

- No additional phase shift added by the current amplifier

Typical Applications (Continued)

00564624

$$
f=\frac{V_{C}(R 8+R 7)}{\left(8 V_{P U} R 8 R 1\right) C^{\prime}} 0 \leq V_{C} \leq 30 \mathrm{~V}, 10 \mathrm{~Hz} \leq f \leq 10 \mathrm{kHz}
$$

R1, R4 matched. Linearity 0.1% over 2 decades.

- Overshoot 6\%
- $\mathrm{t}_{\mathrm{s}} 10 \mu \mathrm{~s}$
- When driving large C_{L}, the $\mathrm{V}_{\text {OUT }}$ slew rate determined by C_{L} and $\mathrm{I}_{\text {OUT(MAX) }}$:

$$
\frac{\Delta \mathrm{V}_{\text {OUT }}}{\Delta \mathrm{T}}=\frac{\mathrm{I}_{\text {OUT }}}{\mathrm{C}_{\mathrm{L}}} \cong \frac{0.02}{0.5} \mathrm{~V} / \mu \mathrm{s}=0.04 \mathrm{~V} / \mu \mathrm{s} \text { (with } \mathrm{C}_{\mathrm{L}} \text { shown) }
$$

- By adding $D 1$ and $R_{f}, V_{D 1}=0$ during hold mode. Leakage of $D 2$ provided by feedback path through R_{f}.
- Leakage of circuit is essentially I_{b} (LF155, LF156) plus capacitor leakage of Cp .
- Diode D3 clamps $\mathrm{V}_{\text {OUT }}$ (A1) to $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{D} 3}$ to improve speed and to limit reverse bias of D2.
- Maximum input frequency should be $\ll 1 / 2 \pi R_{f} C_{D 2}$ where $C_{D 2}$ is the shunt capacitance of $D 2$.

Non-Inverting Unity Gain Operation for LF157

00564675
$\mathrm{R} 1 \mathrm{C} \geq \frac{1}{(2 \pi)(5 \mathrm{MHz})}$
$R 1=\frac{R 2+R_{S}}{4}$
$A_{V(D C)}=1$
$f_{-3 d B} \approx 5 \mathrm{MHz}$

Inverting Unity Gain for LF157

00564625

$$
\begin{aligned}
& \mathrm{R} 1 \mathrm{C} \geq \frac{1}{(2 \pi)(5 \mathrm{MHz})} \\
& \mathrm{R} 1=\frac{\mathrm{R} 2}{4} \\
& \mathrm{~A}_{\mathrm{V}(\mathrm{DC})}=-1 \\
& \mathrm{f}_{-3 \mathrm{~dB}} \approx 5 \mathrm{MHz}
\end{aligned}
$$

Typical Applications (Continued)

High Impedance, Low Drift Instrumentation Amplifier

- System $\mathrm{V}_{\text {Os }}$ adjusted via $\mathrm{A} 2 \mathrm{~V}_{\text {Os }}$ adjust
- Trim R3 to boost up CMRR to 120 dB . Instrumentation amplifier resistor array recommended for best accuracy and lowest drift

- Both amplifiers (A1, A2) have feedback loops individually closed with stable responses (overshoot negligible)
- Acquisition time T_{A}, estimated by:

$$
\begin{aligned}
& T_{A} \cong\left[\frac{2 R_{O N}, V_{I N}, C_{h}}{S_{r}}\right] 1 / 2 \text { provided that: } \\
& V_{I N}<2 \pi S_{r} R_{O N} C_{h} \text { and } T_{A}>\frac{V_{I N} C_{h}}{I_{O U T(M A X)}}, R_{O N} \text { is of SW1 } \\
& \text { If inequality not satisfied: } T_{A} \cong \frac{V_{I N} C_{h}}{20 \mathrm{~mA}}
\end{aligned}
$$

- LF156 develops full S_{r} output capability for $\mathrm{V}_{\mathrm{IN}} \geq 1 \mathrm{~V}$
- Addition of SW2 improves accuracy by putting the voltage drop across SW1 inside the feedback loop
- Overall accuracy of system determined by the accuracy of both amplifiers, A1 and A2

Typical Applications

High Accuracy Sample and Hold

00564627

- By closing the loop through A 2 , the $\mathrm{V}_{\text {OUT }}$ accuracy will be determined uniquely by A 1 . No $\mathrm{V}_{\text {Os }}$ adjust required for A 2 .
- T_{A} can be estimated by same considerations as previously but, because of the added propagation delay in the feedback loop (A2) the overshoot is not negligible.
- Overall system slower than fast sample and hold
- R1, C_{C} : additional compensation
- Use LF156 for
- Fast settling time

■ Low V_{Os}
High Q Band Pass Filter

00564628

- By adding positive feedback (R2)
- Q increases to 40
- $f_{B P}=100 \mathrm{kHz}$

$$
\frac{V_{\text {OUT }}}{V_{I N}}=10 \sqrt{\bar{Q}}
$$

- Clean layout recommended
- Response to a $1 \mathrm{Vp}-\mathrm{p}$ tone burst: $300 \mu \mathrm{~s}$

Typical Applications

- $2 R 1=R=10 M \Omega$
$2 \mathrm{C}=\mathrm{C} 1=300 \mathrm{pF}$
- Capacitors should be matched to obtain high Q
- $\mathrm{f}_{\text {NOTCH }}=120 \mathrm{~Hz}$, notch $=-55 \mathrm{~dB}, \mathrm{Q}>100$
- Use LF155 for

■ Low I_{B}
■ Low supply current

Physical Dimensions
inches (millimeters) unless otherwise noted

Metal Can Package (H)
Order Number LF155H, LF156H, LF256H, LF257H, LF356BH, LF356H or LF357H NS Package Number H08C

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

